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Abstract. We analyze the limit of the spectrum of a geometric Dirac-type operator under a
collapse with bounded diameter and bounded sectional curvature. In the case of a smooth limit
space B, we show that the limit of the spectrum is given by the spectrum of a certain ¢rst-order
differential operator on B, which can be constructed using superconnections. In the case of a
general limit space X, we express the limit operator in terms of a transversally elliptic operator
on a G-manifold �XX with X ¼ �XX=G. As an application, we give a characterization of manifolds
which do not admit uniform upper bounds, in terms of diameter and sectional curvature, on
the k-th eigenvalue of the square of a Dirac-type operator.We also give a formula for the essential
spectrum of a Dirac-type operator on a ¢nite-volume manifold with pinched negative sectional
curvature.
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1. Introduction

In previous papers we analyzed the limit of the spectrum of the differential form
Laplacian on a manifold, under a collapse with bounded diameter and bounded
sectional curvature [17, 22]. In the present paper, we extend the analysis of [17,
22] to geometric Dirac-type operators. As the present paper is a sequel to [17, 22],
we refer to the introduction of [17] for background information about collapsing
with bounded curvature and its relation to analytic questions.

Let M be a connected closed oriented Riemannian manifold of dimension n > 0. If
M is spin then we put G ¼ SpinðnÞ and if M is not spin then we put G ¼ SOðnÞ. The
spinor-type ¢elds that we consider are sections of a vector bundle EM associated
to a G-Clifford module V , the latter being in the sense of De¢nition 2 of Section
2. The ensuing Dirac-type operator DM acts on sections of EM . We will think of
the spectrum sðDMÞ of DM as a set of real numbers with multiplicities, corresponding
to possible multiple eigenvalues. For simplicity, in this introduction we will some-
times refer to the Dirac-type operators as acting on spinors, even though the results
are more general.
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We ¢rst consider a collapse in which the limit space is a smooth Riemannian
manifold. The model case is that of a Riemannian af¢ne ¢ber bundle.

DEFINITION 1. An af¢ne ¢ber bundle is a smooth ¢ber bundle p: M ! B whose
¢ber Z is an infranilmanifold and whose structure group can be reduced from
DiffðZÞ to AffðZÞ. A Riemannian af¢ne ¢ber bundle is an af¢ne ¢ber bundle along
with

� A horizontal distribution THM whose holonomy lies in AffðZÞ,
� A family of vertical Riemannian metrics gTZ which are parallel with respect to the

£at a⁄ne connections on the ¢bers Zb and
� A Riemannian metric gTB on B.

Given a Riemannian af¢ne ¢ber bundle p: M ! B, there is a Riemannian metric
gTM on M constructed from THM, gTZ and gTB. Let RM denote the Riemann cur-
vature tensor of ðM; gTMÞ, let P denote the second fundamental forms of the ¢bers
fZbgb2B and let T 2 O2

ðM; TZÞ be the curvature of THM. Given b 2 B, there is
a natural £at connection on EM

��
Zb

which is constructed using the af¢ne structure
of Zb. We de¢ne a Clifford bundle EB on B whose ¢ber over b 2 B consists of
the parallel sections of EM

��
Zb
. The operator DM restricts to a ¢rst-order differential

operator DB on C1ðB; EBÞ. If V happens to be the spinor module then we show
that DB is the ‘quantization’ of a certain superconnection on B. For general V , there
is an additional zeroth-order term in DB which depends on P and T .

We show that the spectrum of DM coincides with that of DB up to a high level,
which depends on the maximum diameter diamðZÞ of the ¢bers fZbgb2B.

THEOREM 1. There are positive constants A, A0 and C which only depend on n
and V such that if k RZ k1 diam ðZÞ2 WA0 then the intersection of sðDMÞ with the
interval

½�ðA diam ðZÞ�2 � Cðk RM k1 þ k P k21 þ k T k21ÞÞ
1=2;

ðA diam ðZÞ�2 � Cðk RM k1 þ k P k21 þ k T k21ÞÞ
1=2
� ð1:1Þ

equals the intersection of sðDBÞ with (1.1).

If Z ¼ S1, P ¼ 0 and V is the spinor module then we recover some results of
[1, Section 4]; see also [12, Theorem 1.5]. The proof of Theorem 1 follows the same
strategy as the proof of the analogous [17, Theorem 1]. Consequently, in the proof
of Theorem 1, we only indicate the changes that need to be made in the proof
of [17, Theorem 1] and refer to [17] for details.

Given B, Cheeger, Fukaya and Gromov showed that under some curvature
bounds, any Riemannian manifold M which is suf¢ciently Gromov^Hausdorff close
to B can be well approximated by a Riemannian af¢ne ¢ber bundle [11]. Using this
fact, we show that the spectrum of DM can be uniformly approximated by that
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of a certain ¢rst-order differential operator DB on B, at least up to a high level which
depends on the Gromov-Hausdorff distance between M and B.

Given e > 0 and two collections of real numbers faigi2I and fbjgj2J , we say that
faigi2I and fbjgj2J are e-close if there is a bijection a: I ! J such that for all
i 2 I , jbaðiÞ � aijW e.

THEOREM 2. Let B be a ¢xed smooth connected closed Riemannian manifold. Given
n 2 Zþ, take G 2 fSOðnÞ; SpinðnÞg and let V be a G-Clifford module. Then for any
e > 0 and K > 0, there are positive constants AðB; n;V ; e;KÞ, A0ðB; n;V ; e;KÞ,
and CðB; n;V ; e;KÞ so that the following holds. Let M be an n-dimensional connected
closed oriented Riemannian manifold with a G-structure such that k RM k1 WK and
dGH ðM;BÞWA0. Then there are a Clifford module EB on B and a certain ¢rst-order
differential operator DB on C1ðB; EBÞ such that

(1) fsinh�1ðl=
ffiffiffiffiffiffiffi
2K

p
Þ: l 2 sðDMÞ and l2 WAdGH ðM ;BÞ�2 � C g is e-close to a subset

of fsinh�1ðl=
ffiffiffiffiffiffiffi
2K

p
Þ: l 2 sðDBÞg, and

(2) fsinh�1ðl=
ffiffiffiffiffiffiffi
2K

p
Þ: l 2 sðDBÞ and l2 WAdGH ðM ;BÞ�2 � C g is e-close to a subset

of fsinh�1ðl=
ffiffiffiffiffiffiffi
2K

p
Þ: l 2 sðDMÞg:

The other results in this paper concern collapsing to a possibly-singular space. Let
X be a limit space of a sequence fMig

1
i¼1 of n-dimensional connected closed oriented

Riemannian manifolds with uniformly bounded diameter and uniformly bounded
sectional curvature. In general, X is not homeomorphic to a manifold. However,
Fukaya showed that X is homeomorphic to �XX=G, where �XX is a manifold and G
is a compact Lie group which acts on �XX [15]. This comes from writing
Mi ¼ Pi=G, where G ¼ SOðnÞ and Pi is the oriented orthonormal frame bundle
of Mi. There is a canonical Riemannian metric on Pi. Then fPig

1
i¼1 has a subsequence

which Gromov^Hausdorff converges to a manifold �XX . As the convergence argument
can be done G-equivariantly, the corresponding subsequence of fMig

1
i¼1 converges to

X ¼ �XX=G. In general, �XX is a smooth manifold with a metric which is C1;a regular for
all a 2 ð0; 1Þ.

In [22] we dealt with the limit of the spectra of the differential form Laplacians
f4Mi g1i¼1 on the manifolds fMig

1
i¼1. We de¢ned a limit operator 4X which acts

on the ‘differential forms’ on X , coupled to a superconnection. In order to make
this precise, we de¢ned the ‘differential forms’ on X to be the G-basic differential
forms on �XX . We constructed the corresponding differential form Laplacian 4X

and showed that its spectrum described the limit of the spectra of f4Mi g1i¼1. We refer
to [22] for the precise statements.

