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Abstract We show that three-dimensional homogeneous Ricci flow solutions that
admit finite-volume quotients have long-time limits given by expanding solitons. We
show that the same is true for a large class of four-dimensional homogeneous solu-
tions. We give an extension of Hamilton’s compactness theorem that does not assume
a lower injectivity radius bound, in terms of Riemannian groupoids. Using this, we
show that the long-time behavior of type-III Ricci flow solutions is governed by the
dynamics of an R

+-action on a compact space.

1 Introduction

A type-III Ricci flow solution is a 1-parameter family {g(t)}t∈(0,∞) of Riemannian
metrics on a manifold M that satisfy the Ricci flow equation and have sectional cur-
vatures that decay at least as fast as t−1, i.e. supt∈(0,∞) t ‖ Riem(gt ) ‖∞ < ∞.

In three dimensions Perelman has given important information about the long-time
behavior of Ricci flow solutions [22–24], which is especially relevant for topological
purposes, but the precise behavior is largely unknown. All known compact three-
dimensional Ricci flow solutions that exist for all t ∈ (0,∞) are type-III, but it is not
known whether this is always the case. Hamilton had shown earlier that the geometri-
zation conjecture holds for such manifolds [14].

This paper is concerned with the long-time behavior of n-dimensional Ricci flow
solutions, which we assume to be type-III. Given a Ricci flow solution g(·) and
a parameter s > 0, there is another Ricci flow solution gs(·) given by gs(t) =
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628 J. Lott

s−1 g(st). The time interval [a, b] for gs corresponds to the time interval [sa, sb] for g.
Understanding the behavior of g(t) for large t amounts to understanding the behavior
of gs(·) as s → ∞.

We show that in many examples there is a limit as s → ∞ of gs(·), given by an
expanding soliton g∞(·). An expanding soliton has the scaling property that g∞(t)
differs from t g∞(1) only by the action of a diffeomorphism ηt . That the limit metric
is expanding by the factor t may seem contradictory to the fact that there are compact
Ricci flow solutions that collapse, so we must explain in what sense there is a limit
and where it lives.

For concreteness, let us first discuss the case of a locally homogeneous finite-
volume 3-manifold. The lifted flow g̃(·) on the universal cover M has been extensively
studied; see Isenberg–Jackson [15] and Knopf-McLeod [18]. In order to obtain a limit
g̃∞(·) = lims→∞ g̃s(·) we use pointed convergence of Ricci flows. Roughly speaking,
instead of comparing metrics on M with respect to a fixed coordinate system, we allow
ourselves to transform the metric g̃s(t) by a s-dependent diffeomorphism. In effect,
we are choosing coordinates based on what an observer inside of the manifold sees.

Theorem 1.1 If g̃(·) is a homogeneous Ricci flow solution on a three-dimensional
simply-connected homogeneous manifold that admits finite-volume quotients, which
exists for all t ∈ (0,∞), then there is a limit Ricci flow g̃∞(·) = lims→∞ g̃s(·) which
is an expanding soliton solution.

For each of the three-dimensional homogeneous classes there is a unique limit sol-
iton g̃∞(·). It may be in a different homogeneity class than the initial metric. The
expanding solitons that we find are of type R

3, R × H2, H3, Sol and Nil. If we start

with an initial metric of type ˜Isom+(R2) or ˜SL(2, R) then we end up with an expand-
ing soliton of type R

3 or R × H2, respectively. In Sect. 3.4 we extend Theorem 1.1 to
the four-dimensional homogeneous metrics considered by Isenberg–Jackson–Lu [16].
Again we find that there are limits g̃∞(·) = lims→∞ g̃s(·) given by expanding solitons.

In these examples, the metric g̃∞(t) gives M the structure of a Riemannian submer-
sion whose fiber is a nilpotent Lie group and whose holonomy preserves the affine-flat
structure of the fiber. The diffeomorphisms ηt act fiberwise by means of Lie group auto-
morphisms. This is related to the Nil-structure described by Cheeger–Fukaya–Gromov
[4] for collapse with bounded sectional curvature, and suggests that the expanding sol-
itons which are relevant for type-III solutions may have a special structure. Based on
this, in Sect. 4 we consider the expanding soliton equation in the simplest case of a
Nil-structure, namely when a manifold M has a free isometric R

N -action.

Theorem 1.2 Let M be the total space of a flat R
N -vector bundle over a Riemannian

manifold B, with flat Riemannian metrics on the fibers. Suppose that the fiberwise
volume forms are preserved by the flat connection. Let V (t) be the fiberwise radial
vector field 1

2t

∑N
i=1 xi ∂

∂xi
. Then the expanding soliton equation on M becomes the

equation for a harmonic map G : B → SL(N , R)/ SO(N ) along with the equation

Rαβ − 1

4
Tr

(

G−1 G,α G−1 G,β

)

+ 1

2t
gαβ = 0 (1.3)

on B.
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On the long-time behavior of type-III Ricci flow solutions 629

In writing (1.3) we think of G as taking value in positive-definite symmetric
(N × N )-matrices. Using this result, we give relevant examples of expanding sol-
itons.

