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Abstract. We analyze the limit of the spectrum of a geometric Dirac-type operator under a
collapse with bounded diameter and bounded sectional curvature. In the case of a smooth limit
space B, we show that the limit of the spectrum is given by the spectrum of a certain first-order
differential operator on B, which can be constructed using superconnections. In the case of a
general limit space X, we express the limit operator in terms of a transversally elliptic operator
on a G-manifold X with X = X /G. As an application, we give a characterization of manifolds
which do not admit uniform upper bounds, in terms of diameter and sectional curvature, on
the k-th eigenvalue of the square of a Dirac-type operator. We also give a formula for the essential
spectrum of a Dirac-type operator on a finite-volume manifold with pinched negative sectional
curvature.
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1. Introduction

In previous papers we analyzed the limit of the spectrum of the differential form
Laplacian on a manifold, under a collapse with bounded diameter and bounded
sectional curvature [17, 22]. In the present paper, we extend the analysis of [17,
22] to geometric Dirac-type operators. As the present paper is a sequel to [17, 22],
we refer to the introduction of [17] for background information about collapsing
with bounded curvature and its relation to analytic questions.

Let M be a connected closed oriented Riemannian manifold of dimension n > 0. If
M is spin then we put G = Spin(n) and if M is not spin then we put G = SO(n). The
spinor-type fields that we consider are sections of a vector bundle EY associated
to a G-Clifford module V, the latter being in the sense of Definition 2 of Section
2. The ensuing Dirac-type operator DM acts on sections of EM. We will think of
the spectrum a(DM) of DM as a set of real numbers with multiplicities, corresponding
to possible multiple eigenvalues. For simplicity, in this introduction we will some-
times refer to the Dirac-type operators as acting on spinors, even though the results
are more general.
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We first consider a collapse in which the limit space is a smooth Riemannian
manifold. The model case is that of a Riemannian affine fiber bundle.

DEFINITION 1. An affine fiber bundle is a smooth fiber bundle n: M — B whose
fiber Z is an infranilmanifold and whose structure group can be reduced from
Diff(Z) to Aff(Z). A Riemannian affine fiber bundle is an affine fiber bundle along
with

e A horizontal distribution 7% M whose holonomy lies in Aff(2),

e A family of vertical Riemannian metrics g’# which are parallel with respect to the
flat affine connections on the fibers Z, and

e A Riemannian metric g’% on B.

Given a Riemannian affine fiber bundle n: M — B, there is a Riemannian metric
g™ on M constructed from 77 M, g™ and g”8. Let RM denote the Riemann cur-
vature tensor of (M, g"™), let I denote the second fundamental forms of the fibers
{Z}pep and let T € Q*(M; TZ) be the curvature of T M. Given b € B, there is
a natural flat connection on EM | z which is constructed using the affine structure
of Z,. We define a Clifford bundle EZ on B whose fiber over » € B consists of
the parallel sections of EM | 2z, The operator DM restricts to a first-order differential
operator D? on C®(B; E®). If V happens to be the spinor module then we show
that D5 is the ‘quantization’ of a certain superconnection on B. For general V, there
is an additional zeroth-order term in D® which depends on IT and T.

We show that the spectrum of DM coincides with that of D? up to a high level,
which depends on the maximum diameter diam(Z) of the fibers {Z;},c5.

THEOREM 1. There are positive constants A, A" and C which only depend on n
and V such that if | RZ |ls diam (Z)* < A’ then the intersection of a(DM) with the
interval

[—(4 diam (Z) 2 — C(I| R Jloo + I TT % + | T 1202,
(4 diam (Z) 2 = C(I| RM Jloo + I TL 1% + 1 T 12 )2 (1.1)

equals the intersection of a(D®) with (1.1).

If Z=S', 1 =0 and V is the spinor module then we recover some results of
[1, Section 4]; see also [12, Theorem 1.5]. The proof of Theorem 1 follows the same
strategy as the proof of the analogous [17, Theorem 1]. Consequently, in the proof
of Theorem 1, we only indicate the changes that need to be made in the proof
of [17, Theorem 1] and refer to [17] for details.

Given B, Cheeger, Fukaya and Gromov showed that under some curvature
bounds, any Riemannian manifold M which is sufficiently Gromov-Hausdorff close
to B can be well approximated by a Riemannian affine fiber bundle [11]. Using this
fact, we show that the spectrum of D can be uniformly approximated by that
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of a certain first-order differential operator D? on B, at least up to a high level which
depends on the Gromov-Hausdorff distance between M and B.

Given ¢ > 0 and two collections of real numbers {a;},; and {b;};c;, we say that
{ai}ic; and {b;};c, are e-close if there is a bijection o: I — J such that for all
iel, |b1(,') —a| <e.

THEOREM 2. Let B be a fixed smooth connected closed Riemannian manifold. Given
ne 7", take G € {SO(n), Spin(n)} and let V be a G-Clifford module. Then for any
e¢>0 and K >0, there are positive constants A(B,n,V,¢ K), A (B,n,V,¢, K),
and C(B,n, V, ¢, K) so that the following holds. Let M be an n-dimensional connected
closed oriented Riemannian manifold with a G-structure such that | RM || < K and
dou(M, B) < A'. Then there are a Clifford module E® on B and a certain first-order
differential operator D® on C*(B; EB) such that

(1) {sinh~'(2/v2K): 2 € a(DM) and 3* < Adgy(M, B~ — C) is e-close to a subset
of {sinh™'(1/~/2K): J. € 6(DP)}, and

(2) {sinh™'(A/v2K): / € a(D®) and > < Adeu(M, B)™* — C} is e-close to a subset
of {sinh ' (1/v/2K): / € o(DM)}.

The other results in this paper concern collapsing to a possibly-singular space. Let
X be a limit space of a sequence {M;}°, of n-dimensional connected closed oriented
Riemannian manifolds with uniformly bounded diameter and uniformly bounded
sectional curvature. In general, X is not homeomorphic to a manifold. However,
Fukaya showed that X is homeomorphic to X /G, where X is a manifold and G
is a compact Lie group which acts on X [15]. This comes from writing
M; = P;/G, where G = SO(n) and P; is the oriented orthonormal frame bundle
of M;. There is a canonical Riemannian metric on P;. Then {P;}3°, has a subsequence
which Gromov-Hausdorff converges to a manifold X. As the convergence argument
can be done G-equivariantly, the corresponding subsequence of {M;}7°, converges to
X = )V(/G. In general, X is a smooth manifold with a metric which is C!** regular for
all « € (0, 1).