In the case of geometric Dirac-type operators DMi , there is a fundamental problem
in extending this approach. Namely, if �XX is a spin manifold on which a compact Lie
group G acts isometrically and preserving the spin structure then there does not
seem to be a notion of G-basic spinors on �XX . In order to get around this problem,
we take a different approach. For a given n-dimensional Riemannian spin manifold
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M, put G ¼ SpinðnÞ, let P be the principal SpinðnÞ-bundle of M and let V be the
spinor module. One can identify the spinor ¢elds on M with C1ðPÞ � Vð Þ

G, the
G-invariant subspace of C1ðPÞ � V . There are canonical horizontal vector ¢elds
fYjg

n
j¼1 on P and the Dirac operator takes the form DM ¼ �i

Pn
j¼1 g

jYj.
Furthermore, ðDMÞ

2 can be written in a particularly simple form. As in equation
(4.2) below, when acting on C1ðPÞ � Vð Þ

G, ðDMÞ
2 becomes the scalar Laplacian

on P (acting on V -valued functions) plus a zeroth-order term.
Following this viewpoint, it makes sense to de¢ne the limiting ‘spinor ¢elds’ on X

to be the elements of ðC1ð �XX Þ � V ÞG. We can then extend Theorem 1 to the setting
of G-equivariant Riemannian af¢ne ¢ber bundles. Namely, the limit operator
DX turns out to be a G-invariant ¢rst-order differential operator on C1ð �XX Þ � V ,
transversally elliptic in the sense of Atiyah [2], which one then restricts to the
G-invariant subspace ðC1ð �XX Þ � V ÞG. In Theorem 6 below, we show that the analog
of Theorem 1 holds, in which DB is replaced by DX .

Theorem 6 refers to a given G-equivariant Riemannian af¢ne ¢ber bundle. In order
to deal with arbitrary collapsing sequences, we use the aforementioned represen-
tation of ðDMÞ

2 as a Laplace-type operator on P. If fMig
1
i¼1 is a sequence of

n-dimensional Riemannian manifolds with uniformly bounded diameter and
uniformly bounded sectional curvature then we show that after taking a
subsequence, the spectra of fðDMi Þ

2
g1i¼1 converge to the spectrum of a Laplace-type

operator on a limit space. Let flkðjDM jÞg1k¼1 denote the eigenvalues of jD
M j, counted

with multiplicity.

THEOREM 3. Given n 2 Zþ and G 2 fSOðnÞ; SpinðnÞg, let fMig
1
i¼1 be a sequence of

connected closed oriented n-dimensional Riemannian manifolds with a G-structure.
Let V be a G-Clifford module. Suppose that for some D;K > 0 and for each
i 2 Zþ, we have diam ðMiÞWD and k RMi k1 WK. Then there are

(1) A subsequence of fMig
1
i¼1, which we relabel as fMig

1
i¼1,

(2) A smooth closed G-manifold �XX with a G-invariant Riemannian metric gT �XX which is
C1;a-regular for all a 2 ð0; 1Þ,

(3) A positive G-invariant function w 2 Cð �XX Þ with
R

�XX wdvol ¼ 1 and
(4) A G-invariant function V 2 L1ð �XX Þ � EndðVÞ such that if 4 �XX denotes the

Laplacian on L2ð �XX ; wdvolÞ � V [14, (0.8)] and jDX j denotes the operatorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�XX þ V
p

acting on ðL2ð �XX ; wdvolÞ � VÞG then for all k 2 Zþ,

lim
i!1

lk jDMi j
� �

¼ lk jDX j
� �

: ð1:2Þ

In the special case of the signature operator, the proof of Theorem 3 is somewhat
simpler than that of the analogous [22, Proposition 3], in that we essentially only
have to deal with scalar Laplacians. However, [22, Proposition 3] gives more
detailed information. In particular, it expresses the limit operator in terms of a basic
£at degree-1 superconnection on �XX . This seems to be necessary in order to prove the
results of [22] concerning small eigenvalues. Of course, one does not expect to have
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analogous results concerning the small eigenvalues of general geometric Dirac-type
operators, as their zero-eigenvalues have no topological meaning.

As an application of Theorem 3, we give a characterization of manifolds which do
not have a uniform upper bound on the k-th eigenvalue of jDM j, in terms of diameter
and sectional curvature.

THEOREM 4. Let M be a connected closed oriented manifold with a G-structure.
Let V be a G-Clifford module. Suppose that for some K > 0 and k 2 Zþ, there
is no uniform upper bound on lkðjDM jÞ among Riemannian metrics on M with
diam ðMÞ ¼ 1 and k RM k1 WK. Then M is the total space of a possibly-
singular af¢ne ¢ber bundle M ! X whose generic ¢ber is an infranilmanifold Z
such that the restriction of EM to Z does not have any nonzero af¢ne-parallel
sections.

As a partial converse, let M be the total space of a smooth af¢ne ¢ber bundle whose
¢ber is Z and whose base B has positive dimension. If the restriction of EM to Z does
not have any nonzero af¢ne-parallel sections then there is some K > 0 such that
for any k 2 Zþ, there is no uniform upper bound on lkðjDMjÞ among Riemannian
metrics on M with diam ðMÞ ¼ 1 and k RM k1 WK.

More precisely, the possibly-singular af¢ne ¢ber bundle M ! X of Theorem 4 is
the G-quotient of a G-equivariant af¢ne ¢ber bundle P ! �XX . Theorem 4 is an analog
of [22, Theorem 1.2]. A simple example of Theorem 4 comes from considering
spinors on M ¼ S1 �N, where N is a spin manifold and the spin structure on
S1 is the one that does not admit a harmonic spinor. Upon shrinking the S1-¢ber,
the eigenvalues of DM go off to �1.

Finally, we give a result about the essential spectrum of a geometric Dirac-type
operator on a ¢nite-volume manifold of pinched negative curvature, which is an
analog of [19, Theorem 2]. Let M be a complete connected oriented n-dimensional
Riemannian manifold with a G-structure. Suppose that M has ¢nite volume and
its sectional curvatures satisfy �b2 WK W � a2, with 0 < aW b. Let V be a
G-Clifford module. Label the ends of M by I 2 f1; . . . ;Ng. An end of M has a
neighborhood UI whose closure is homeomorphic to ½0;1Þ � ZI , where the ¢rst
coordinate is the Busemann function corresponding to a ray exiting the end, and
ZI is an infranilmanifold. Let EM be the vector bundle on M associated to the pair
ðG;V Þ and let DM be the corresponding Dirac-type operator. If UI lies far enough
out the end then for each s 2 ½0;1Þ, C1ðfsg � ZI ; EM

��
fsg�ZI

Þ decomposes as the
direct sum of a ¢nite-dimensional space EB

I;s, consisting of ‘bounded energy’ sections,
and its orthogonal complement, consisting of ‘high energy’ sections. The vector
spaces fEB

I;sgs2½0;1Þ ¢t together to form a vector bundle EB
I on ½0;1Þ. Let P0 be

orthogonal projection from
LN

I¼1 C1ðUI ; EM
��
UI
Þ to

LN
I¼1 C1ð½0;1Þ; EB

I Þ. Let
DM

end be the restriction of DM to
LN

I¼1 C1ðUI ; EM
��
UI
Þ, say with Atiyah-Patodi-Singer

boundary conditions. Then P0DM
endP0 is a ¢rst-order ordinary differential operator

on
LN

I¼1 C1 ½0;1Þ; EB
I

� �
.

COLLAPSING AND DIRAC-TYPE OPERATORS 179



THEOREM 5. The essential spectrum of DM is the same as that of P0DM
endP0.