The results mentioned so far mostly concern limit Ricci flows on noncompact
manifolds, which may arise from Ricci flows on compact manifolds upon taking
the universal cover. One would also like to construct a limit flow for the compact
manifold. Hamilton’s compactness theorem gives sufficient conditions for a sequence
{gk(·)}∞k=1 of pointed Ricci flow solutions to have a convergent subsequence [13].
However, in order to apply it one needs a uniform lower injectivity radius bound
injgk (t0)(pk) ≥ i0 > 0. In our case this precludes the collapsing situation. In
order to obtain a limit flow in the collapsing case one must consider Ricci flow on a
larger class of spaces than smooth manifolds. One might try to define Ricci flow on a
Gromov–Hausdorff limit space, but this is not very convenient. Instead we will allow
the limit Ricci flow to live on a space which in a sense has the same dimension
as the original manifold but which takes the collapsing symmetry into account. A
convenient language is that of Riemannian groupoids. A Riemannian groupoid is
an étale groupoid equipped with an invariant Riemannian metric. Riemannian grou-
poids have a history in foliation theory, where they are used to describe the trans-
verse structure of Riemannian foliations; see Haefliger [12] and references therein.
More recently a similar notion was introduced by Petrunin and Tuschmann under
the name “megafold” [25, Appendix], with application to collapsing in Riemann-
ian geometry. Two definitions were given in [25, Appendix], one in terms of topoi
and one in terms of pseudogroups. We prefer the Riemannian groupoid language,
but all three definitions are essentially equivalent. We give an extension of Ham-
ilton’s compactness theorem to the case when there is no positive lower bound on
the injectivity radius. The limit Ricci flow will not be on a manifold but rather on a
groupoid.

Theorem 1.4 Let {(Mi , pi , gi (·))}∞i=1 be a sequence of Ricci flow solutions on pointed
n-dimensional manifolds (Mi , pi ). We assume that there are numbers −∞ ≤ A < 0
and 0 < � ≤ ∞ so that

1. The Ricci flow solution (Mi , pi , gi (·)) is defined on the time interval (A,�).
2. For each t ∈ (A,�), gi (t) is a complete Riemannian metric on Mi .
3. For each compact interval I ⊂ (A,�) there is some K I < ∞ so that | Riem(gi )

(x, t)| ≤ K I for all x ∈ Mi and t ∈ I .

Then after passing to a subsequence, the Ricci flow solutions gi (·) converge smoothly
to a Ricci flow solution g∞(·) on a pointed n-dimensional étale groupoid

(

G∞, Ox∞
)

,
defined again for t ∈ (A,�).

A result in this direction was proven by Glickenstein [8] who constructed a limit
flow on a ball in a single tangent space; groupoids give a way of piecing these limits
together for various tangent spaces. Using the results of Sect. 3.3, we show that if g(·)
is a Ricci flow on a finite-volume locally homogeneous three-dimensional manifold,
that exists for all t ∈ ∞, then lims→∞ gs(·) exists and is an expanding soliton on a
three-dimensional étale groupoid.
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630 J. Lott

Given K > 0, the space of pointed n-dimensional Ricci flow solutions on
manifolds with supt∈(0,∞) t ‖ Riem(gt ) ‖∞ ≤ K is precompact among Ricci flows
on pointed n-dimensional étale groupoids. The closure Sn,K has an R

+-action that
sends g to gs . Understanding the long-time behaviour of n-dimensional type-III Ricci
flow solutions translates to understanding the dynamics of the R

+-action on Sn,K ,
which seems to be an interesting problem.

The organization of the paper is as follows. In Sect. 2 we give some basic results
about expanding solitons. In Sect. 3 we consider the long-time behavior of Ricci flow
on homogeneous spaces of dimension one through four. In Sect. 4 we look at the
expanding soliton equation on a space with a free isometric R

N -action and reduce it
to the harmonic-Einstein equations. In Sect. 5 we recall basic facts about Riemannian
groupoids and give the extension of Hamilton’s compactness theorem. More detailed
descriptions are at the beginnings of the sections.

I am grateful to Peng Lu for helpful discussions and for detailed explanations of
his joint work in [16].

2 Expanding solitons

In this section we recall some basic properties of expanding solitons. We also recall
the definition of pointed convergence of a sequence of Ricci flows. We define the
rescaling gs(·) of a Ricci flow solution g(·) defined for t ∈ (0,∞). We show that if
{gs(·)}s>0 has a limit as s → ∞ then the limit g∞(·) is an expanding soliton.

2.1 Definitions

An expanding soliton on a manifold M is a special type of Ricci flow solution on a
time interval (t0,∞). For convenience, we take t0 = 0. Then the equation for the
time-dependent Riemannian metric g(t) and the time-dependent vector field V (t) is

Ric + LV g

2
+ g

2t
= 0. (2.1)

Also, V (t) = 1
t V (1). The corresponding Ricci flow is given by

g(t) = t η∗
t g(1), (2.2)

where {ηt }t>0 is the 1-parameter family of diffeomorphisms generated by {V (t)}t>0,
normalized by η1 = Id. (If M is noncompact then we assume that V is such that we can
solve for the 1-parameter family.) Conversely, given a solution to the time-independent
equation

Ric + LV g

2
+ g

2
= 0, (2.3)

put V (t) = 1
t V , solve for {ηt }t>0 and put g(t) = t η∗

t g. Then (g(t), V (t)) satisfies
(2.1).
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On the long-time behavior of type-III Ricci flow solutions 631

If (M1, g1(·)) and (M2, g2(·)) are two expanding soliton solutions, with associated
diffeomorphisms {η(1)

t }t>0 and {η(2)
t }t>0, then the product flow (M1 × M2, g1(·) +

g2(·)) is an expanding soliton solution with ηt =
(

η
(1)
t , η

(2)
t

)

.

Let g(·) be an expanding soliton on M . Suppose that � is a discrete group that acts
on M freely, properly discontinuously and isometrically (with respect to the metrics
g(·)). Then there is an quotient Ricci flow solution g(·) on M/�. If � also preserves
the vector fields V (·) then g(·) is an expanding soliton, but this does not have to be
the case.