In [22] we dealt with the limit of the spectra of the differential form Laplacians
{AM}® on the manifolds {M,}2°,. We defined a limit operator A* which acts
on the ‘differential forms’ on X, coupled to a superconnection. In order to make
this precise, we defined the ‘differential forms’ on X to be the G-basic differential
forms on X. We constructed the corresponding differential form Laplacian A¥
and showed that its spectrum described the limit of the spectra of {AM}2° . We refer
to [22] for the precise statements.

In the case of geometric Dirac-type operators D, there is a fundamental problem
in extending this approach. Namely, if X is a spin manifold on which a compact Lie
group G acts isometrically and preserving the spin structure then there does not
seem to be a notion of G-basic spinors on X. In order to get around this problem,
we take a different approach. For a given n-dimensional Riemannian spin manifold
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M, put G = Spin(n), let P be the principal Spin(n)-bundle of M and let V' be the
spinor module. One can identify the spinor fields on M with (C®(P)® V)°, the
G-invariant subspace of C*°(P)® V. There are canonical horizontal vector fields
{2],}1 , on P and the Dirac operator takes the form DY = —i Z/ | y“{)/
Furthermore, (DY ) can be written in a partlcularly simple form. As in equation
(4.2) below, when acting on (C®°(P)® V)°, (DM)? becomes the scalar Laplacian
on P (acting on V-valued functions) plus a zeroth-order term.

Following this viewpoint, it makes sense to define the limiting ‘spinor fields’ on X
to be the elements of (COO(X’ )® V). We can then extend Theorem 1 to the setting
of G-equivariant Riemannian affine fiber bundles. Namely, the limit operator
DY turns out to be a G-invariant first-order differential operator on CO"(X’ )YV,
transversally elliptic in the sense of Atiyah [2], which one then restricts to the
G-invariant subspace (COO(X’ )® V)°. In Theorem 6 below, we show that the analog
of Theorem 1 holds, in which D? is replaced by D¥.

Theorem 6 refers to a given G-equivariant Riemannian affine fiber bundle. In order
to deal with arbitrary collapsing sequences, we use the aforementioned represen-
tation of (DM)* as a Laplace-type operator on P. If {M;}2, is a sequence of
n-dimensional Riemannian manifolds with uniformly bounded diameter and
uniformly bounded sectional curvature then we show that after taking a
subsequence, the spectra of {(DM")Z}?E1 converge to the spectrum of a Laplace-type
operator on a limit space. Let {Z(|DY])}?2, denote the eigenvalues of |[D¥|, counted
with multiplicity.

THEOREM 3. Given n € 7" and G € {SO(n), Spin(n)}, let {M}2, be a sequence of
connected closed oriented n-dimensional Riemannian manifolds with a G-structure.
Let V be a G-Clifford module. Suppose that for some D,K > 0 and for each
ieZ", we have diam (M;) < D and | R || < K. Then there are

(1) A subsequence of {M;}2,, which we relabel as {M;}2,,

(2) Asmooth closed G- mamfoldX with a G-invariant Riemannian metric g* X \ohich is
C"*-regular for all o € (0, 1),

(3) A positive G-invariant function y € C(X) with fx ydvol =1 and

4) A G-invariant function V € L°°(X ) ® End(V) such that if A% denotes the
Laplacian on LZ(X, ydvol) ® V [14, (0.8)] and |D¥| denotes the operator
NIX R acting on (LZ(X’, ydvol) ® V)S then for all k € 7,

l_lirglo 2(1DM11) = 4 (1D¥]). (1.2)

In the special case of the signature operator, the proof of Theorem 3 is somewhat
simpler than that of the analogous [22, Proposition 3], in that we essentially only
have to deal with scalar Laplacians. However, [22, Proposition 3] gives more
detailed information. In particular, it expresses the limit operator in terms of a basic
flat degree-1 superconnection on X. This seems to be necessary in order to prove the
results of [22] concerning small eigenvalues. Of course, one does not expect to have
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analogous results concerning the small eigenvalues of general geometric Dirac-type
operators, as their zero-eigenvalues have no topological meaning.

As an application of Theorem 3, we give a characterization of manifolds which do
not have a uniform upper bound on the k-th eigenvalue of |[D¥|, in terms of diameter
and sectional curvature.

THEOREM 4. Let M be a connected closed oriented manifold with a G-structure.
Let V be a G-Clifford module. Suppose that for some K >0 and k € 77, there
is no uniform upper bound on A (|DM|) among Riemannian metrics on M with
diam (M) =1 and | RM |0 < K. Then M is the total space of a possibly-
singular affine fiber bundle M — X whose generic fiber is an infranilmanifold Z
such that the restriction of EM to Z does not have any nonzero affine-parallel
sections.

As a partial converse, let M be the total space of a smooth affine fiber bundle whose
fiber is Z and whose base B has positive dimension. If the restriction of EM to Z does
not have any nonzero affine-parallel sections then there is some K > 0 such that
for any k € 7%, there is no uniform upper bound on i (|D™|) among Riemannian
metrics on M with diam (M) =1 and | RY || <K.

More precisely, the possibly-singular affine fiber bundle M — X of Theorem 4 is
the G-quotient of a G-equivariant affine fiber bundle P — X. Theorem 4 is an analog
of [22, Theorem 1.2]. A simple example of Theorem 4 comes from considering
spinors on M = S' x N, where N is a spin manifold and the spin structure on
S! is the one that does not admit a harmonic spinor. Upon shrinking the S'-fiber,
the eigenvalues of Dy, go off to +oo.

Finally, we give a result about the essential spectrum of a geometric Dirac-type
operator on a finite-volume manifold of pinched negative curvature, which is an
analog of [19, Theorem 2]. Let M be a complete connected oriented n-dimensional
Riemannian manifold with a G-structure. Suppose that M has finite volume and
its sectional curvatures satisfy —h> < K < —a?, with 0 <a<bh. Let V be a
G-Clifford module. Label the ends of M by I € {1,...,N}. An end of M has a
neighborhood U; whose closure is homeomorphic to [0, 00) x Z;, where the first
coordinate is the Busemann function corresponding to a ray exiting the end, and
Z; is an infranilmanifold. Let EM be the vector bundle on M associated to the pair
(G, V) and let DM be the corresponding Dirac-type operator. If U; lies far enough
out the end then for each s € [0, 00), C®({s} x Zp; EM|{X}><ZI) decomposes as the
direct sum of a finite-dimensional space E7, consisting of ‘bounded energy’ sections,
and its orthogonal complement, consisting of ‘high energy’ sections. The vector
spaces {Eﬁy}se[o,m) fit together to form a vector bundle E? on [0, c0). Let Py be
orthogonal projection from @Y, C®(Ur; EM|7) to @B, C([0, 00); EP). Let
DM be the restriction of DM to @), C=(Ur; EM |7), say with Atiyah-Patodi-Singer
boundary conditions. Then PoD¥ P, is a first-order ordinary differential operator
on @7, C>([0, co); EF).
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THEOREM 5. The essential spectrum of DM is the same as that of PyDX ,P,.