There is some intersection between Theorem 5 and the results of [4, Theorem 0.1],
concerning the essential spectrum of DM when n ¼ 2 and under an additional
curvature assumption, and [5, Theorem 1], concerning the essential spectrum of DM

when M is hyperbolic and V is the spinor module.

2. Dirac-type Operators and Infranilmanifolds

Given n 2 Zþ, let G be either SO(n) or Spin(n).

DEFINITION 2. A G-Clifford module consists of a ¢nite-dimensional Hermitian
G-vector space V and a G-equivariant linear map g : Rn

! EndðV Þ such that
gðvÞ2 ¼ jvj2Id: and gðvÞ� ¼ gðvÞ.

Let M be a connected closed oriented smooth n-dimensional Riemannian
manifold. Put G ¼ SpinðnÞ or G ¼ SOðnÞ, according as to whether or not M is spin.
If M is spin, ¢x a spin structure. Let P be the corresponding principal G-bundle,
covering the oriented orthonormal frame bundle. Its topological isomorphism class
is independent of the choice of Riemannian metric. Given the Riemannian metric,
there is a canonical Rn-valued 1-form y on P, the soldering form.

With respect to the standard basis fejg
n
j¼1 of R

n, we write gj ¼ gðejÞ. We also take
generators fsabgna;b¼1 for the representation of the Lie algebra g on V , so that
sba ¼ �sab, sab

� ��
¼ �sab and

½sab; scd � ¼ dadsbc � dacsbd þ dbcsad � dbdsac: ð2:1Þ

The G-equivariance of g implies

½ga; sbc� ¼ dabgc � dacgb: ð2:2Þ

EXAMPLES. (1) If G ¼ SpinðnÞ and V is the spinor representation of G then
sab ¼ 1

4 ½g
a; gb�.

(2) If G ¼ SOðnÞ and V ¼ L�ðRn
Þ �R C, let Ej and I j denote exterior and interior

multiplication by ej , respectively. Put gj ¼ i Ej � I j
� �

and bggj ¼ Ej þ I j. Then
sab ¼ 1

4 ½g
a; gb� þ ½bgga;bggb�

� �
.

Put EM ¼ P �G V . The Dirac-type operator DM acts on the space C1ðM; EMÞ. As
the topological vector space C1ðM; EMÞ is independent of any choice of Riemannian
metric on M, it makes sense to compare Dirac-type operators for different
Riemannian metrics on M; see [18, Section 2] for further discussion.

Let gTM be the Riemannian metric on M. Let o be the Levi-Civita connection on
P. Let fejg

n
j¼1 be a local oriented orthonormal basis of TM, with dual basis
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ftjgnj¼1. Then we can write o locally as a matrix-valued 1-form oa
b ¼

Pn
j¼1 o

a
bjt

j, and

DM ¼ �i
Xn

j¼1

gjrej ¼ �i
Xn

j¼1

gj ej þ
1
2

Xn

a;b¼1

oabjsab

 !
: ð2:3Þ

We have the Bochner-type equation

ðDMÞ
2
¼ r�r �

1
8

Xn

a;b;i;j¼1

RM
abijðg

igj � gjgiÞsab: ð2:4Þ

As the set of Riemannian metrics on M is an open convex subset of a Fr�echet
space, it makes sense to talk about an analytic 1-parameter family fcðtÞgt2½0;1� of
metrics. Then for t 2 ½0; 1�, _ccðtÞ is a symmetric 2-tensor on M. Let k _ccðtÞ kcðtÞ denote
the norm of _ccðtÞ with respect to cðtÞ, i.e.

k _ccðtÞ kcðtÞ¼ sup
v2TM�0

j_ccðtÞðv; vÞj
cðtÞðv; vÞ

: ð2:5Þ

Put lðcÞ ¼
R 1
0 k _ccðtÞ kcðtÞ dt. We extend the de¢nition of lðcÞ to piecewise-analytic

families of metrics in the obvious way. Given K > 0, let MðM;KÞ be the set of
Riemannian metrics on M with k RM k1 WK . Let d be the corresponding length
metric on MðM;KÞ, computed using piecewise-analytic paths in MðM;KÞ. Let
sðDM; gTMÞ denote the spectrum of DM as computed with gTM , a discrete subset
of R which is counted with multiplicity.

PROPOSITION 1. There is a constant C ¼ Cðn;V Þ > 0 such that for all K > 0 and
gTM
1 ; gTM

2 2 MðM;KÞ,

sinh�1 lffiffiffiffi
K

p

 �
: l 2 sðDM; gTM

1 Þ

� �
ð2:6Þ

and

sinh�1
lffiffiffiffi
K

p

 �
: l 2 sðDM; gTM

2 Þ

� �
ð2:7Þ

are CdðgTM
1 ; gTM

2 Þ-close.
Proof. It is enough to show that there is a number C such that if fcðtÞgt2½0;1� is an

analytic 1-parameter family of metrics contained in MðM;KÞ then

sinh�1
lffiffiffiffi
K

p

 �
: l 2 sðDM; cð0ÞÞ

� �
and

sinh�1
lffiffiffiffi
K

p

 �
: l 2 sðDM; cð1ÞÞ

� �

COLLAPSING AND DIRAC-TYPE OPERATORS 181



are Cdðcð0Þ; cð1ÞÞ-close. By eigenvalue perturbation theory [20, Chapter XII], the
subset

S
t2½0;1�ftg � sðDM; cðtÞÞ of R2 is the union of the graphs of functions

fljðtÞgj2Z which are analytic in t. Thus it is enough to show that for each j 2 Z,

sinh�1
ljð1Þffiffiffiffi

K
p

 �
� sinh�1

ljð0Þffiffiffiffi
K

p

 ����� ����WClðcÞ: ð2:8Þ

Let DðtÞ denote the Dirac-type operator constructed with the metric cðtÞ. It is
self-adjoint when acting on L2ðEM; dvolðtÞÞ. In order to have all of the operators
fDðtÞgt2½0;1� acting on the same Hilbert space, de¢ne f ðtÞ 2 C1ðMÞ by
f ðtÞ ¼ dvolðtÞ=dvolð0Þ. Then the spectrum of DðtÞ, acting on L2ðEM; dvolðtÞÞ, is
the same as the spectrum of the self-adjoint operator f ðtÞ1=2DðtÞ f ðtÞ�1=2 acting
on L2ðEM; dvolð0ÞÞ. One can now compute dlj=dt using eigenvalue perturbation
theory, as in [20, Chapter XII]. Let cjðtÞ be a smoothly-varying unit eigenvector
whose eigenvalue is ljðtÞ. De¢ne a quadratic form T ðtÞ on TM by

T ðtÞðX ;Y Þ ¼ hcj;�iðgðX ÞrYcj þ gðY ÞrXcjÞiþ

þ h�iðgðX ÞrYcj þ gðY ÞrXcjÞ;cji: ð2:9Þ

Using the metric cðtÞ to convert the symmetric tensors _ccðtÞ and T ðtÞ to self-adjoint
sections of EndðTMÞ, one ¢nds

dlj

dt
¼ �

1
8

Z
M

Tr _ccðtÞT ðtÞð ÞdvolðtÞ: ð2:10Þ

(This equation was shown for the pure Dirac operator, by different means, in [10].)
Then

dlj

dt

���� ����W const: k _ccðtÞ kcðtÞ

Z
M

TrðjT ðtÞjÞdvolðtÞ: ð2:11Þ

Letting fxig
n
i¼1 be an orthonormal basis of eigenvectors of T ðtÞ at a point m 2 M, we

have TrðjT ðtÞjÞ ¼
Pn

i¼1 jT ðtÞðxi; xiÞj. Then from (2.9), we obtainZ
M

TrðjT ðtÞjÞdvolðtÞW const:

Z
M
jrcjj

2dvolðtÞ
 �1=2

: ð2:12Þ

From (2.4),Z
M
jrcjj

2dvolðtÞW l2j þ const: K : ð2:13Þ

In summary, from (2.11), (2.12) and (2.13), there is a positive constant C such that

dlj

dt

���� ����WC k _ccðtÞ kcðtÞ l2j þ K
� �1=2

: ð2:14Þ

Integration gives Equation (2.8). The proposition follows. &
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For some basic facts about infranilmanifolds, we refer to [17, Section 3]. Let N be a
simply-connected connected nilpotent Lie group. Let G be a discrete subgroup of
AffðNÞ which acts freely and cocompactly on N, with G \N of ¢nite index in G.
Put Z ¼ GnN, an infranilmanifold. There is a canonical £at linear connection
raff on TZ. Put bGG ¼ G \N, a cocompact subgroup of N. There is a short exact
sequence

1�!bGG�!G�!F�!1; ð2:15Þ

with F a ¢nite group. PutbZZ ¼ bGGnN, a nilmanifold which ¢nitely covers Z with cover-
ing group F .