2.2 Expanding solitons as long-time limits

Let (M, p) be a connected manifold with a basepoint p. Let {g(t)}t∈(0,∞) be a Ricci
flow solution on M . We assume that for each t > 0, the pair (M, g(t)) is a com-
plete Riemannian manifold. If {(Mi , pi , gi (·))}∞i=1 is a sequence of such Ricci flow
solutions then there is a notion of pointed convergence to a limit Ricci flow solution
(M∞, p∞, g∞(·)), as considered in [13]. In our case, this means that one has

1. A sequence of open subsets {U j }∞j=1 of M∞ containing p∞, so that any compact
subset of M∞ eventually lies in all U j , and

2. Time-independent diffeomorphisms φi, j : U j → Vi, j from U j to open subsets
Vi, j ⊂ Mi , with φi, j (p∞) = pi , so that

3. For all j , limi→∞ φ∗
i, j gi (·) = g∞(·)∣∣U j

smoothly on U j × [ j−1, j].
The compactness theorem of [13] implies the following. Suppose that

1. For each compact interval I ⊂ (0,∞) there is some K I < ∞ so that | Riem |(x, t)
≤ K I for all x ∈ Mi and t ∈ I .

2. There are some t0 > 0 and i0 > 0 so that for all i , injgi (t0)(pi ) ≥ i0.

Then {gi (·)}∞i=1 has a convergent subsequence.
Given a 1-parameter family {M, p, gs(·)}s>0 of Ricci flow solutions, there is an

analogous notion of convergence as s → ∞, i.e. for any sequence {s j }∞j=1 converg-
ing to infinity the sequence {M, p, gs j (·)}∞j=1 converges and the limit is independent
of the choice of {s j }∞j=1. Hence it makes sense to talk about having a limit solution
lims→∞(M, p, gs(·)) = (M∞, p∞, g∞(·))

Now suppose that we have a type-III Ricci flow solution (M, p, g(·)), meaning that
supt∈(0,∞) t ‖ Riem(gt ) ‖∞ < ∞. For any s > 0, there is a rescaled Ricci flow
solution (M, p, gs(·)) given by gs(t) = s−1 g(st). We will consider the convergence
or subconvergence of (M, p, gs(·)) as s → ∞. It is important to note that although all
of the Ricci flow solutions (M, p, gs(·)) live on the same manifold M , the notion of
convergence is not that of smooth metrics on M . Instead, we are interested in pointed
convergence as defined above.

Lemma 2.4 If lim inf t→∞ t− 1
2 injg(t)(p) > 0 then any sequence {si }∞i=1 converg-

ing to infinity has a subsequence, which we again denote by {si }∞i=1, so that limi→∞
(M, p, gsi (·)) = (M∞, p∞, g∞(·)) for some Ricci flow solution (M∞, p∞, g∞(·))
defined for t ∈ (0,∞).

123



632 J. Lott

Proof This is an immediate consequence of Hamilton’s compactness theorem. 	

We now consider what happens if there actually is a limit.

Proposition 2.5 If lims→∞(M, p, gs(·)) = (M∞, p∞, g∞(·)) then (M∞, g∞(·)) is
an expanding soliton.

Proof Let M denote the space of pointed Riemannian metrics on M∞, with the
topology of smooth convergence on compact subsets. The Ricci flow solution g∞(·)
defines a smooth curve in M. Given t, α > 0, we can formally write (modulo diffeo-
morphisms)

g∞(αt) = lim
s→∞ s−1 g(sαt) = lim

s→∞ α s−1 g(st) = α g∞(t). (2.6)

More precisely, for any R > 0 and ε > 0 there is a pointed (= basepoint-preserving)
diffeomorphism φR,ε from the time-αt ball BR(p∞) ⊂ M∞ to a subset VR,ε ⊂ M∞
such that αφ∗

R,ε g∞(t)
∣

∣

VR,ε
is ε-close in the smooth topology to g∞(αt)

∣

∣

BR(p∞)
. Taking

the limit of an appropriate sequence of the φR,ε’s, we obtain a pointed diffeomorphism
φ : M∞ → M∞ such that α φ∗g∞(t) = g∞(αt).

Let Diff p∞(M∞) denote the pointed diffeomorphisms of M∞, again with the
topology of smooth convergence on compact subsets. We have shown that for all
t > 0, the metric t−1 g∞(t) lies in the Diff p∞(M∞)-orbit of g∞(1). As in [2], the
Diff p∞(M∞)-orbit of g∞(1) is the image of a proper embedding of the smooth infinite-
dimensional manifold Diff p∞(M∞)/ Isom p∞(g∞(1)) in M. (Strictly speaking the
paper [2] deals with compact manifolds.) Hence the smooth curve t → t−1 g∞(t)
defines a smooth curve in Diff p∞(M∞)/ Isom p∞(g∞(1)), which we can lift to a
smooth curve in Diff p∞(M∞).

Thus we have found a smooth 1-parameter family of pointed diffeomorphisms
{ηt }t>0 so that (2.2) is satisfied for g∞(·). Letting {V (t)}t>0 be the generator of
{ηt }t>0, equation (2.1) is satisfied. Substituting (2.2) into (2.1) gives t LV (t)g∞(1) =
LV (1)g∞(1). Hence we may assume that V (t) = 1

t V (1) and redefine {ηt }t>0. This
proves the proposition. 	


3 Homogeneous solutions

In this section we consider the Ricci flow on simply-connected homogeneous
Riemannian manifolds of dimension one through four that admit finite-volume quo-
tients and exist for all t ∈ (0,∞). In dimensions one through three we show that in
all cases there is a limit Ricci flow solution g∞(·) = lims→∞ φ∗

s gs(·) given by an
expanding soliton. We compute the soliton metric explicitly. In dimension four we
show that this is also true for the homogeneous metrics considered in [16]. The main
task in all of these cases is to construct appropriate diffeomorphisms φs .