There is some intersection between Theorem 5 and the results of [4, Theorem 0.1],
concerning the essential spectrum of DM when n =2 and under an additional
curvature assumption, and [5, Theorem 1], concerning the essential spectrum of DY
when M is hyperbolic and V' is the spinor module.

2. Dirac-type Operators and Infranilmanifolds

Given n € 7%, let G be either SO(n) or Spin(n).

DEFINITION 2. A G-Clifford module consists of a finite-dimensional Hermitian
G-vector space V and a G-equivariant linear map y: R” — End(¥) such that
y(v)2 = |v’Id. and y(v)* = p(v).

Let M be a connected closed oriented smooth n-dimensional Riemannian
manifold. Put G = Spin(n) or G = SO(n), according as to whether or not M is spin.
If M is spin, fix a spin structure. Let P be the corresponding principal G-bundle,
covering the oriented orthonormal frame bundle. Its topological isomorphism class
is independent of the choice of Riemannian metric. Given the Riemannian metric,
there is a canonical R"-valued 1-form 6 on P, the soldering form.

With respect to the standard basis {ej}j’?zl of R", we write 7/ = y(¢;). We also take
generators {a””}Z,b=1 for the representation of the Lie algebra g on V, so that
ghe — _O.ab’ (O.ab)*: —g%® and

[O_ah7 O_cd] — 5ad0_bc _ 5aco_bd + 5bco,ad _ 5bd0_ac' (21)
The G-equivariance of y implies
[Va, abC] — 5ahyc _ 51107)17. (22)

EXAMPLES. (1) If G =Spin(r) and V is the spinor representation of G then
O.zzb _ l[ a . b]
=307 _ _
2)If G =SO(n) and V = A*(R") ®@g C, let E/ and F denote exterior and interior
multiplication by ¢, respectively. Put 9/ =i(E/ —F) and % = E/ 4+ . Then
o =3 ([ "1+ . 7"1)-

Put EM = P x¢ V. The Dirac-type operator D™ acts on the space C®°(M; EM). As
the topological vector space C*(M; EM)is independent of any choice of Riemannian
metric on M, it makes sense to compare Dirac-type operators for different
Riemannian metrics on M; see [18, Section 2] for further discussion.

Let g™ be the Riemannian metric on M. Let w be the Levi-Civita connection on
P. Let {e};_, be a local oriented orthonormal basis of TM, with dual basis
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(v };’:1. Then we can write w locally as a matrix-valued 1-form wf = 27:1 i, and

DM = —iij)jve/. = —li"/(el +% i wabjo"b). (2.3)
= =

a,b=1

We have the Bochner-type equation

(D =V S RYL G e (2.4)
a,b,ij=1
As the set of Riemannian metrics on M is an open convex subset of a Frechet
space, it makes sense to talk about an analytic 1-parameter family {c(?)},c0,1) of
metrics. Then for ¢ € [0, 1], ¢(?) is a symmetric 2-tensor on M. Let || ¢(?) |l denote
the norm of ¢(r) with respect to ¢(¢), i.e.

1 ét) o= sup 1DV

verm—0 O, v) (2.5)

Put I/(c) = fol | ¢(®) llery dt. We extend the definition of /(c) to piecewise-analytic
families of metrics in the obvious way. Given K > 0, let M(M, K) be the set of
Riemannian metrics on M with | RM ||, < K. Let d be the corresponding length
metric on M(M, K), computed using piecewise-analytic paths in M(M, K). Let
a(DM, g™) denote the spectrum of DM as computed with g™, a discrete subset
of R which is counted with multiplicity.

PROPOSITION 1. There is a constant C = C(n, V) > 0 such that for all K > 0 and
g™ oIM ¢ M(M, K),

{sinhl (&) 2 e a(DY, g™ (2.6)
and
{sinh—l (ﬁ) 2 e a(DM, gI™M) (2.7)

are Cd(gi™, gI™)-close.
Proof. It is enough to show that there is a number C such that if {¢(7)},¢p 1) 18 an
analytic 1-parameter family of metrics contained in M(M, K) then

sinh™! <%) 4 € a(DM, ¢(0))

and

sinh™! (%) Jea(DM, (1))
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are Cd(c(0), c(1))-close. By eigenvalue perturbation theory [20, Chapter XII], the
subset U,E[O’”{l} x 6(DM, ¢(r)) of R® is the union of the graphs of functions
{4/(0)}jez which are analytic in . Thus it is enough to show that for each j € Z,

sinh™! (%) —sinh™! (%’?)' < Cl(c). (2.8)

Let D(¢) denote the Dirac-type operator constructed with the metric ¢(z). It is
self-adjoint when acting on L*(E™, dvol(t)). In order to have all of the operators
{D(0)},e0,; acting on the same Hilbert space, define f(7) € C*°(M) by
f(£) = dvol(t)/dvol(0). Then the spectrum of D(¢), acting on L*(EM, dvol(t)), is
the same as the spectrum of the self-adjoint operator f(r)'/>D(r) f(r)"'/* acting
on L*(EM, dvol(0)). One can now compute dZ;/dt using eigenvalue perturbation
theory, as in [20, Chapter XII]. Let y;(¢) be a smoothly-varying unit eigenvector
whose eigenvalue is 4;(7). Define a quadratic form 7'(¢) on TM by

T()(X, Y) = (b, —ip(X)Vyy; +9(Y) Vi) +
+ (IO Vyy; + (V) Vi), ). (2.9)

Using the metric ¢(f) to convert the symmetric tensors ¢(¢) and 7'(¢) to self-adjoint
sections of End(TM), one finds
dZ; 1
A _ _ —f Tr(e(t)T(2))dvol(z). (2.10)
dt 8Ju
(This equation was shown for the pure Dirac operator, by different means, in [10].)
Then

dz
d

< const. || ¢(?) lleq /MTr(|T(t)|)dvol(t). (2.11)