Let gTZ be a Riemannian metric on Z which is parallel with respect to raff . Let us
discuss the condition for Z to be spin. Suppose ¢rst that Z is spin. Choose a spin
structure on Z. Fix the basepoint z0 ¼ Ge 2 Z. As raff preserves gTZ, its holonomy
lies in SOðnÞ. Hence raff lifts to a £at connection on the principal SpinðnÞ-bundle,
which we also denote by raff . There is a corresponding holonomy representation
G! SpinðnÞ.

Conversely, suppose that we do not know a priori if Z is spin. Suppose that
the af¢ne holonomy G! F ! SOðnÞ lifts to a homomorphism G! SpinðnÞ.
Naturally, the existence of this lifting is independent of the particular choice
of gTZ. Then there is a corresponding spin structure on Z with principal bundle
GnðN � SpinðnÞÞ. The different spin structures on Z correspond to different lifts
of G! SOðnÞ to G! SpinðnÞ. These are labelled by H1ðG;Z2Þ ffi H1ðZ;Z2Þ.
Note that there are examples of nonspin £at manifolds [3]. Also, even if Z
is spin and has a ¢xed spin structure, the action of AffðZÞ on Z generally does
not lift to the principal SpinðnÞ-bundle, as can be seen for the SLðn;ZÞ-action
on Z ¼ Tn.

Now let G be either SOðnÞ or SpinðnÞ. Let V be a G-Clifford module. Suppose
that Z has a G-structure. If G ¼ SOðnÞ then we have the af¢ne holonomy
homomorphism r: G! SOðnÞ. If G ¼ SpinðnÞ then we have a given lift of it to
r: G! SpinðnÞ. In either case, there is an action of G on V coming from
G!

r
G ! AutðV Þ. The vector bundle EZ can now be written as

EZ ¼ GnðN � V Þ. We see that the vector space of sections of EZ which are parallel
with respect to raff is isomorphic to VG, the subspace of V which is ¢xed by the
action of G.

If V is the spinor representation of G ¼ SpinðnÞ then let us consider the conditions
for VG to be nonzero. First, as the restriction of r: G! SpinðnÞ to bGG maps bGG to �1,
we must have r

��bGG ¼ 1. Given this, the homomorphism r factors through a
homomorphism F ! SpinðnÞ. Then we have VG ¼ VF . This may be nonzero even
if the homomorphism F ! SpinðnÞ is nontrivial.

Returning to the case of general V , as gTZ is parallel with respect to raff , the
operator DZ preserves the space VG of af¢ne-parallel sections of EZ. Let Dinv be
the restriction of DZ to VG.
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PROPOSITION 2. There are positive constants A and A0 depending only on
dimðZÞ and V such that if k RZ k1 diam ðZÞ2 WA0 then the spectrum sðDZÞ of DZ

satis¢es

sðDZÞ \ ½�A diam ðZÞ�1;A diam ðZÞ�1�

¼ sðDinvÞ \ ½�A diam ðZÞ�1;A diam ðZÞ�1�: ð2:16Þ

Proof. As DZ is diagonal with respect to the orthogonal decomposition

C1ðZ; EZÞ ¼ VG � VG� �?
; ð2:17Þ

it is enough to show that there are constants A and A0 as in the statement of the
proposition such that the eigenvalues of ðDZÞ

2��
VGð Þ

? are greater than
A2 diam ðZÞ�2. As in the proof of [17, Proposition 2], we can reduce to the case
when F ¼ feg, i.e. Z is a nilmanifold GnN. Then

C1ðZ; EZÞ ffi C1ðNÞ � Vð Þ
G: ð2:18Þ

Using an orthonormal frame feig
dimðZ Þ
i¼1 for the Lie algebra n as in the proof of [17,

Proposition 2], we can write

raff
ei
¼ ei � Id: ð2:19Þ

and

rZ
ei
¼ ei � Id:ð Þ þ Id:�

1
2

XdimðZ Þ
a;b¼1

oabisab

 !
: ð2:20Þ

The rest of the proof now proceeds as in that of [17, Proposition 2], to which we refer
for details. &

3. Collapsing to a Smooth Base

For background information about superconnections and their applications, we
refer to [7]. Let M be a connected closed oriented Riemannian manifold which
is the total space of a Riemannian submersion p: M ! B. Suppose that M has
a GM-structure and that VM is a GM-Clifford module, as in Section 2. If
GM ¼ SOðnÞ, put GZ ¼ SOðdimðZÞÞ and GB ¼ SOðdimðBÞÞ. If GM ¼ SpinðnÞ, put
GZ ¼ SpinðdimðZÞÞ and GB ¼ SpinðdimðBÞÞ. As a ¢ber Zb has a trivial normal bundle
in M, it admits a GZ-structure. Fixing an orientation of TbB ¢xes the GZ-structure of
Zb. Note, however, that B does not necessarily have a GB-structure. For example, if
M is oriented then B is not necessarily oriented, as is shown in the example of
S1 �Z2 S2 ! RP2, where the generator of Z2 acts on S1 by complex conjugation
and on S2 by the antipodal map. And if M is spin then B is not necessarily spin,
as is shown in the example of S5 ! CP2. What is true is that if the vertical tangent
bundle TZ, a vector bundle on M, has a GZ-structure then B has a GB-structure.
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Put EM ¼ P �GM VM . There is a Clifford bundle C on B with the property that
C1ðB; CÞ ffi C1ðM; EMÞ [7, Section 9.2]. If dimðZÞ > 0 then dimðCÞ ¼ 1. To
describe C more explicitly, let VM ¼

L
l2L VB

l � VZ
l be the decomposition of VM

into irreducible representations of GB � GZ ! GM .

EXAMPLES. (1) If GM ¼ SpinðnÞ and VM is the spinor representation then VB and
VZ are spinor representations.

(2) If GM ¼ SOðnÞ and VM ¼ L�ðRn
Þ �R C, then VB ¼ L�ðRdimðBÞ

Þ �R C and
VZ ¼ L�ðRdimðZ Þ

Þ �R C.