A pointed Gromov–Hausdorff limit of a sequence of homogeneous manifolds is still
homogeneous [9, Corollary on p. 66]. Hence if (M, p, g(·)) is a homogeneous Ricci
flow solution then assuming that the limit exists, we know that (M∞, p∞, g∞(·)) =
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On the long-time behavior of type-III Ricci flow solutions 633

lims→∞(M, p, gs(·)) is also homogeneous. However, the isometry group may change
in the limit.

We now examine the long-time limits for homogeneous Ricci flow solutions of
dimensions one through four. The manifolds that we consider are simply-connected
homogeneous spaces M = G/H , where G is a transitive group of diffeomorphisms
of M and H is the isotropy subgroup, assumed to be compact. We will assume that
G is connected and unimodular, i.e. has a bi-invariant Haar measure. This will be the
case if M admits finite-volume quotients. We take the basepoint p to be the identity
coset eH . The Riemannian metrics that we consider on G/H will be left-invariant.

Given the manifold M , there are various groups G ⊂ Diff(M) that act transitively
on M with compact isotropy group. We wish to take minimal such groups, i.e. no
proper subgroup of G acts transitively on M . This allows for the widest class of Ricci
flow solutions. However, we must note that a compact quotient of M may be of the
form �\M where � is a freely-acting discrete subgroup of some larger such group G ′
containing G. For this reason, for the purposes of the geometrization conjecture one
generally takes G to be a maximal element among the groups of diffeomorphisms of
M that act transitively with compact isotropy group [27, Sect. 5], [28, Chap. 3].

Given a homogeneous Ricci flow solution g(·), the question is whether we can find
pointed diffeomorphisms {φs}s>0 so that there is a limit Ricci flow solution g∞(·) =
lims→∞ φ∗

s gs(·), where gs(t) = 1
s g(st). By Proposition 2.5, the limit will necessarily

be an expanding homogeneous soliton solution.

Remark 3.1 We will see examples of expanding solitons on Lie groups G with the
property that the rescaling diffeomorphisms {ηt }t>0 arise from a 1-parameter group
{at }t>0 of automorphisms of G, by ηt = at−1 . If so, let � be a discrete subgroup of
G. Then �\G with the quotient metric g(t) is isometric to the result of quotienting
(G, tg(1)) on the left by the subgroup at−1(�). Thus we can basically either think of
the metric as evolving, or of the discrete group as evolving.

3.1 One dimension

The manifold M is R, with (G, H) = (R, {e}). The basepoint is 0 ∈ R. The Ricci
flow solution g(t) is constant in t , equaling a flat metric g0. Then gs(t) = s−1 g0.
Let φs be multiplication by

√
s on R. Then φ∗

s gs(t) = g0. Hence there is a limit as
s → ∞ of φ∗

s gs(·) given by g∞(t) = g0. We note that this is an expanding soliton

solution, with ηt being multiplication on R by t− 1
2 .

The quotient S1 = Z\R has the constant Ricci flow solution (S1, g(t)). We can
consider (S1, g(t)) to be isometric to the quotient of (R, tg0) by at−1(Z), where at is
the automorphism of R given by multiplication by

√
t .

3.2 Two dimensions

The possible homogeneous spaces are S2, R
2 and H2. Their pairs (G, H) are (SO(3),

SO(2)), (R2, {e}) and (Isom+(H2), SO(2)). The Ricci flow on S2 has finite extinction
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634 J. Lott

time, so we do not consider it further. The case R
2 is a product case, and so has already

been covered.
For the H2 case, let g0 be a complete constant-curvature metric on the plane with

Ric (g0) = −cg0 for some c > 0. The Ricci flow solution starting at g0 is given by
g (t) = (1 + 2ct) g0. Then gs(t) = s−1 (1 + 2cst) g0. Taking φs = Id, there is a limit
as s → ∞ of φ∗

s gs(·), given by g∞(t) = 2ctg0. This is independent of c and is an
expanding soliton solution with V = 0.

3.3 Three dimensions

A homogeneous Ricci flow on S3 or S2 × R has finite extinction time, so we do not
consider it further. The homogeneous spaces R

3 and H2 × R are product cases. By
the previous discussion, after appropriate rescaling their Ricci flows have expanding
soliton limits.

We now list the cases M = G/H by the group G.

3.3.1 G = Isom+(H3)

The group G is the connected component of the identity in SO(3, 1). The subgroup H
is SO(3). Let g0 be a complete constant-curvature metric on R

3 with Ric (g0) = −cg0
for some c > 0. The Ricci flow solution starting at g0 is given by g (t) = (1 + 2ct) g0.
Then gs(t) = s−1 (1 + 2cst) g0. Taking φs = Id, there is a limit as s → ∞ of φ∗

s gs(·),
given by g∞(t) = 2ctg0. This is independent of c and is an expanding soliton solution
with V = 0.

The remaining cases have trivial isotropy group H , i.e. M = G. It is known that M
admits a Milnor frame, i.e. a left-invariant orthonormal frame field {X1, X2, X3} so
that [Xi , X j ] = ∑

k ck
i j Xk with ck

i j vanishing unless i , j and k are mutually distinct.
In this basis, the nonzero components of the curvature tensor are of the form Ki ji j .
If {θ1, θ2, θ3} is the dual orthonormal coframe then the Ricci flow solution can be
written in the form

g (t) = A (t)
(

θ1
)2 + B (t)

(

θ2
)2 + C (t)

(

θ3
)2

. (3.2)

We write A (0) = A0, B (0) = B0 and C (0) = C0.