Letting {x;}?_, be an orthonormal basis of eigenvectors of 7'(¢) at a point m € M, we
have Tr(|7(1)]) = > i, IT(t)(x;, x;)|. Then from (2.9), we obtain

1/2
/ Tr(|T(t)|)dvol(t)<const.< f |Vl//j|2dv01(t)> ) (2.12)
M M
From (2.4),
f |V, *dvol(1) < 4} + const. K. (2.13)
M

In summary, from (2.11), (2.12) and (2.13), there is a positive constant C such that
di;

. 172
S C e lle ()uf +K) . (2.14)

Integration gives Equation (2.8). The proposition follows. O
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For some basic facts about infranilmanifolds, we refer to [17, Section 3]. Let N be a
simply-connected connected nilpotent Lie group. Let I' be a discrete subgroup of
Aff(N) which acts freely and cocompactly on N, with I' N N of finite index in T
Put Z =T\N, an infranilmanifold. There is a canonical flat linear connection
v/ on TZ. Put T = 'N N, a cocompact subgroup of N. There is a short exact
sequence

l—-T—T—F—s1, (2.15)

with F a finite group. Put 7= f\N , anilmanifold which finitely covers Z with cover-
ing group F.

Let g7# be a Riemannian metric on Z which is parallel with respect to V¥, Let us
discuss the condition for Z to be spin. Suppose first that Z is spin. Choose a spin
structure on Z. Fix the basepoint zy = I'e € Z. As V¥ preserves g’7, its holonomy
lies in SO(n). Hence V¥ lifts to a flat connection on the principal Spin(n)-bundle,
which we also denote by V4. There is a corresponding holonomy representation
I' — Spin(n).

Conversely, suppose that we do not know a priori if Z is spin. Suppose that
the affine holonomy I' - F — SO(n) lifts to a homomorphism I' — Spin(n).
Naturally, the existence of this lifting is independent of the particular choice
of g’%. Then there is a corresponding spin structure on Z with principal bundle
I'\(N x Spin(n)). The different spin structures on Z correspond to different lifts
of T — SO(n) to I — Spin(n). These are labelled by H'(T; Z,) =~ H'(Z; Z»).
Note that there are examples of nonspin flat manifolds [3]. Also, even if Z
is spin and has a fixed spin structure, the action of Aff(Z) on Z generally does
not lift to the principal Spin(n)-bundle, as can be seen for the SL(n, Z)-action
on Z=T".

Now let G be either SO(n) or Spin(n). Let V' be a G-Clifford module. Suppose
that Z has a G-structure. If G =SO(n) then we have the affine holonomy
homomorphism p: I' - SO(n). If G = Spin(n) then we have a given lift of it to
p: I = Spin(n). In either case, there is an action of I' on V coming from
rte— Aut(V). The vector bundle EZ can now be written as
EZ =T\(N x V). We see that the vector space of sections of EZ which are parallel
with respect to V¥ is isomorphic to V', the subspace of ¥ which is fixed by the
action of T.

If V is the spinor representation of G = Spin(n) then let us consider the conditions
for T to be nonzero. First, as the restriction of p: I' — Spin(n) to r maps T to +1,
we must have p|A = 1. Given this, the homomorphism p factors through a
homomorphism F — Spin(n). Then we have V' = I’ This may be nonzero even
if the homomorphism F — Spin(n) is nontrivial.

Returning to the case of general V, as g% is parallel with respect to VAT, the
operator DZ preserves the space V' of affine-parallel sections of EZ. Let D™V be
the restriction of DZ to V',
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PROPOSITION 2. There are positive constants A and A’ depending only on
dim(Z) and V such that if || RZ | diam (Z)* < A’ then the spectrum ¢(DZ%) of D?
satisfies

o(D?)N[—A diam (Z)~!, 4 diam (2)™']
= ¢(D™)N[—A4 diam (Z2)~", 4 diam (2)7]. (2.16)

Proof. As D” is diagonal with respect to the orthogonal decomposition
CXZE) =V e (V") 2.17)

it is enough to show that there are constants 4 and A4’ as in the statement of the
proposition such that the eigenvalues of (DZ)2| ()t are  greater than
A% diam (Z)™2. As in the proof of [17, Proposition 2], we can reduce to the case
when F = {e}, i.e. Z is a nilmanifold I'\N. Then

C®(Z: EX) = (C*(N)® V) . (2.18)

dim(2)

Using an orthonormal frame {e;},_,

Proposition 2], we can write

for the Lie algebra n as in the proof of [17,

Vi = ®@1d. (2.19)

and

| dim(2)

V= (e;®1d) + (Id. ®5 > owio® ). (2.20)
a,b=1

The rest of the proof now proceeds as in that of [17, Proposition 2], to which we refer

for details. O

3. Collapsing to a Smooth Base

For background information about superconnections and their applications, we
refer to [7]. Let M be a connected closed oriented Riemannian manifold which
is the total space of a Riemannian submersion n: M — B. Suppose that M has
a GM-structure and that V™ is a GM-Clifford module, as in Section 2. If
GM = SO(n), put G = SO(dim(Z)) and G® = SO(dim(B)). If GM = Spin(n), put
G* = Spin(dim(Z)) and G® = Spin(dim(B)). As a fiber Z, has a trivial normal bundle
in M, it admits a GZ-structure. Fixing an orientation of T}, B fixes the G#-structure of
Zy. Note, however, that B does not necessarily have a GZ-structure. For example, if
M is oriented then B is not necessarily oriented, as is shown in the example of
S! xz, 8 — RP?, where the generator of Z, acts on S' by complex conjugation
and on S? by the antipodal map. And if M is spin then B is not necessarily spin,
as is shown in the example of S° — CP?. What is true is that if the vertical tangent
bundle 7Z, a vector bundle on M, has a G*-structure then B has a GZ-structure.
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Put EM = P xgu VM. There is a Clifford bundle C on B with the property that
C*®(B; C) =~ C®(M; EM) [7, Section 9.2]. If dim(Z) > 0 then dim(C) = oo. To
describe C more explicitly, let V™ =@),_, V2 ® V¥ be the decomposition of Vy
into irreducible representations of G x G* ¢ GM.

EXAMPLES. (1) If GM = Spin(n) and V™ is the spinor representation then V% and
V7 are spinor representations.

