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Locally homogeneous metric spaces

A metric space X is locally homogeneous if all x , y ∈ X , there
are neighbourhoods U and V of x and y and an isometric
isomorphism (U, x)→ (V , y).

The metric space X is globally homogeneous if for all x , y ∈ X ,
there is an isometric isomorphism φ : X → X that φ(x) = y .
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Any Riemannian manifold M gets a metric space structure.

Theorem
(Singer 1960) If M is a complete, simply connected Riemannian
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From “The Geometries of 3-Manifolds” by Peter Scott

We will say that a smooth manifold M admits a geometric
structure if M admits a complete, locally homogeneous
Riemannian metric.

It is a theorem of Singer that such a metric on a simply
connected manifold X must be homogeneous, i.e. the isometry
group of X must act transitively.

Thus we can regard the universal cover X of M, together with
its isometry group, as a geometry in the sense of Klein, and we
can sensibly say that M admits a geometric structure modelled
on X . Thurston has classified the 3-dimensional geometries
and there are eight of them.
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Three-dimensional Thurston geometries

S3, R3, H3

S2 × R, H2 × R

Nil, Sol, ˜SL(2,R)

These are all globally homogeneous.

Warning : unlike in two dimensions, not every compact
three-dimensional manifold admits a geometric structure, i.e.
admits a locally homogeneous Riemannian metric.
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Geometrization conjecture

If M is a compact orientable 3-manifold then there is a
canonical way to split M into pieces, using certain embedded
2-spheres and 2-tori. (The collection of 2-spheres and 2-tori
could be empty.)

Conjecture (Thurston, 1982)

The ensuing pieces have geometric structures, i.e. admit locally
homogeneous metrics
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Poincaré conjecture

The geometrization conjecture implies the Poincaré conjecture :

Suppose that the original 3-manifold M is simply connected.

By Van Kampen’s theorem, after we cut along 2-spheres and
add caps, the resulting components {Mi} are still simply
connected. (π1(M) = ?iπ1(Mi).)

Any 2-torus T in the canonical decomposition is supposed to
have π1(T )→ π1(Mi) injective. Since π1(T ) = Z2 and
π1(Mi) = {e}, there can’t be such tori.

The geometrization conjecture now says that each Mi has a
locally homogeneous metric. Since Mi is simply connected and
compact, it must be diffeomorphic to S3.

Then the original 3-manifold M is a “connected sum” of
3-spheres, and is also diffeomorphic to S3.
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Poincaré conjecture

The geometrization conjecture implies the Poincaré conjecture :
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Ricci flow approach to geometrization

Hamilton’s Ricci flow equation

dg
dt

= − 2 Ricg .

This is like a nonlinear heat equation for a Riemannian metric g.

The ordinary heat equation

df
dt

= 4f

acts on functions f on a fixed (compact connected) Riemannian
manifold M. It takes an initial function f0 and evolves it into
something homogeneous (i.e. constant).

Maybe the Ricci flow will evolve an initial Riemannian metric
into something homogeneous.
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Singularities in 3D Ricci flow

Some components may disappear, e.g. a round shrinking
3-sphere.
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Role of singularities

Singularities are good because we know that in general, we
have to cut along some 2-spheres to see the geometric pieces.

They are also problematic because they may cause lots of
topologically trivial surgeries. (Spitting out 3-spheres.)

Remark : the surgeries are done on 2-spheres, not 2-tori.



Role of singularities

Singularities are good because we know that in general, we
have to cut along some 2-spheres to see the geometric pieces.

They are also problematic because they may cause lots of
topologically trivial surgeries. (Spitting out 3-spheres.)

Remark : the surgeries are done on 2-spheres, not 2-tori.



Role of singularities

Singularities are good because we know that in general, we
have to cut along some 2-spheres to see the geometric pieces.

They are also problematic because they may cause lots of
topologically trivial surgeries. (Spitting out 3-spheres.)

Remark : the surgeries are done on 2-spheres, not 2-tori.



Role of singularities

Singularities are good because we know that in general, we
have to cut along some 2-spheres to see the geometric pieces.

They are also problematic because they may cause lots of
topologically trivial surgeries. (Spitting out 3-spheres.)

Remark : the surgeries are done on 2-spheres, not 2-tori.



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)



Perelman’s work

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Done by Perelman.



Perelman’s work

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Done by Perelman.



Perelman’s work

Step 2 : Show that only a finite number of surgeries occur.

From Perelman’s first Ricci flow paper : Moreover, it can be
shown ... that the solution is smooth (if nonempty) from some
finite time on.

From Perelman’s second Ricci flow paper : This is a technical
paper, which is a continuation of [I]. Here we verify most of the
assertions, made in [I, §13]; the exceptions are ... the
smoothness of the solution from some time on, which turned
out to be unjustified, and, on the other hand, irrelevant for the
other conclusions.
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What Perelman actually showed

For any t , one can define a “thick-thin” decomposition of the
time-t manifold (assuming that it’s nonsingular). Then for large
but finite t , the following properties hold.