Let U be a contractible open subset of B. Choose an orientation on U . For b 2 U ,
let EZ

b;l be the vector bundle on Zb associated to the pair ðGZ;VZ
l Þ. Then

EM
��
Zb
ffi
L

l2L VB
l � EZ

b;l . The vector bundles fEZ
b;lgb2U are the ¢berwise restrictions

of a vector bundle EZ
l on p�1ðUÞ, a vertical ‘spinor’ bundle. There is a pushforward

vector bundle Wl on U whose ¢ber Wl;b over b 2 U is C1ðZb; EZ
b;lÞ. If

dimðZÞ > 0 then dimðWlÞ ¼ 1. There are Hermitian inner products fhWl gl2L on
fWlgl2L induced from the vertical Riemannian metric gTZ. Furthermore, there
are Clifford bundles fClgl2L on U for which the ¢ber Cl;b of Cl over b 2 U is
isomorphic to VB

l �Wl;b. By construction, C1ðZb; EM
��
Zb
Þ ffi

L
l2L Cl;b. The Clifford

bundles fClgl2L exist globally on B and C ¼
L

l2L Cl . The Dirac-type operator DM

decomposes as DM ¼
L

l2L DM
l , where DM

l acts on C1ðB; ClÞ.
In order to write DM

l explicitly, let us recall the Bismut superconnection on Wl . We
will deal with each l 2 L separately and so we drop the subscript l for the moment.
We use the notation of [9, Section III(c)] to describe the local geometry of the ¢ber
bundle M ! B, and the Einstein summation convention. Let rTZ denote the Bismut
connection on TZ [7, Proposition 10.2], which we extend to a connection on EZ

l . The
Bismut superconnection on W [7, Proposition 10.15] is of the form

A ¼ DW þ rW � 1
4 cðT Þ: ð3:1Þ

Here DW is the ¢berwise Dirac-type operator and has the form

DW ¼ �igjrTZ
ej
¼ �igj ej þ

1
2opqjspq

� �
: ð3:2Þ

Next, rW is a Hermitian connection on W given by

rW ¼ ta rTZ
ea �

1
2oajj

� �
¼ ta ea þ 1

2ojkasjk � 1
2oajj

� �
: ð3:3Þ

Finally,

cðT Þ ¼ ioabjgjtatb: ð3:4Þ

The superconnection A can be ‘quantized’ into an operator DA on C1ðB; VB �W Þ.
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Explicitly,

DA ¼ �igj ej þ
1
2opqjspq

� �
�

� iga ea þ 1
2obgasbg þ 1

2ojkasjk � 1
2oajj

� �
þ

þ i 12oabjgjsab: ð3:5Þ

Let V 2 EndðClÞ be the self-adjoint operator given by

V ¼ �i oajkgksaj þ 1
2oajjga þ oabjðgjsab þ gasjbÞ

� �
: ð3:6Þ

Then restoring the index l everywhere,

DM
l ¼ DAl þ V l : ð3:7Þ

EXAMPLES. (1) If GM ¼ SpinðnÞ and VM is the spinor representation then V ¼ 0.
(2) If GM ¼ SOðnÞ and VM ¼ L�ðRn

Þ �R C, then

V ¼ � 1
4 i oajkgk½bgga;bggj� þ oabjðgj½bgga;bggb� þ ga½bggj;bggb�Þ� �

: ð3:8Þ

Now suppose that p: M ! B is a Riemannian af¢ne ¢ber bundle. Then EM
��
Zb

inherits a £at connection from the £at af¢ne connections on fEZ
b;lgl2L. Let EB be

the Clifford bundle on B whose ¢ber over b 2 B is the space of parallel sections
of EM

��
Zb
. Then DM restricts to a ¢rst-order differential operator DB on C1ðB; EBÞ.

Given b 2 U and l 2 L, let W inv
l;b be the ¢nite-dimensional subspace of Wl;b con-

sisting of af¢ne-parallel elements of C1ðZb; EZ
b;lÞ. From the discussion in Section

2, W inv
l;b is isomorphic to VZ

l

� �G. The vector spaces W inv
l;b ¢t together to form a

¢nite-dimensional subbundle W inv
l of Wl . There is a corresponding

¢nite-dimensional Clifford subbundle Cinv
l of Cl whose ¢ber over b 2 U is

isomorphic to VB
l �W inv

l;b . Again, Cinv
l exists globally on B. Then

EB ¼
L

l2L Cinv
l . Let DB

l be the restriction of DM
l to C1ðB; Cinv

l Þ. Then

DB ¼
M
l2L

DB
l : ð3:9Þ

The superconnection Al restricts to an superconnection Ainv
l on W inv

l , the
endomorphism V l restricts to an endomorphism of Cinv

l and DM
l restricts to the

¢rst-order differential operator

DB
l ¼ DAinv

l þ V inv
l ð3:10Þ

on C1ðB; Cinv
l Þ.

Proof of Theorem 1. The operator DM
l is diagonal with respect to the orthogonal

decomposition

Cl ¼ Cinv
l � Cinv

l

� �?
: ð3:11Þ
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Thus it suf¢ces to show that there are constants A, A0 and C such that the spectrum of
sðDM

l Þ, when restricted to Cinv
l

� �?, is disjoint from (1.1).
For simplicity, we drop the subscript l. Given Z 2 C1ðB; ðCinvÞ

?
Þ ! C1ðM; EMÞ,

it is enough to show that for suitable constants,

hDMZ;DMZiX const: diam ðZÞ�2 � const: k RM k1 þ k P k21 þ k T k21

� �� �
hZ; Zi: ð3:12Þ

Using (2.4), it is enough to show that

hrMZ;rMZiX const: diam ðZÞ�2 � const: k RM k1 þ k P k21 þ k T k21

� �� �
hZ; Zi: ð3:13Þ

We can write rM ¼ rV þ rH , where

rV : C1ðM; EMÞ ! C1ðM; T�Z � EMÞ ð3:14Þ

denotes covariant differentiation in the vertical direction and

rH : C1ðM; EMÞ ! C1ðM; p�T�B � EMÞ ð3:15Þ

denotes covariant differentiation in the horizontal direction. Then

hrMZ;rMZi ¼ hrVZ;rVZi þ hrHZ;rHZi

X hrVZ;rVZi

¼

ð
B

ð
Zb

��rVZ
��2ðzÞdvolZb dvolB: ð3:16Þ

On a given ¢ber Zb, we have

EM
��
Zb
ffi VB � EZ

b : ð3:17Þ

Hence we can also use the Bismut connection rTZ to vertically differentiate sections
of EM . That is, we can de¢ne

rTZ: C1ðM; EMÞ ! C1ðM; T�Z � EMÞ: ð3:18Þ

Explicitly, with respect to a local framing,

rTZ
ej
¼ ejZþ 1

2opqjspqZ ð3:19Þ

and

rV
ej
¼ ejZþ 1

2opqjspqZþ oakjsakZþ 1
2oabjsabZ: ð3:20Þ
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Then from (3.16), (3.19) and (3.20),

hrMZ;rMZiX
Z

B

Z
Zb

��rTZZ
��2ðzÞ � const: k Tb k

2 þ k Pb k
2� ���ZðzÞ��2� �

dvolZbdvolB: ð3:21Þ

Thus it suf¢ces to bound
R

Zb

��rTZZ
��2ðzÞdvolZb from below on a given ¢ber Zb in

terms of hZ; ZiZb
, under the assumption that Z 2 ðW inv

b Þ
?. Using the Gauss^Codazzi

equation, we can estimate k RZb k1 in terms of k RM k1 and k P k21. Then the des-
ired bound on

R
Zb

��rTZZ
��2ðzÞdvolZb follows from Proposition 2. &

Proof of Theorem 2. Let gTM
0 denote the Riemannian metric on M. From Prop-

osition 1, if a Riemannian metric gTM
1 on M is close to gTM

0 in ðMðM; 2KÞ; dÞ then
applying the function x ! sinh�1ðx=

ffiffiffiffiffiffiffi
2K

p
Þ to sðDM; gTM

0 Þ gives a collection of
numbers which is close to that obtained by applying x ! sinh�1ðx=

ffiffiffiffiffiffiffi
2K

p
Þ to

sðDM; gTM
1 Þ. We will use the geometric results of [11] to ¢nd a metric gTM

2 on M
which is close to gTM

0 and to which we can apply Theorem 1.
First, as in [11, (2.4.1)], by the smoothing results of Abresch and others [11 ,