(2) If GM =8S0(n) and V™ = A*(R") @z C, then V2 = A*(R™P) gy C and
VZ — A*(Rdim(Z)) ®R C

Let U be a contractible open subset of B. Choose an orientation on U. For b € U,
let E7, be the vector bundle on Z, associated to the pair (G%, V/). Then
EM|, =@, VP ® Ef,. The vector bundles {Ef },cy are the fiberwise restrictions
of a vector bundle EZ on n~!(U), a vertical ‘spinor’ bundle. There is a pushforward
vector bundle W; on U whose fiber Wi, over be U is C®(Z; E,f,). If
dim(Z) > 0 then dim(W)) = co. There are Hermitian inner products {h""},.;, on
{W}},c,, induced from the vertical Riemannian metric g’#. Furthermore, there
are Clifford bundles {Cj},c; on U for which the fiber C;; of C; over b e U is
isomorphic to V¥ ® W, . By construction, C*(Zy; E|, ) = @, Cip. The Clifford
bundles {C/};c; exist globally on B and C = ,_; C;. The Dirac-type operator DY
decomposes as DM = @,_; DM, where DM acts on C*®(B; C)).

In order to write D explicitly, let us recall the Bismut superconnection on W;. We
will deal with each / € L separately and so we drop the subscript / for the moment.
We use the notation of [9, Section III(c)] to describe the local geometry of the fiber
bundle M — B, and the Einstein summation convention. Let V74 denote the Bismut
connection on 7Z [7, Proposition 10.2], which we extend to a connection on E¥. The
Bismut superconnection on W [7, Proposition 10.15] is of the form

A=D" + V" —1«T). (3.1)
Here D" is the fiberwise Dirac-type operator and has the form
D" = —iyfvgz = —iy/ (€ + S wpg0™). (3.2)

Next, V¥ is a Hermitian connection on W given by

vh= r“(vg - %%’/) = 1(ex + 3 Djka0’ — 305)- (3-3)
Finally,
o(T) = iyt (3.4

The superconnection 4 can be ‘quantized’ into an operator D4 on C®(B; VE @ W).
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Explicitly,

Dt = —iy (¢ + %w],qjal"f)—
P+ Joun? + oo Yo+
+ iy 6" (3.5

Let V € End(C)) be the self-adjoint operator given by
V = —i(0iy* 0 + L 0yiy* + wopi (0 +y2dP)). (3.6)
Then restoring the index / everywhere,

DM =DM v, (3.7)

EXAMPLES. (1) If GM = Spin(n) and VM is the spinor representation then V = 0.
(2) If GM =SO(n) and V™ = A*(R") ®g C, then

V = — i@ 7 71+ 0oy 71+ 97, 7). (3.8)

Now suppose that m: M — B is a Riemannian affine fiber bundle. Then EM | Z
inherits a flat connection from the flat affine connections on {Ef},c;. Let E® be
the Clifford bundle on B whose fiber over b € B is the space of parallel sections
of EM|Z Then DY restricts to a first-order differential operator DB on C*(B; E?).

Given b € U and / € L, let W} be the finite-dimensional subspace of W;; con-
sisting of affine-parallel elements of C®(Zyp; Eb ). From the discussion in Section
2, W,“}jv is isomorphic to (VZ) The vector spaces W,“,‘)V fit together to form a
finite-dimensional subbundle W”lV of W;. There 1is a corresponding
finite-dimensional Clifford subbundle C}“V of C; whose fiber over be U is
isomorphic to Vf® W}}. Again, C™ exists globally on B. Then
EZ =@, Cinv. Let D5 be the restriction of DM to C*(B; CiV). Then

=Pt (3.9)

leL

The superconnection A; restricts to an superconnection A" on W/, the
endomorphism V; restricts to an endomorphism of C"¥ and D} restricts to the
first-order differential operator

DP = pA 4y (3.10)

on C*(B; C}“V).

Proof of Theorem 1. The operator D} is diagonal with respect to the orthogonal
decomposition

C =C™o(C™). 3.11)
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Thus it suffices to show that there are constants 4, 4’ and C such that the spectrum of
a(DM), when restricted to (C}“V)L, is disjoint from (1.1).

For simplicity, we drop the subscript /. Given € C®(B; (C'"™)') ¢ C°(M; EM),
it is enough to show that for suitable constants,

(DMy, DMp) > (const. diam (Z) ™ — const. (|| RM Jloo + [ TT |12, + || T 1I12,))
(n,m). (3.12)

Using (2.4), it is enough to show that

(VMy, VM) = (const. diam (Z2) 2 — const.(|| RM [loo + I TL % + || T 1%,))
{n,n). (3.13)

We can write VM = V¥ + VH | where
Vv C®(M; EM) - C®(M; T*Z @ EM) (3.14)
denotes covariant differentiation in the vertical direction and
vl ¢*(M; EM) - C®°(M; *T*B ® EM) (3.15)
denotes covariant differentiation in the horizontal direction. Then

(VMy, VM) = (vVn, Vi) + (Vy, Vi)
> (V"n, V")

JB JZ V" n[*(2)dvoly,dvols. (3.16)
b

On a given fiber Z;, we have
EM|Zb ~ V8 ® Ef. (3.17)

Hence we can also use the Bismut connection V7# to vertically differentiate sections
of EM. That is, we can define

V2. c®(M; EM) - C®(M; T*Z @ EM). (3.18)
Explicitly, with respect to a local framing,

Ve? = e + 3ot (3.19)
and

ng =e;n + %wpqiopqr/ + kaja‘”kr] + %a)aﬁja“ﬁn. (3.20)
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Then from (3.16), (3.19) and (3.20),

(VMy, vMp) > / U V% [*(2) — const.(I| Ty II* + || TI, II)In(Z)|]
dVOthdVOIB. (321)

Thus it suffices to bound fZ |VTZ11| (z)dvoly, from below on a given fiber Z; in
terms of (1, 1) z,, under the assumption that n € (Wmv) Using the Gauss—Codazzi
equation, we can est1mate | R% ||« in terms of || RM ||« and || IT ||2 Then the des-
ired bound on fZ |VT211| (z)dvoly, follows from Proposition 2. O

Proof of Theorem 2. Let gI™ denote the Riemannian metrlc on M. From Prop-
osition 1, if a Riemannian metric g/ on M is close to g M in (M(M, 2K), d) then
applying the function x — sinh™'(x/+v2K) to o(DM , &M gives a collection of
numbers which is close to that obtained by applying x — sinh™!'(x/+2K) to
a(DM, gI™). We will use the geometric results of [11] to find a metric g2 on M
which is close to gd™ and to which we can apply Theorem 1.