In what follows, we use computations from [15] and [18]. We note that the metrics
in [15] and [18] different by a constant. Our normalizations will be those of [15].
However, we will use a Milnor basis as in [18]. The simpler solutions are listed first.

3.3.2 G = Sol

The group G is a semidirect product R
2
˜×R, where R acts on R

2 by z · (x, y) =
(ez x, e−z y). The subgroup H is trivial. After a change of basis, the Lie algebra rela-
tions are [X2, X3] = X1, [X3, X1] = 0 and [X1, X2] = − X3. The R

2-factor is
spanned by X1 and X3, and the R-factor is spanned by X2.
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On the long-time behavior of type-III Ricci flow solutions 635

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2, (3.3)

where

dθ1 = − θ2 ∧ θ3, dθ2 = 0, dθ3 = θ1 ∧ θ2. (3.4)

The sectional curvatures are

K12 = (A − C)2 − 4C2

4ABC

K23 = (A − C)2 − 4A2

4ABC
(3.5)

K31 = (A + C)2

4ABC
.

The Ricci flow is given by

d A

dt
= C2 − A2

BC

d B

dt
= (A + C)2

AC
(3.6)

dC

dt
= A2 − C2

AB
.

From [18] the large-t asymptotics are limt→∞ A(t) = limt→∞ C(t) = √
A0C0

and B(t) ∼ 4t . Then

gs(t) ∼ s−1
√

A0C0

(

(θ1)2 + (θ3)2
)

+ 4t (θ2)2. (3.7)

We take coordinates (x, y, z) for G in which θ1 + θ3 = e−z dx , θ1 − θ3 = ez dy
and θ2 = dz. Define diffeomorphisms φs : R

3 → G by

φs(x, y, z) =
(

(A0C0)
− 1

4
√

sx, (A0C0)
− 1

4
√

sy, z
)

. (3.8)

Then there is a limit as s → ∞ of φ∗
s gs(·), given by

g∞(t) = (θ1)2 + (θ3)2 + 4t (θ2)2. (3.9)

This is an expanding soliton solution with ηt (x, y, z) =
(

t− 1
2 x, t− 1

2 y, z
)

. Its geome-

try is a Sol-geometry. We note that it is not a gradient expanding soliton. The equation
for the soliton also appeared in [1].
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Example 3.10 An example of a Sol-manifold is given by the total space of a T 2-bundle
over S1 whose monodromy is a hyperbolic element of SL(2, Z). Geometrically, the
long-time asymptotics of its Ricci flow amount to shrinking the T 2 fiber by a factor
of

√
t and then multiplying the overall metric by t .

3.3.3 Nil

The group G is a nontrivial central R-extension of R
2. The subgroup H is trivial.

The Lie algebra relations are [X2, X3] = − X1 and [X3, X1] = [X1, X2] = 0. The
R-factor is spanned by X1, and the R

2-factor is spanned by X2 and X3.
The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2, (3.11)

where

dθ1 = θ2 ∧ θ3, dθ2 = 0, dθ3 = 0. (3.12)

The sectional curvatures are

K12 = A

4BC

K23 = − 3A

4BC
(3.13)

K31 = A

4BC
.

The Ricci flow is given by

d A

dt
= − A2

BC
d B

dt
= A

C
(3.14)

dC

dt
= A

B
.

The solution is

A = A0

(

1 + 3A0

B0C0
t

)−1/3

B = B0

(

1 + 3A0

B0C0
t

)1/3

(3.15)

C = C0

(

1 + 3A0

B0C0
t

)1/3

.
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Then

gs (t) = s−1 A0

(

1 + 3A0

B0C0
st

)−1/3 (

θ1
)2 + s−1 B0

(

1 + 3A0

B0C0
st

)1/3 (

θ2
)2

+s−1C0

(

1 + 3A0

B0C0
st

)1/3 (

θ3
)2 ∼

(

A2
0 B0C0

3

)1/3

s− 4
3 t−

1
3

(

θ1
)2

+
(

3A0 B2
0

C0

)1/3

s− 2
3 t

1
3

(

θ2
)2 +

(

3A0C2
0

B0

)1/3

s− 2
3 t

1
3

(

θ3
)2

. (3.16)

We take coordinates (x, y, z) for G in which θ1 = dx + 1
2 y dz − 1

2 z dy, θ2 = dy
and θ3 = dz. Define diffeomorphisms φs : R

3 → G by

φs(x, y, z)=
⎛

⎝

(

9A2
0 B0C0

)−1/6
s2/3x,

(

3A0 B2
0

C0

)−1/6

s1/3 y,

(

3A0C2
0

B0

)−1/6

s1/3z

⎞

⎠ .

(3.17)

Then there is a limit as s → ∞ of φ∗
s gs(·), given by

g∞(t) = 1

3t1/3

(

θ1
)2 + t1/3

(

(

θ2
)2 +

(

θ3
)2

)

. (3.18)

This is an expanding soliton solution with ηt (x, y, z) =
(

t− 2
3 x, t− 1

3 y, t− 1
3 z

)

. Its

geometry is a Nil-geometry. The equation for the soliton also appeared in [1] and,
implicitly, in [19].

Example 3.19 If � is a lattice in Nil, consider any locally homogeneous Ricci flow g(·)
on M = �\ Nil. As t → ∞, (M, g(t)) will approach the quotient of (Nil, tg∞(1))

by the subgroup at−1(�′), where at is the automorphism of Nil given by at (x, y, z) =
(

t
2
3 x, t

1
3 y, t

1
3 z

)

and �′ is a subgroup of Nil that is isomorphic to �.