Theorem 1.12], for any e > 0 we can ¢nd metrics on M and B which are e-close
in the C1-topology to the original metrics such that the new metrics satisfy
k riR k1 WAiðn; eÞ for some appropriate sequence fAiðn; eÞg1i¼0. Let gTM

1 denote
the new metric on M. In the proof of the smoothing result, such as using the Ricci
£ow [21, Proposition 2.5], one obtains an explicit smooth 1-parameter family of
metrics on M in MðM;K 0Þ, for some K 0 > K , going from gTM

0 to gTM
1 . We can

approximate this family by a piecewise-analytic family. Hence one obtains an upper
bound on d gTM

0 ; gTM
1

� �
in MðM;K 0Þ, for some K 0 > K , which depends on K and is

proportionate to e. (Note that d is essentially the same as the C0-metric on
MðM;K 0Þ.) By rescaling, we may assume that k RM k1 W 1, k RB k1 W 1 and
injðBÞX 1. We now apply [11, Theorem 2.6], with B ¢xed. It implies that there
are positive constants lðnÞ and cðn; eÞ so that if dGH ðM;BÞW lðnÞ then there is a
¢bration f : M ! B such that

(1) diam f �1ðbÞ
� �

W cðn; eÞdGH ðM;BÞ.
(2) f is a cðn; eÞ-almost Riemannian submersion.
(3) k Pf �1ðbÞ k1 W cðn; eÞ.

As in [16], the Gauss^Codazzi equation, the curvature bound on M and the second
fundamental form bound on f �1ðbÞ imply a uniform bound on fk Rf �1ðbÞ k1gb2B.
Along with the diameter bound on f �1ðbÞ, this implies that if dGH ðM;BÞ is suf¢ciently
small then f �1ðbÞ is almost £at.

From [11, Propositions 3.6 and 4.9], we can ¢nd another metric gTM
2 on M which is

e-close to gTM
1 in the C1-topology so that the ¢bration f : M ! B gives M the struc-

ture of a Riemannian af¢ne ¢ber bundle. Furthermore, by [11, Proposition 4.9],
there is a sequence fA0iðn; eÞg

1
i¼0 so that we may assume that gTM

1 and gTM
2 are close

188 JOHN LOTT



in the sense that

k ri gTM
1 � gTM

2

� �
k1 WA0iðn; eÞdGH ðM;BÞ; ð3:22Þ

where the covariant derivative in (41) is that of the Levi-Civita connection of gTM
2 .

Then we can interpolate linearly between gTM
1 and gTM

2 withinMðM;K 00Þ for some
K 00 > K 0, and obtain an upper bound on d gTM

1 ; gTM
2

� �
in MðM;K 00Þ which is

proportionate to e. From [21, Theorem 2.1], we can take K 00 ¼ 2K (or any number
greater than K).

We now apply Theorem 1 to the Riemannian af¢ne ¢ber bundle with metric gTM
2 .

It remains to estimate the geometric terms appearing in (1.1). We have an estimate
on k P k1 as above. Applying O’Neill’s formula [8, (9.29)] to the Riemannian af¢ne
¢ber bundle, we can estimate k T k21 in terms of k RM k1 and k RB k1. Putting this
together, the theorem follows. &

4. Collapsing to a Singular Base

Let p: P ! M be the principal G-bundle of Section 2. Let fYjg
n
j¼1 be the horizontal

vector ¢elds on P such that yðYjÞ ¼ ej. Put DP ¼ �i
Pn

j¼1 g
jYj, acting on C1ðPÞ � V .

There is an isomorphism C1ðM; EMÞ ffi C1ðPÞ � Vð Þ
G. Under this isomorphism,

DM ffi DP
��

C1ðPÞ�Vð Þ
G . The Bochner-type equation (2.4) becomes

ðDMÞ
2
ffi �

Xn

j¼1

Y2
j þ

Xn

i;j¼1

oi
jjYi �

1
8

Xn

a;b;i;j¼1

ðp�RMÞabijðg
igj � gjgiÞsab ð4:1Þ

when acting on C1ðPÞ � Vð Þ
G.

Let fxag
dimðGÞ
a¼1 be a basis for the Lie algebra g which is orthonormal with respect to

the negative of the Killing form. Let fYag
dimðGÞ
a¼1 be the corresponding vector ¢elds

on P. Then �
PdimðGÞ

a¼1 Y2
a acts on C1ðPÞ � Vð Þ

G as cV 2 ðEndðV ÞÞG, the Casimir
of the G-module V . Give P the Riemannian metric gTP with the property that
fYj;Yag forms an orthonormal basis of vector ¢elds. Let 4P denote the correspond-
ing (nonnegative) scalar Laplacian on P, extended to act on C1ðPÞ � V . Then when
acting on C1ðPÞ � Vð Þ

G, equation (4.1) is equivalent to

ðDMÞ
2
ffi 4P �

1
8

Xn

a;b;i;j¼1

ðp�RMÞabijðg
igj � gjgiÞsab � cV : ð4:2Þ

DEFINITION 3. A G-equivariant Riemannian af¢ne ¢ber bundle structure on P
consists of a Riemannian af¢ne ¢ber bundle structure �pp : P ! �XX which is
G-equivariant.

In [11, Proposition 7.21] it is shown that one can make a small G-equivariant
perturbation of gTP in the C1;a-topology so that the new Riemannian metric is
the total space of a G-equivariant Riemannian af¢ne ¢ber bundle. The quotient space
M ¼ P=G acquires a new quotient Riemannian metric, which is called an invariant
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metric [11, Section 8]. In [21, Theorem 2.1] it is shown that one can assume that the
sectional curvatures of the invariant metric on M are bounded in terms of the sec-
tional curvatures of the original metric on M. As we can take the new canonical
Riemannian metric gTP on P, the upshot is that we assume that the Riemannian
metric on the total space of the G-equivariant af¢ne ¢ber bundle P ! �XX is the
canonical metric coming from a Riemannian metric on M.

Given such a G-equivariant Riemannian af¢ne ¢ber bundle, let �ZZ be the ¢ber of
�pp: P ! �XX , an infranilmanifold. For collapsing purposes it suf¢ces to take �ZZ to
be a nilmanifold GnN [11, (7.2)]. We assume hereafter that this is the case. Put
X ¼ �XX=G, a possibly singular space. As the Lie algebra n of N is represented by
vector ¢elds in a neighborhood of a point of P, and the local £ow preserves the
horizontal subspaces of P ! M, it follows that the vector ¢elds fYjg

n
j¼1 are

projectable with respect to �pp and push forward to vector ¢elds fX jg
n
j¼1 on �XX . Put

D �XX ¼ �i
Pn

j¼1 g
jX j , acting on C1ð �XX Þ � V . Let v 2 C1ð �XX Þ be given by

vð �xxÞ ¼ volð �ZZ �xxÞ. We give C1ð �XX Þ � V the weighted L2-inner product with respect
to the weight function v.

We recall that there is a notion of a pseudodifferential operator being transversally
elliptic with respect to the action of a Lie group G [2, De¢nition 1.3].

LEMMA 1. D �XX is transversally elliptic on �XX.
Proof. Let sðD �XX Þ 2 C1ðT� �XX Þ � EndðV Þ denote the symbol of D �XX . Suppose that

x 2 T�
�xx
�XX satis¢es xð�vvÞ ¼ 0 for all �vv 2 T �xx

�XX which lie in the image of the representation
of g by vector ¢elds on �XX . Then if p 2 �pp�1ð �xxÞ, we have that ð �pp�xÞðrÞ ¼ 0 for all r 2 TpP
which lie in the image of the representation of g by vector ¢elds on P. In other words,
�pp�x is horizontal. Now ððsðD �XX ÞÞðxÞÞ2 ¼

Pn
j¼1hx;X ji

2 ¼
Pn

j¼1h �pp
�x;Yji

2. If ðsðD �XX ÞÞðxÞ
fails to be an isomorphism then h �pp�x;Yji ¼ 0 for all j. Along with the fact that
�pp�x is horizontal, this implies that �pp�x ¼ 0. Thus x ¼ 0, which proves the lemma.