First, as in [11, (2.4.1)], by the smoothing results of Abresch and others [11 ,
Theorem 1.12], for any ¢ > 0 we can find metrics on M and B which are e-close
in the C'-topology to the original metrics such that the new metrics satisfy
| VIR lo < Ai(n, ¢) for some appropriate sequence {4;(n, £)}2,. Let gl denote
the new metric on M. In the proof of the smoothing result, such as using the Ricci
flow [21, Proposition 2.5], one obtains an explicit smooth 1- parameter family of
metrics on M in M(M, K'), for some K’ > K, going from gI™ to g7™. We can
approximate th1s famlly by a piecewise-analytic family. Hence one obtains an upper
bound on d(g{™, g!™) in M(M, K'), for some K’ > K, which depends on K and is
proportionate to &. (Note that d is essentially the same as the C°-metric on
M(M, K").) By rescaling, we may assume that | RM || <1, || R® |l <1 and
inj(B) = 1. We now apply [11, Theorem 2.6], with B fixed. It implies that there
are positive constants A(n) and c(n, ¢) so that if dgy(M, B) < A(n) then there is a
fibration f : M — B such that

(1) diam ( /7'()) < e(n, &)dou(M, B).
(2) f is a ¢(n, ¢)-almost Riemannian submersion.
) Mg lleo < c(n,e).

As in [16], the Gauss—Codazzi equation, the curvature bound on M and the second
fundamental form bound on f~'(b) imply a uniform bound on {|| R’ ® ||s}pes-
Along with the diameter bound on £~!(b), this implies that if dg; (M, B)is sufficiently
small then f~!(b) is almost flat.

From [11, Propositions 3.6 and 4.9], we can find another metric gZ™ on M which is
e-close to gI'™ in the C'-topology so that the fibration f : M — B gives M the struc-
ture of a Riemannian affine fiber bundle. Furthermore, by [11 Proposition 4.9],
there is a sequence {A/(n, £)}%°, so that we may assume that gl™ and g7™ are close
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in the sense that
I Vi(g™ —e3™) lloe < AUn, e)dou(M, B), (3.22)

where the covariant derivative in (41) is that of the Levi-Civita connection of g7™.
Then we can interpolate linearly between g/ and g2 within M(M, K") for some
K" > K', and obtain an upper bound on d(g/™,¢gI™) in M(M,K") which is
proportionate to ¢. From [21, Theorem 2.1], we can take K” = 2K (or any number
greater than K).

We now apply Theorem 1 to the Riemannian affine fiber bundle with metric g7™.
It remains to estimate the geometric terms appearing in (1.1). We have an estimate
on || IT || as above. Applying O’Neill’s formula [8, (9.29)] to the Riemannian affine
fiber bundle, we can estimate || 7' || in terms of || RM | and || R® ||. Putting this
together, the theorem follows. O

4. Collapsing to a Singular Base

Let p: P — M be the principal G-bundle of Section 2. Let {?); };1 be the horizontal
vector fields on P such that 0(9),) = ¢;. Put D¥ = —i "7 | /9, actingon C¥(P) ® V.
There is an isomorphism C®(M; EM) = (C*(P) ® V)°. Under this isomorphism,
DM =~ p*| (=)o~ The Bochner-type equation (2.4) becomes

n n n
(DM 2= WY g D R — e (A1)
J=1 ij=1 ab.ij=1

when acting on (C®(P) ® V)°.

Let {xa}gi:“}(c) be a basis for the Lie algebra g which is orthonormal with respect to
the negative of the Killing form. Let {2)(,}32(6) be the corresponding vector fields
on P. Then —223(6) ‘Dﬁ acts on (C®(P)® V)¢ as ¢y € (End(V))Y, the Casimir
of the G-module V. Give P the Riemannian metric g/¥ with the property that
{9;, Y,} forms an orthonormal basis of vector fields. Let AP denote the correspond-
ing (nonnegative) scalar Laplacian on P, extended to act on C*°(P) ® V. Then when
acting on (C®(P) ® V)?, equation (4.1) is equivalent to

I < C
(DY) = AT =2 Y0 "Ry (0 =)o — ey (42)
a,b,ij=1
DEFINITION 3. A G-equivariant Riemannian affine fiber bundle structure on P

consists of a Riemannian affine fiber bundle structure 7%:P — X which is
G-equivariant.

In [11, Proposition 7.21] it is shown that one can make a small G-equivariant
perturbation of g’” in the C'*-topology so that the new Riemannian metric is
the total space of a G-equivariant Riemannian affine fiber bundle. The quotient space
M = P/G acquires a new quotient Riemannian metric, which is called an invariant
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metric [11, Section 8]. In [21, Theorem 2.1] it is shown that one can assume that the
sectional curvatures of the invariant metric on M are bounded in terms of the sec-
tional curvatures of the original metric on M. As we can take the new canonical
Riemannian metric g’¥ on P, the upshot is that we assume that the Riemannian
metric on the total space of the G-equivariant affine fiber bundle P — X is the
canonical metric coming from a Riemannian metric on M.

Given such a G-equivariant Riemannian affine fiber bundle, let Z be the fiber of
#: P — X, an infranilmanifold. For collapsing purposes it suffices to take Z to
be a nilmanifold I'\N [11, (7.2)]. We assume hereafter that this is the case. Put
X = X’/G, a possibly singular space. As the Lie algebra n of N is represented by
vector fields in a neighborhood of a point of P, and the local flow preserves the
horizontal subspaces of P — M, it follows that the vector fields {2)_,»}]’731 are
projectable with respect to 7 and push vforward to vector ﬁeldsv{X_ j}i=y on X. Put
DX = —j i1 V&), acting on C®(X)®V. Let ve C®(X) be given by
(X)) = vol(Z;). We give C°°()V( )® V the weighted L>-inner product with respect
to the weight function v.

We recall that there is a notion of a pseudodifferential operator being transversally
elliptic with respect to the action of a Lie group G [2, Definition 1.3].