3.3.4 G = ˜Isom+(R2)

The group G is the universal cover of the orientation-preserving isometries of R
2. It is

a semidirect product R
2
˜×R, where R acts on R

2 by rotation. The subgroup H is trivial.
The Lie algebra relations are [X2, X3] = X1, [X3, X1] = X2 and [X1, X2] = 0. The
R

2-factor is spanned by X1 and X2, and the R-factor is spanned by X3.
The compact quotients of G, as smooth manifolds, admit flat metrics. Because

of this, the group G is generally not considered with regard to the geometrization
conjecture. Nevertheless, it is relevant for homogeneous Ricci flow solutions.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2, (3.20)
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where

dθ1 = − θ2 ∧ θ3, dθ2 = − θ3 ∧ θ1, dθ3 = 0. (3.21)

The sectional curvatures are

K23 = (A + B)2 − 4A2

4ABC

K31 = (A + B)2 − 4B2

4ABC
(3.22)

K12 = (A − B)2

4ABC
.

The Ricci flow is given by

d A

dt
= − A2 − B2

BC

d B

dt
= − B2 − A2

AC
(3.23)

dC

dt
= (A − B)2

AB
.

From [18], there are limits limt→∞ A(t) = limt→∞ B(t) = A∗ and limt→∞
C(t) = C∗, where A∗ = √

A0 B0 and C∗ = C0
2

(√

A0
B0

+
√

B0
A0

)

. Then

gs (t) ∼ s−1 A∗
(

(

θ1
)2 +

(

θ2
)

)2

+ s−1 C∗
(

θ3
)2

. (3.24)

Define a diffeomorphism φs : R
3 → G by

φs(x, y, z) = αs(x, y) βs(z), (3.25)

where αs(x, y) = e
√

s(x X1+y X2) and βs(z) = e
√

sz X3 . Letting h−1dh denote the Ma-
urer–Cartan form on G, we have

φ∗
s (h−1dh) = β−1

s α−1
s dαs βs + β−1

s dβs = √
s β−1

s (dx X1 + dy X2) βs

+√
s dz X3 = √

s
(

cos(
√

sz)dx + sin(
√

sz)dy
)

X1

+ √
s
(− sin(

√
sz)dx + cos(

√
sz)dy

)

X2 + √
s dz X3. (3.26)
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If ·i denotes the Xi -component of an element of the Lie algebra then

φ∗
s gs (t) = s−1 A(st)

(

φ∗
s (h−1dh)

)2

1
+ s−1 B(st)

(

φ∗
s (h−1dh)

)2

2

+s−1 C(st)
(

φ∗
s (h−1dh)

)2

3
. (3.27)

We see that there is a limit as s → ∞ of φ∗
s gs (·), given by

g∞(t) = A∗ (dx2 + dy2) + C∗ dz2. (3.28)

This is a flat metric on R
3 and, as we have seen, is an expanding soliton solution.

3.3.5 ˜SL (2, R)

The group G is the universal cover of SL(2, R). The subgroup H is trivial. The Lie
algebra relations are [X2, X3] = − X1, [X3, X1] = X2 and [X1, X2] = X3.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2, (3.29)

where

dθ1 = θ2 ∧ θ3, dθ2 = − θ3 ∧ θ1, dθ3 = − θ1 ∧ θ2. (3.30)

The sectional curvatures are

K23 = (B − C)2 − A(3A + 2B + 2C)

4ABC

K31 = [A − (B − C)]2 − 4B(B − C)

4ABC
(3.31)

K12 = [A + (B − C)]2 + 4C(B − C)

4ABC
.

The Ricci flow is given by

d A

dt
= (B − C)2 − A2

BC
d B

dt
= (C + A)2 − B2

AC
(3.32)

dC

dt
= (A + B)2 − C2

AB
.
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From [18], the large-t asymptotics are given by limt→∞ A(t) = A∗ > 0, B(t) ∼ 2t
and C(t) ∼ 2t . Then

gs(t) ∼ s−1 A∗
(

θ1
)2 + 2t

(

(

θ2
)2 +

(

θ3
)2

)

. (3.33)

In order to find appropriate diffeomorphisms φs to extract a limit, we use a bit

of the geometry of ˜SL(2, R). Consider the R-subgroup of ˜SL(2, R) generated by

X1. For any t > 0, the metric on ˜SL(2, R) given by (3.33) is the total space of a

Riemannian submersion π : ˜SL(2, R) → R\ ˜SL(2, R), with R\ ˜SL(2, R) having
a metric of constant negative curvature. Furthermore, the fibers of the submersion
are totally geodesic lines. The idea is to construct something like Fermi coordinates

around the fiber through the identity element e ∈ ˜SL(2, R).

Lemma 3.34 Any element h ∈ ˜SL(2, R) can be written uniquely as h =ea X2+bX3 ecX1

for some a, b, c ∈ R
3.

Proof Choosing the metric
(

θ1
)2 + (

θ2
)2 + (

θ3
)2

on ˜SL(2, R) for concreteness, one

can check that for any a, b ∈ R, the curve v → eavX2+bvX3 is a geodesic in ˜SL(2, R).

Clearly it is horizontal at the identity element e ∈ ˜SL(2, R). Hence it is horizontal

for all v and represents the horizontal lift of a geodesic in R\ ˜SL(2, R). Now given an

element h ∈ ˜SL(2, R), consider the unique geodesic γ : [0, 1] → R\ ˜SL(2, R) with
γ (0) = π(e) and γ (1) = π(h). Lift it to a horizontal geodesic γ̂ (v) = eavX2+bvX3 .
As π(γ̂ (1)) = π(h), there is a unique c ∈ R so that h = ecX1 γ̂ (1).