1. The interior of the thick part carries a complete finite-volume
hyperbolic metric. (This uses Ricci flow.)

2. The thin part is a “graph manifold”. (This doesn’t use Ricci
flow. Stated by Perelman, proofs by Shioya-Yamaguchi,
Morgan-Tian, Bessières-Besson-Boileau-Maillot-Porti and
Kleiner-L.)

3. The interface between the thick and thin parts consists of
“incompressible” 2-tori (Hamilton).

Graph manifolds were known to have a geometric
decomposition. Along with knowledge of the topological effects
of surgeries, this proved the geometrization conjecture.
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Is the intuitive picture correct?

Step 2, on the finiteness of the number of surgeries, was still
open.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

Perelman showed that this is true for the “thick” part. He
showed that its geometry is asymptotically hyperbolic. What
happens on the “thin” part was still open.

Remark : Answering these questions has no topological
implication. We already know that the geometrization
conjecture holds. Rather, they are analytic questions about the
Ricci flow.
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Finiteness of the number of surgeries

Theorem
(Bamler 2013) Starting from any compact Riemannian
3-manifold, Perelman’s Ricci-flow-with-surgery only encounters
a finite number of surgeries.

Furthermore, for large time t, if what’s left is nonempty then the
sectional curvatures decay like O(t−1).

To be more precise, there is a parameter in Perelman’s
Ricci-flow-with-surgery that determines the scale at which
surgery is performed.

The statement is that if this parameter is small enough (which
can always be achieved) then there is a finite number of
surgeries.
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Smooth flows

Corollary
A compact 3-manifold M admits a smooth Ricci flow that exists
for all positive time if and only if π2(M) = π3(M) = 0, i.e. if the
universal cover of M is diffeomorphic to R3.
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Long-time behavior

From Bamler’s result, to understand the long-time behavior of
the Ricci flow, it is enough to restrict to smooth Ricci flows.

The only case that we completely understand is when M admits
some hyperbolic metric. Then from Perelman’s work, for any
initial metric on M, as t →∞ the rescaled Riemannian metric
ĝ(t) approaches the metric on M of constant sectional
curvature − 1

4 .

Question : if M doesn’t admit a hyperbolic metric, what are the
candidate geometries for the long-time behavior?
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Quasistatic solutions

The static solutions of the Ricci flow equation

dg
dt

= − 2 Ricg

are Ricci-flat.

The solutions that are static up to rescaling are Einstein
metrics: Ric = const.g.

The solutions that are static up to rescaling and
diffeomorphisms are Ricci solitons : Ric = const.g + LV g.

Fact : On a compact 3-manifold, any such quasistatic solution
has constant sectional curvature.

Apparent paradox : What happens to the Ricci flow if our
3-manifold doesn’t admit a constant curvature metric?
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Nil geometry

Put NilZ =


1 a b

0 1 c
0 0 1

 : a,b, c ∈ Z

. Define NilR similarly.

Put M = NilR /NilZ. It is the total space of a nontrivial circle
bundle over T 2.

Run the Ricci flow. The base torus expands like O
(

t
1
6

)
. The

circle fibers shrink like O
(

t −
1
6

)
.

With the rescaled metric ĝ(t) = g(t)
t , (M, ĝ(t)) shrinks to a point.
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M fibers over a circle with 2-torus fibers. The monodromy is a
hyperbolic element of SL(2,Z).
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fiber sizes are O
(
t0).

With the rescaled metric, (M, ĝ(t)) approaches a circle.
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˜SL(2,R) geometry

Suppose that M is the unit tangent bundle of a hyperbolic
surface Σ.

Run the Ricci flow. The base surface expands like O
(

t
1
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)
. The

fiber sizes are O
(
t0).

With the rescaled metric, (M, ĝ(t)) approaches the hyperbolic
surface Σ. As the fibers shrink, the local geometry of the total
space becomes more product-like.
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With the rescaled metric, (M, ĝ(t)) approaches the hyperbolic
surface Σ. As the fibers shrink, the local geometry of the total
space becomes more product-like.



Is there a common pattern?

To undo the collapsing, let’s pass to the universal cover. That is,
we are looking at the Ricci flow on a Thurston geometry of type
R3,H3,H2 × R,Sol,Nil or S̃L2(R).

Proposition
(L. 2007) For any initial globally homogeneous metric on such a
Thurston geometry, there is a limiting (blowdown) Ricci flow
solution, which is an expanding soliton. There is one such
soliton for each homogeneity type. It is a universal attractor.

Ric +
1
2
LV g = − 1

2t
g.