LEMMA 1. DY is transversally elliptic on X. }

Proof. Let s(DX) € C®°(T*X) ® End(V) denote the symbol of DX. Suppose that
teT, )’fj’ satisfies £(v) = O forall v € T x)V( which lie in the image of the representation
of g by vector fields on X. Then if p € #71(x), we have that (7*¢)(r) = 0 forall r € T, P
which lie in the image of the representation of g by vector fields on P. In other words,
7*¢ is horizontal. Now ((s(D¥))(¢))> = PR (S X)? = o (e, V)% If (s(D¥))(©)
fails to be an isomorphism then (7*¢, ;) = 0 for all j. Along with the fact that
7*¢ is horizontal, this implies that 7*¢ = 0. Thus ¢ = 0, which proves the lemma.

DEFINITION 4. For notation, write C*(X; E¥) = (C*(X) ® V)°. Let D¥ be the
restriction of D¥ to C®(X; EY).

It will follow from the proof of the next theorem that DY is self-adjoint on the
Hilbert space completion of C*(X; E X) with respect to the (weighted) inner product.
As DX is transversally elliptic, it follows that DY has a discrete spectrum [2, Proof of
Theorem 2.2].

Let I denote the second fundamental forms of the fibers {Zk})}e % Let
T € Q*(P; TZ) be the curvature of the horizontal distribution on the affine fiber
bundle P — X.

THEOREM 6. There are positive constants A, A" and C which only depend onnand V
such that if | R ||ls diam (Z)> < A’ then the intersection of a(D™) with

[—(Adiam(Z) % — C(1+ | RM |l + I TLI2, + | T 11202,
(Adiam(Z)™2 = C(1+ || RM oo + I L2 + I T 120V (4.3)
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equals the intersection of a(DX) with (4.3).
Proof. Let us write

C¥(P)® V = <C°°(5() ® V) ® (C°°(5() ® V)L, (4.4)

where we think of C°°(j’ )® V as the elements of C*°(P)® V which are constant
along the fibers of the fiber bundle 7: P — X. Taking G-invariant subspaces, we
have an orthogonal decomposition

C®(M; EM) = C*(X; EY) @ (C™(X; EX))L, 4.5)
with respect to which DY decomposes as
M ’e M
DY =D"®D |(Cx(X;EX))L. (4.6)

As in the proof of Theorem 1, it suffices to obtain a lower bound on the spectrum of
(DY | cmrspry- As (C¥(X; EN)E € (C®(X) @ V)", using (4.2) it suffices to
obtain a lower bound on the spectrum of A’ |(Cx(j,)®V)L. This follows from the
arguments of the proof of Theorem 1, using the fact that
| RY |loo < const.(14 || RM ||). We omit the details. In fact, it is somewhat easier
than the proof of Theorem 1, since we are now only dealing with the scalar Laplacian
and so can replace Proposition 2 by standard ecigenvalue estimates (which just
involve a lower Ricci curvature bound); see [6] and references therein.

Proof of Theorem 3. Everything in the proof will be done in a G-equivariant way,
so we may omit to mention this explicitly. Let P; be the principal G-bundle of
M;, equipped with a Riemannian metric as in the beginning of the section. From
the G-equivariant version of Gromov’s compactness theorem, we obtain a sub-
sequence {P;};2; which converges in the equivariant Gromov-Hausdorff topology
to a G-Riemannian manifold (X, g7%) with a C!*-regular metric. As in [14, Section
3], the measure ydvoly is a weak-x limit point of the pushforwards of the normalized
Riemannian measures on {P;}7°,. As in [14, p. 535], after smoothing we may assume
that we have G-equivariant Riemannian affine fiber bundles 7;: P; — X’,-, with G
acting freely on P;, along with G-diffeomorphisms qu: P; — P, and O;: X - X
Put M= P;/G. Then ¢; descends to a diffeomorphism ¢;: M; — M} and we
may also assume, as in the proof of Theorem 2, that

(1) ¢rg™ € M(M;, const.K),
(2)  d(p;g™:, ¢g™:) <27 in M(M;, const.K) and
(3) limj o ®Fg"™ = g™¥ in the C!'*-topology.

Using Proposition 1, we can effectively replace M; by M for the purposes of the
argument. For simplicity, we relabel M/ as M; and P; as P;. For the purposes of
the limiting argument, using Theorem 6 and (4.2), we may replace the spectrum
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of |DMi| by the spectrum of the operator |D%|=,/A% +YV; acting on
C®(X;, EX) = (C®(X;) ® V)¢, where V; is the restriction of

—2 Z @ R sy = 770" — ey (4.7)

ahl/ 1

to the elements of (C®(P;) ® V)¢ which are constant along the fibers of 7;: P; — X,
i.e. to C®°(X;, EX).

From the curvature bound, we have a uniform bound on {|| V; |lo}7,. Using the
weak-x _compactness of the unit ball, let V be a weak-+ limit point of {® V}
in L®(X) ® End(V) = (L'(X) ® End(V))*. We claim that with this choice of X, y
and V), equation (1.2) holds.

To see this, we use the minimax characterization of eigenvalues as in [14, Section
5]. Using the diffeomorphisms {®;}72,, we identify each X; with X. We denote
by (-,-)y, an L’*-inner product constructed using ®;g”% and the weight function
(7). (dvolp,)/ [ % (), (dvolp). We denote by (-, )y an L?-inner product constructed
using g”* and the weight function ydvoly. As A% has a compact resolvent, it follows
that |D¥|? has a compact resolvent. Then

(dy, dd)y + (Y, V) x
D¥|)* = inf
A(DYIY = in wzlvlvpo W) x '

where W ranges over the k-dimensional subspaces of the Sobolev space H'(X; EY).
Given ¢ > 0, let W, be a k-dimensional subspace such that

(v, Ay + (0, Vi)
oo W)y

As y ® Y lies in the finite-dimensional subspace W, ® W2 of L'(X) ® End(V), it
follows that

Im W, Vi) x = b, Vi) (4.10)
uniformly on {{y € W.: (¥, )y = 1}. Then
(Ao )+ Vi () V)

(4.8)

< k(D¥|)* + & (4.9)

Iim su = 4.11
i—00 weWpfo W, ¥)x YeWan—0 W, ¥ x ¢-11)
As
J(|DX)? = inf su d 4.12
(1071 W 1//6Wp—0 (W )y, (4-12)
it follows that
lim sup Zx(|1D¥]) < 2(I1D¥)). (4.13)

1— 00
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We now show that
lim inf 2;(|D¥[) = 2(ID*]). (4.14)
1I— 00

Along with (4.13), this will prove the theorem. Suppose that (4.14) is not true. Then
there is some ¢ > 0 and some infinite subsequence of {A;}7°,, which we relabel
as {M;}?,, such that for all i e Z7,