This shows that h can be written as uniquely as ecX1 ea X2+bX3 for some a, b, c ∈ R.
As

ecX1 ea X2+bX3 = e(cos(c)a−sin(c)b)X2+(sin(c)a+cos(c)b)X3 ecX1 , (3.35)

the lemma follows. 	


Define a diffeomorphism φs : R
3 → G by

φs(x, y, z) = α(y, z) βs(x), (3.36)

where α(y, z) = ey X2+z X3 and βs(x) = e

√

s
A∗ x X1 . Letting h−1dh denote the Maur-

er–Cartan form on G, we have

φ∗
s (h−1dh) = β−1

s α−1 dα βs + β−1
s dβs

= β−1
s α−1 dα βs +

√

s

A∗
dx X1. (3.37)
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If ·i denotes the Xi -component of an element of the Lie algebra then

φ∗
s gs (t) = s−1 A(st)

(

φ∗
s (h−1dh)

)2

1
+ s−1 B(st)

(

φ∗
s (h−1dh)

)2

2

+ s−1 C(st)
(

φ∗
s (h−1dh)

)2

3

= s−1 A(st)

(

(α−1dα)1 +
√

s

A∗
dx

)2

+ s−1 B(st)
(

β−1
s α−1 dα βs

)2

2

+ s−1 C(st)
(

β−1
s α−1 dα βs

)2

3
. (3.38)

As conjugation by βs amounts to a rotation in the (y, z)-plane, we see that there is a
limit as s → ∞ of φ∗

s gs (·), given by

g∞(t) = dx2 + 2t

(

(

α−1dα
)2

2
+

(

α−1dα
)2

3

)

. (3.39)

The pullback under π ◦ α of the metric on R\ ˜SL(2, R) is the same as
(

α−1dα
)2

2 +
(

α−1dα
)2

3. Hence g∞(·) is the expanding soliton on R × H2, with ηt (x, y, z) =
(

t− 1
2 x, y, z

)

.

Example 3.40 An example of a locally homogeneous ˜SL(2, R)-geometry is the unit
sphere bundle S1� of a closed hyperbolic surface �. Let g(·) be its Ricci flow. In the
most direct picture, the manifolds

(

S1�, t−1g(·)) have a Gromov–Hausdorff limit, as
t → ∞, given by the rescaling of � which has constant sectional curvature − 1

2 . For
a more refined picture, let π : S1� → � be the projection map. Given p′ ∈ �, let B
be a small ball around p′ in �. Then π−1(B) is diffeomorphic to S1 × B. Consider the

restriction of t−1 g(t) to π−1(B) and then its pullback to the universal cover π̃−1(B).

Taking a basepoint p ∈ π̃−1(B) over p′, the pointed limit as t → ∞ of the metric

on π̃−1(B) will be isometric to R times a ball of constant sectional curvature − 1
2 . In

effect, as the circle fibers of the manifold
(

S1�, t−1 g(t)
)

shrink, the local geometry
becomes more and more product-like.

3.4 Four dimensions

We first list the four-dimensional simply-connected homogeneous spaces G/H with
maximal groups G (acting transitively with compact isotropy group) that admit finite-
volume quotients [29]. Besides product cases, they are

G H G/H

SO(5) SO(4) S4
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SU(3) U (2) CP2

Isom+(H4) SO(4) H4

SU(2, 1) U (2) CH2

R
2
˜× SL(2, R) SO(2) F4 (3.41)

(C × R)˜×C
∗ SO(2) Sol0

Nil4 {e} Nil4

Sol4m,n {e} Sol4m,n

Sol41 {e} Sol41 .

In the definition of Sol0, the action of C
∗ on C × R is given by λ · (a, b) =

(λa, |λ|−2b). The group Nil4 is the semidirect product R
3
˜×R, where R acts on R

3 by

β(r) =
⎛

⎝

1 r r2

2
0 1 r
0 0 1

⎞

⎠. The group Sol4m,n is the semidirect product R
3
˜×R, where R

acts on R
3 by r ·(x, y, z) = (

ear x, ebr y, ecr z
)

. Here a > b > c are real, a +b+c = 0
and ea , eb, ec are the roots of λ3 − mλ2 + nλ − 1 = 0 with m, n ∈ Z

+. Finally,

Sol41 =
⎧

⎨

⎩

⎛

⎝

1 b c
0 α a
0 0 1

⎞

⎠ : α, a, b, c ∈ R, α > 0

⎫

⎬

⎭

.

There is also a list of nonmaximal geometries [29, Theorem 3.1] but we do not
consider it here.

A homogeneous Ricci flow on S4 or CP2 has finite extinction time, so we do not
consider it further.

3.4.1 G = Isom+(H4)

The group G is the connected component of the identity in SO(4, 1). The subgroup H
is SO(4). Let g0 be a complete constant-curvature metric on R

4 with Ric (g0) = −cg0
for some c > 0. The Ricci flow solution starting at g0 is given by g (t) = (1 + 2ct) g0.
Then gs(t) = s−1 (1 + 2cst) g0. Taking φs = Id, there is a limit as s → ∞ of φ∗

s gs(·),
given by g∞(t) = 2ctg0. This is independent of c and is an expanding soliton solution
with V = 0.