DEFINITION 4. For notation, write C1ðX ; EX Þ ¼ ðC1ð �XX Þ � V ÞG. Let DX be the
restriction of D �XX to C1ðX ; EX Þ.

It will follow from the proof of the next theorem that DX is self-adjoint on the
Hilbert space completion of C1ðX ; EX Þwith respect to the (weighted) inner product.
As D �XX is transversally elliptic, it follows that DX has a discrete spectrum [2, Proof of
Theorem 2.2].

Let �PP denote the second fundamental forms of the ¢bers f �ZZ �xxg �xx2 �XX . Let
�TT 2 O2

ðP; T �ZZÞ be the curvature of the horizontal distribution on the af¢ne ¢ber
bundle P ! �XX .

THEOREM 6. There are positive constants A, A0 and C which only depend on n and V
such that if k R �ZZ k1 diam ð �ZZÞ2 WA0 then the intersection of sðDMÞ with

½�ðAdiamð �ZZÞ�2 � Cð1þ k RM k1 þ k �PP k21 þ k
�TT k21ÞÞ

1=2;

ðAdiamð �ZZÞ�2 � Cð1þ k RM k1 þ k �PP k21 þ k
�TT k21ÞÞ

1=2
� ð4:3Þ
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equals the intersection of sðDX Þ with (4.3).
Proof. Let us write

C1ðPÞ � V ¼ C1ð �XX Þ � V
� �

� C1ð �XX Þ � V
� �?

; ð4:4Þ

where we think of C1ð �XX Þ � V as the elements of C1ðPÞ � V which are constant
along the ¢bers of the ¢ber bundle �pp: P ! �XX . Taking G-invariant subspaces, we
have an orthogonal decomposition

C1ðM; EMÞ ¼ C1ðX ; EX Þ � C1ðX ; EX Þ
� �?

; ð4:5Þ

with respect to which DM decomposes as

DM ¼ DX �DM
��

C1ðX;EX Þð Þ
? : ð4:6Þ

As in the proof of Theorem 1, it suf¢ces to obtain a lower bound on the spectrum of
ðDMÞ

2��
ðC1ðX;EX ÞÞ

? . As ðC1ðX ; EX ÞÞ
?
! ðC1ð �XX Þ � V Þ?, using (4.2) it suf¢ces to

obtain a lower bound on the spectrum of 4P
��
ðC1ð �XX Þ�V Þ? . This follows from the

arguments of the proof of Theorem 1, using the fact that
k RP k1 W const:ð1þ k RM k1Þ. We omit the details. In fact, it is somewhat easier
than the proof of Theorem 1, since we are now only dealing with the scalar Laplacian
and so can replace Proposition 2 by standard eigenvalue estimates (which just
involve a lower Ricci curvature bound); see [6] and references therein.

Proof of Theorem 3. Everything in the proof will be done in a G-equivariant way,
so we may omit to mention this explicitly. Let Pi be the principal G-bundle of
Mi, equipped with a Riemannian metric as in the beginning of the section. From
the G-equivariant version of Gromov’s compactness theorem, we obtain a sub-
sequence fPig

1
i¼1 which converges in the equivariant Gromov^Hausdorff topology

to a G-Riemannian manifold ð �XX ; gT �XX Þ with a C1;a-regular metric. As in [14, Section
3], the measure wdvol �XX is a weak-� limit point of the pushforwards of the normalized
Riemannian measures on fPig

1
i¼1. As in [14, p. 535], after smoothing we may assume

that we have G-equivariant Riemannian af¢ne ¢ber bundles �ppi: P0i ! �XXi, with G
acting freely on P0i, along with G-diffeomorphisms �fifi: Pi ! P0i and Fi: �XX ! �XXi.
Put M0

i ¼ P0i=G. Then �fifi descends to a diffeomorphism fi: Mi ! M0
i and we

may also assume, as in the proof of Theorem 2, that

(1) f�i gTM0
i 2 MðMi; const:KÞ,

(2) dðf�i gTM0
i ; gTMi ÞW 2�i in MðMi; const:KÞ and

(3) limi!1 F�i gT �XXi ¼ gT �XX in the C1;a-topology.

Using Proposition 1, we can effectively replace Mi by M0
i for the purposes of the

argument. For simplicity, we relabel M0
i as Mi and P0i as Pi. For the purposes of

the limiting argument, using Theorem 6 and (4.2), we may replace the spectrum
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of jDMi j by the spectrum of the operator jDXi j #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�XXi þ V i

q
acting on

C1ðXi;EXi Þ ¼ ðC1ð �XXiÞ � V ÞG, where V i is the restriction of

�
1
8

Xn

a;b;i;j¼1

ðp�RMi Þabijðg
igj � gjgiÞsab � cV ð4:7Þ

to the elements of C1ðPiÞ � Vð Þ
G which are constant along the ¢bers of �ppi: Pi ! �XXi,

i.e. to C1ðXi;EXi Þ.
From the curvature bound, we have a uniform bound on fk V i k1g

1
i¼1. Using the

weak-� compactness of the unit ball, let V be a weak-� limit point of fF�i V ig
1
i¼1

in L1ð �XX Þ � EndðV Þ ¼ ðL1ð �XX Þ � EndðV ÞÞ�. We claim that with this choice of �XX , w
and V, equation (1.2) holds.

To see this, we use the minimax characterization of eigenvalues as in [14, Section
5]. Using the diffeomorphisms fFig

1
i¼1, we identify each �XXi with �XX . We denote

by h$; $iXi
an L2-inner product constructed using F�i gT �XXi and the weight function

ð �ppiÞ�ðdvolPi Þ=
R

�XXi
ð �ppiÞ�ðdvolPi Þ. We denote by h$; $iX an L2-inner product constructed

using gT �XX and the weight function wdvol �XX . As4 �XX has a compact resolvent, it follows
that jDX j2 has a compact resolvent. Then

lkðjDX jÞ
2
¼ inf

W
sup

c2W�0

hdc; dciX þ hc;VciX
hc;ciX

; ð4:8Þ

where W ranges over the k-dimensional subspaces of the Sobolev space H1ðX ; EX Þ.
Given e > 0, let W1 be a k-dimensional subspace such that

sup
c2W1�0

hdc; dciX þ hc;VciX
hc;ciX

W lkðjDX jÞ
2
þ e: ð4:9Þ

As c� c� lies in the ¢nite-dimensional subspace W1 �W �
1 of L1ð �XX Þ � EndðV Þ, it

follows that

lim
i!1

hc;V iciX ¼ hc;VciX ð4:10Þ

uniformly on fc 2 W1: hc;ciX ¼ 1g. Then

lim
i!1

sup
c2W1�0

hdc; dciXi
þ hc;V iciXi

hc;ciXi

¼ sup
c2W1�0

hdc; dciX þ hc;VciX
hc;ciX

: ð4:11Þ

As

lkðjDXi jÞ
2
¼ inf

W
sup

c2W�0

hdc; dciXi
þ hc;V iciXi

hc;ciXi

; ð4:12Þ

it follows that

lim sup
i!1

lkðjDXi jÞW lkðjDX jÞ: ð4:13Þ

192 JOHN LOTT



We now show that

lim inf
i!1

lkðjDXi jÞX lkðjDX jÞ: ð4:14Þ

Along with (4.13), this will prove the theorem. Suppose that (4.14) is not true. Then
there is some e > 0 and some in¢nite subsequence of fMig