A subtlety : the limit is in the pointed sense. The soliton metric
g is homogeneous but the vector field V need not be
homogeneous. Also, the homogeneity type may change in the
limit.
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The limiting solitons

Thurston type Expanding soliton

H3 4 t gH3

H2 × R or ˜SL(2,R) 2 t gH2 + gR

Sol e−2z dx2 + e2z dy2 + 4 t dz2

Nil
1

3t
1
3

(
dx +

1
2

ydz − 1
2

zdy
)2

+ t
1
3

(
dy2 + dz2

)
R3 gR3



A general convergence theorem

Theorem
(L. 2010) Suppose that (M,g(t)) is a Ricci flow on a compact
three-dimensional manifold, that exists for t ∈ [0,∞). Suppose
that the sectional curvatures are O

(
t−1) in magnitude, and the

diameter is O(
√

t). Then the pullback of the Ricci flow to M̃
approaches one of the homogeneous expanding solitons.
Remarks :

I By Bamler’s result, the sectional curvatures are always
O
(
t−1).

I The hypotheses imply that M admits a locally
homogeneous metric.

Conjecture
For a long-time 3D Ricci flow, the diameter is O(

√
t) if and only

if M admits a locally homogeneous metric.
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A more refined result

What happens to the Ricci flow on a 3-torus?

Theorem
(L.-Sesum 2014) Let g0 be a warped product metric on T 3, with
respect to the circle fibering T 3 → T 2 and any Riemannian
metric on T 2.

Then under the Ricci flow, g(t) approaches a flat metric g∞ on
T 3 exponentially fast.

Question : is this true for all initial metrics on T 3?
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3D Ricci flow since Perelman

Homogeneous spaces and the geometrization conjecture

Geometrization conjecture and Ricci flow

Finiteness of the number of surgeries

Long-time behavior

Flowing through singularities



Can one flow through a singularity?

Is there a natural way to extend the flow beyond the singularity?
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Surgery scale

In the definition of Ricci flow with surgery, there is a function
h(t) so that the time-t surgeries are done on 2-spheres whose
radius is approximately h(t).

From Perelman’s first Ricci flow paper : It is likely that by
passing to the limit in this construction one would get a
canonically defined Ricci flow through singularities, but at the
moment I don’t have a proof of that.
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A toy model

dx
dt

= x2, x(0) = 1.

Try to solve it on a computer. Get x(t) = 1
1−t , as long as t < 1.

How can we extend this beyond the singularity at t = 1?
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Regularization

Regularize the equation. For ε 6= 0, consider

dx
dt

= (x + iε)2, x(0) = 1.

Its solution

xε(t) =
1 + iεt − ε2t
1− t − iεt

is defined for all t .

If t 6= 1 then

lim
ε→0

xε(t) =
1

1− t
.

This gives a way to extend the solution beyond (or around)
t = 1.
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Analogy

dx
dt

= x2 −→ dg
dt

= −2 Ricg

dx
dt

= (x + iε)2 −→ Ricci-flow-with-surgery algorithm

ε −→ Surgery parameter h(t)

xε(t) −→ Ricci-flow-with-surgery solution

x(t) =
1

1− t
−→ A Ricci flow through singularities (?)



Sublimits of Ricci flows with surgery

Theorem
(Kleiner-L. 2014) Let hi : [0,∞)→ R be a sequence of
decreasing continuous functions that tend uniformly to zero.

Given an initial compact Riemannian 3-manifold, let gi(t) be the
ensuing Ricci flow with surgery, as constructing using the
surgery scale hi(t).

Then after passing to a subsequence, there is a limit

lim
i→∞

gi(t) = g∞(t). (3)
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Spacetime of a flow through a neckpinch singularity



Idea of the proof

There’s a theorem of Hamilton that lets you take convergent
subsequences of Ricci flow solutions, but unfortunately it
doesn’t apply in our case. Two ideas :

1. Look at the spacetime of a Ricci-flow-with-surgery. It is a
4-manifold with boundary. Restrict to its interior X . The latter is
equipped with a time function t : X → [0,∞) and a Riemannian
metric dt2 + g(t). Take limits of such spacetimes.

2. In 3D Ricci flow, the scalar curvature R controls the local
geometry, i.e. the curvature tensor and the injectivity radius
(Hamilton-Ivey, Perelman). Fix R <∞. Consider the sublevel
set

X≤R = {x ∈ X : R(x) ≤ R}.

Take a sublimit of these regions as the surgery parameter goes
to zero. Then take a sublimit as R →∞.
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Some properties of the limit

The limiting spacetimeM∞ is a smooth 4-manifold equipped
with a time function t :M∞ → R, a time vector field ∂t and a
Riemannian metric which can locally be written as dt2 + g∞(t).

Some structural properties of the limit :

1. M∞ satisfies the Hamilton-Ivey pinching condition. It is
κ-noncollapsed and satisfies the r -canonical neighborhood
assumption.

2. The scalar curvature function R : M∞ → R is bounded
below, and is a proper function on any time slice.

3. The time slices may not be complete, but the quasiparabolic
metric (1 + R2) dt2 +

√
1 + R2 g∞(t) is complete and has

bounded curvature.

One can study such singular Ricci flows in their own right.
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We still have a lot to learn.
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