(DY) < Jr(IDY))? = 2e. (4.15)

For each i € Z", let W; be a k-dimensional subspace of H!'(X; EX) such that

(dy, dy) x, + (Y, Vith) x,
sup

< (DY) +e. 4.16
JSup R < (DY) +e (4.16)

Let {f,-,j};‘:] be a basis for ; which is orthonormal with respect to (-, -) . Then for a
given j, the sequence {f;,;}2°, is bounded in H'(X; EY). After taking a subsequence,
which we relabel as {f;;}7°,, we can assume that {f;;}7°, converges weakly in
H'(X; EX) to some f5 ;. Doing this successively for j € {1, ..., k}, we can assume
that for each j, lim;_. fi; = foo; weakly in H'(X; EX). Then from the compactness
of the embedding H'(X; EX) — L*(X; EX), we have strong convergence in
L*(X; EX). In particular, {foo,j}j’?=l are orthonormal. Put Wo, = span( fx.1, - - - » foo.k)-

If wey = Zjl;l ¢j [ is a nonzero element of W, put w; = Zj];l ¢; fij. Then {wi}2,
converges weakly to ws in H'(X; EX) and hence converges strongly to we in
L>(X; EX). From a general result about weak limits, we have

(Woos Woo) gt < lim sup(w;, wy) . (4.17)
i—00

Along with the L?-convergence of {wi}2, to woo, this implies that

(dWoo, dWeo) xy < limsup{dw;, dw;) .. (4.18)

i—00
As w; ® w converges in Ll(j’) ® End(E) to we @ W), we have

lim (w;, Viw;)y = im ((Weo, ViWoo) x + (Wi, Viwi) x — (Woo, ViWeo) x))

= (Woo, VWoo) y- (4.19)
Then
(A, d)xy + W, W)y . (dyr, dr) x, + (b, Vi) x,
< 1 i i
wesvlvlf—o W, ¥)x s Hirlil:p l//eSlwl/,p—o (W, )y,

(4.20)



194 JOHN LOTT

Thus from (4.15), (4.16) and (4.20),
(dy, dy)x + (W, V) x

inf su < (IDY))? =&, 4.21
w l//EWpo (W) x i (+21)
which is a contradiction. This proves the theorem. O

Proof of Theorem 4. Let {gI'™}2°, be a sequence of Riemannian metrics on M as in
the statement of the theorem, with respect to which A, (|D¥ ) goes to infinity. Let P be
the principal G-bundle of M and let X be the limit space of Theorem 3, a smooth
manifold with a C'*-regular metric. As the limit space X = X /G has diameter
1, it has positive dimension. As in the proof of Theorem 3, after slightly smoothing
the metric on X, there is a G-equivariant Riemannian affine fiber bundle
#: P — X whose fiber is a nilmanifold Z. Let X be a point in a principal orbit
for the G-action on X, with isotropy group H C G. Then H acts affinely on the
nilmanifold fiber Z;z. In particular, H is virtually abelian. The quotient
Z = Zx/H is the generic fiber of the possibly- smgular affine fiber bundle
n: M — X, the G-quotient of 7: P — X. Then EM|Z = Z xy V. In particular,
the vector space of affine-parallel sections of EM | s isomorphic to VH. On the
other hand, if C®(X; EX) # 0 then |DX | has an infinite discrete spectrum. Theorem
3 now implies that C®(X; EX) = (COO(X) ® V)% must be the zero space. As the orbit
X - G has a neighborhood consisting of principal orbits, the restriction map from
(C"O()V() R V) to (C®(X-G)® V)Y is surjective. However, (C¥(x-G)® V)? is
isomorphic to ¥#. Thus V7 = 0.

Conversely, let 7: M — B be an affine fiber bundle. Theorem 1 implies that if
EM | , does not have any nonzero affine-parallel sections then upon collapsing M
to B as in [16, Section 6], the eigenvalues of D,, go off to oo. This proves the
theorem. O

5. Proof of Theorem 5

As the proof of Theorem 5 is similar to [19, Pf. of Theorem 2], we only indicate the
structure of the proof and the necessary modifications to [19, Pf. of Theorem 2].

The closure U; of an appropriate neighborhood of an end has the (affine) structure
of an affine fiber bundle over [0, co) with fiber Z;. The vector bundle E? is the trivial
vector bundle over [0, co) whose fiber over s € [0, c0) consists of the affine-parallel
sections of EM |mx 2z As in [19, Section 4], if Uy is sufficiently far out the end then
we can use Propositions 1 and 2 of the present paper to construct an embedding
of C*([0, 00); EF) into C*(Uy; EM‘U,) whose image consists of elements with
‘bounded energy’ fiberwise restrictions. Let Py be the Hilbert space extension of
orthogonal projection from @Y, C*(T; EM’F,) to @), C([0, 00); EP). By stan-
dard arguments as in [13, Pf. of Proposition 2.1], the essential spectrum of DM equals
that of DM, With respect to the decomposition of the Hilbert space into
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Im(Py) ® Im(I — Py), we write

A B
DQﬁdZ(g D>. (5.1)

The operators 5 and C are bounded, as can be seen by the method of proof of [19,
Proposition 2], replacing the operator d+d* of [19, Pf. of Proposition 2] by
D71 As in [19, Proposition 3], the operator D has vanishing essential spectrum.
Put £=(; J). To prove the theorem, it suffices to show that DY, and £ have
the same essential spectrum. For this, it suffices to show that
(DM, + ki)fl—(ﬁ + ki)™" is compact for some k > 0 [20, Vol. IV, Chapter XIII.4,
Corollary 1].
We use the general identity that

¢ ﬁ>_1: (a—1+a—lﬁ(5—yo«‘1ﬁ)_lw‘l —a-lﬁ(é—v““ﬂ)_l> (52)

7 0 —(5 — yailﬁ)ilyoc’l (5 — yoc’lﬁ)71
provided that « and 6 — ya~!f are invertible. Put
« B\ _ pm . A4k B
(V 5>—Dend+kl—< C Diki) (5.3)

If k is positive then o and d are invertible, with ! being compact. If k is large enough
then || 0~ /%ya~ 107 1/? ||< 1. Writing

§—ya ' B=08"2(1 =67 p5712)01 2, (5.4)

we now see that & — yo! B is invertible. It also follows from (5.4) that (6 — yo™! [f)_1 is
compact. Using (5.2), the theorem follows.
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