1
i¼1, which we relabel

as fMig
1
i¼1, such that for all i 2 Zþ,

lkðjDXi jÞ
2
W lkðjDX jÞ

2
� 2e: ð4:15Þ

For each i 2 Zþ, let Wi be a k-dimensional subspace of H1ðX; EX Þ such that

sup
c2Wi�0

hdc; dciXi
þ hc;V iciXi

hc;ciXi

W lkðjDXi jÞ
2
þ e: ð4:16Þ

Let f fi;jg
k
j¼1 be a basis for Wi which is orthonormal with respect to h$; $iX . Then for a

given j, the sequence f fi;jg
1
i¼1 is bounded in H1ðX ; EX Þ. After taking a subsequence,

which we relabel as f fi;jg
1
i¼1, we can assume that f fi;jg

1
i¼1 converges weakly in

H1ðX ; EX Þ to some f1;j. Doing this successively for j 2 f1; . . . ; kg, we can assume
that for each j, limi!1 fi;j ¼ f1;j weakly in H1ðX; EX Þ. Then from the compactness
of the embedding H1ðX ; EX Þ ! L2ðX; EX Þ, we have strong convergence in
L2ðX; EX Þ. In particular, f f1;jg

k
j¼1 are orthonormal. Put W1 ¼ spanð f1;1; . . . ; f1;kÞ.

If w1 ¼
Pk

j¼1 cj f1;j is a nonzero element of W1, put wi ¼
Pk

j¼1 cj fi;j. Then fwig
1
i¼1

converges weakly to w1 in H1ðX ; EX Þ and hence converges strongly to w1 in
L2ðX; EX Þ. From a general result about weak limits, we have

hw1;w1iH1 W lim sup
i!1

hwi;wiiH1 : ð4:17Þ

Along with the L2-convergence of fwig
1
i¼1 to w1, this implies that

hdw1; dw1iX W lim sup
i!1

hdwi; dwiiXi
: ð4:18Þ

As wi � w�i converges in L1ð �XX Þ � EndðEÞ to w1 � w�1, we have

lim
i!1

hwi;V iwiiX ¼ lim
i!1

hw1;V iw1iX þ hwi;V iwiiX � hw1;V iw1iXð Þð Þ

¼ hw1;Vw1iX : ð4:19Þ

Then

sup
c2W1�0

hdc; dciX þ hc;VciX
hc;ciX

W lim sup
i!1

sup
c2Wi�0

hdc; dciXi
þ hc;V iciXi

hc;ciXi

:

ð4:20Þ
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Thus from (4.15), (4.16) and (4.20),

inf
W

sup
c2W�0

hdc; dciX þ hc;VciX
hc;ciX

W lkðjDX jÞ
2
� e; ð4:21Þ

which is a contradiction. This proves the theorem. &

Proof of Theorem 4. Let fgTM
i g1i¼1 be a sequence of Riemannian metrics on M as in

the statement of the theorem, with respect to which lkðjDM jÞ goes to in¢nity. Let P be
the principal G-bundle of M and let �XX be the limit space of Theorem 3, a smooth
manifold with a C1;a-regular metric. As the limit space X ¼ �XX=G has diameter
1, it has positive dimension. As in the proof of Theorem 3, after slightly smoothing
the metric on �XX , there is a G-equivariant Riemannian af¢ne ¢ber bundle
�pp: P ! �XX whose ¢ber is a nilmanifold �ZZ. Let �xx be a point in a principal orbit
for the G-action on �XX , with isotropy group H ! G. Then H acts af¢nely on the
nilmanifold ¢ber �ZZ �xx. In particular, H is virtually abelian. The quotient
Z ¼ �ZZ �xx=H is the generic ¢ber of the possibly-singular af¢ne ¢ber bundle
p: M ! X , the G-quotient of �pp: P ! �XX . Then EM

��
Z ¼

�ZZ �xx �H V . In particular,
the vector space of af¢ne-parallel sections of EM

��
Z is isomorphic to VH . On the

other hand, if C1ðX ; EX Þ 6¼ 0 then jDX j has an in¢nite discrete spectrum. Theorem
3 now implies that C1ðX ; EX Þ ffi ðC1ð �XX Þ � V ÞG must be the zero space. As the orbit
�xx $ G has a neighborhood consisting of principal orbits, the restriction map from
ðC1ð �XX Þ � V ÞG to ðC1ð �xx $ GÞ � V ÞG is surjective. However, ðC1ð �xx $ GÞ � V ÞG is
isomorphic to VH . Thus VH ¼ 0.

Conversely, let p: M ! B be an af¢ne ¢ber bundle. Theorem 1 implies that if
EM

��
Z does not have any nonzero af¢ne-parallel sections then upon collapsing M

to B as in [16, Section 6], the eigenvalues of DM go off to �1. This proves the
theorem. &

5. Proof of Theorem 5

As the proof of Theorem 5 is similar to [19, Pf. of Theorem 2], we only indicate the
structure of the proof and the necessary modi¢cations to [19, Pf. of Theorem 2].

The closure UI of an appropriate neighborhood of an end has the (af¢ne) structure
of an af¢ne ¢ber bundle over ½0;1Þ with ¢ber ZI . The vector bundle EB

I is the trivial
vector bundle over ½0;1Þ whose ¢ber over s 2 ½0;1Þ consists of the af¢ne-parallel
sections of EM

��
fsg�ZI

. As in [19, Section 4], if UI is suf¢ciently far out the end then
we can use Propositions 1 and 2 of the present paper to construct an embedding
of C1ð½0;1Þ; EB

I Þ into C1ðUI ; EM
��
UI
Þ whose image consists of elements with

‘bounded energy’ ¢berwise restrictions. Let P0 be the Hilbert space extension of
orthogonal projection from

LN
I¼1 C1ðUI ; EM

��
UI
Þ to

LN
I¼1 C1ð½0;1Þ; EB

I Þ. By stan-
dard arguments as in [13, Pf. of Proposition 2.1], the essential spectrum of DM equals
that of DM

end. With respect to the decomposition of the Hilbert space into
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ImðP0Þ � ImðI � P0Þ, we write

DM
end ¼

A B

C D

 �
: ð5:1Þ

The operators B and C are bounded, as can be seen by the method of proof of [19,
Proposition 2], replacing the operator bdd þbdd� of [19, Pf. of Proposition 2] by
DZI . As in [19, Proposition 3], the operator D has vanishing essential spectrum.
Put L ¼ A 0

0 D

� �
. To prove the theorem, it suf¢ces to show that DM

end and L have
the same essential spectrum. For this, it suf¢ces to show that
DM

end þ ki
� ��1

� Lþ kið Þ
�1 is compact for some k > 0 [20, Vol. IV, Chapter XIII.4,

Corollary 1].
We use the general identity that

a b
g d

 ��1
¼

a�1 þ a�1b d� ga�1b
� ��1ga�1 �a�1b d� ga�1b

� ��1
� d� ga�1b
� ��1ga�1 d� ga�1b

� ��1
 !

ð5:2Þ

provided that a and d� ga�1b are invertible. Put

a b
g d

 �
¼ DM

end þ ki ¼
Aþ ki B

C D þ ki

 �
: ð5:3Þ

If k is positive then a and d are invertible, with d�1 being compact. If k is large enough
then k d�1=2ga�1bd�1=2 k< 1. Writing

d� ga�1b ¼ d1=2 I � d�1=2ga�1bd�1=2
� �

d1=2; ð5:4Þ

we now see that d� ga�1b is invertible. It also follows from (5.4) that d� ga�1b
� ��1 is

compact. Using (5.2), the theorem follows.
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