3.4.2 G = SU(2, 1)

The subgroup H is U (2). Let g0 be a complete metric on C
2 with constant holomorphic

sectional curvature and with Ric (g0) = −cg0 for some c > 0. The Ricci flow solu-
tion starting at g0 is given by g (t) = (1 + 2ct) g0. Then gs(t) = s−1 (1 + 2cst) g0.
Taking φs = Id, there is a limit as s → ∞ of φ∗

s gs(·), given by g∞(t) = 2ctg0. This
is independent of c and is an expanding soliton solution with V = 0.
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3.4.3 G = R
2
˜×SL(2, R)

The quotient space M = G/H fibers homogeneously over H2, with fiber R
2. Any

left-invariant metric defines a homogeneous Riemannian submersion M → H2. The
isotropy group SO(2) acts isometrically on the Riemannian submersion, rotating the
R

2-fiber containing the basepoint �. By the rotational symmetry, the curvature tensor
of the Riemannian submersion, a horizontal 2-form with values in the vertical tangent
bundle, must vanish at ∗. Then by homogeneity, it must vanish everywhere. Thus the
horizontal space is integrable. It follows that the Riemannian submersion is of the
type considered in Sect. 4, so we can apply the results of that section; see Example
4.28. In particular, the homogeneous metric on M is specified by the relative size of
the fiberwise metric gi j on R

2 and the relative size of the base metric gαβ on H2. The
Ricci curvature calculation of (4.12) shows that under the Ricci flow, gi j is constant in
t and gαβ increases linearly in t . Taking φs to be multiplication by

√
s in the R

2-fibers,
there is a limit as s → ∞ of φ∗

s gs(·), given by the expanding soliton solution on F4.
It satisfies the harmonic-Einstein equations of Proposition 4.4.

The remaining cases can be seen as Ricci flows on certain unimodular Lie groups.
For example, the case Sol0 can be viewed as Ricci flow on the Lie group R

3
˜×R, where

R acts on R
3 by δ(r) =

⎛

⎝

er 0 0
0 er 0
0 0 e−2r

⎞

⎠. In [16] the Ricci flow was considered on a

class of metrics on four-dimensional unimodular Lie groups that have the property
that their Ricci flow “diagonalizes”. The groups are listed as A1–A10 in [16]. They
include some that do not admit finite-volume quotients. In what follows we will use
the calculations of [16]. We now go through the cases A1–A10 in order.

3.4.4 A1

This is flat R
4.

3.4.5 A2

The group G is a semidirect product R
3
˜×R, where R acts on R

3 by r · (x, y, z) =
(

er x, ekr y, e−(k+1)r z
)

. Here k is a free parameter. Special case are Sol40 and Sol4m,n . The
nonzero Lie algebra relations are [X1, X4] = X1, [X2, X4] = k X2 and [X3, X4] =
−(k + 1)X3. The R-factor is spanned by X4.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.42)

where

dθ1 =− θ1 ∧ θ4, dθ2 =− k θ2 ∧ θ4, dθ3 =(k + 1) θ3 ∧ θ4, dθ4 =0. (3.43)
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We note that here, and in the cases that follow, the metric (3.42) is not the most
general homogeneous metric on G/H . However, it is a metric for which the Ricci
flow “diagonalizes”.

The Ricci flow is given by

A(t) = A0,

B(t) = B0,

C(t) = C0,

D(t) = D0 + 4(k2 + k + 1)t.

(3.44)

Then

gs(t) ∼ s−1 A0(θ
1)2 + s−1 B0(θ

2)2 + s−1 C0(θ
3)2

+4(k2 + k + 1)t (θ4)2. (3.45)

Define diffeomorphisms φs : R
4 → G by φs(x, y, z, r) =

(

A
− 1

2
0

√
sx, B

− 1
2

0
√

sy,

C
− 1

2
0

√
sz, r

)

. Then there is a limit as s → ∞ of φ∗
s gs(·) given by

g∞(t) = (θ1)2 + (θ2)2 + (θ1)2 + 4(k2 + k + 1)t (θ4)2. (3.46)

This is an expanding soliton solution with ηt (x, y, z, r) =
(

t− 1
2 x, t− 1

2 y, t− 1
2 z, r

)

.

3.4.6 A3

The group G is a semidirect product R
3
˜×R, where R acts on R

3 by ε(r) =
⎛

⎝

ekr cos(r) ekr sin(r) 0
− ekr sin(r) ekr cos(r) 0

0 0 e−2kr

⎞

⎠. The nonzero Lie algebra relations are [X1, X4] =

k X1 + X2, [X2, X4] = − X1 + k X2 and [X3, X4] = −2k X3. Here k is a nonzero
number. The R-factor is spanned by X4.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.47)

where

dθ1 = − kθ1 ∧ θ4 + θ2 ∧ θ4, dθ2 = − θ1 ∧ θ4 − kθ2 ∧ θ4,

dθ3 = 2k θ3 ∧ θ4, dθ4 = 0. (3.48)
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The Ricci flow asymptotics are

A(t) ∼ √
A0 B0,

B(t) ∼ √
A0 B0,

C(t) = C0

D(t) ∼ 12k2t.

(3.49)

Then

gs(t) ∼ s−1
√

A0 B0

(

(θ1)2 + (θ2)2
)

+ s−1 C0 (θ3)2 + 12k2t (θ4)2. (3.50)

Define a diffeomorphism φs : R
4 → G by

φs(x, y, z, r) = αs(x, y, z) β(r), (3.51)

where αs(x, y, z) = e(A0 B0)
− 1

4
√

s(x X1+y X2)+C
− 1

2
0

√
sz X3 and β(r) = ek−1r X4 . Letting

h−1dh denote the Maurer–Cartan form on G, we have

φ∗
s (h−1dh) = β−1 α−1

s dαs β + β−1 dβ = (A0 B0)
− 1

4
√

s β−1

×(dx X1 + dy X2) β + C
− 1

2
0

√
s dz β−1 X3 β + k−1 dr X4

= (A0 B0)
− 1

4
√

s er
(

cos(k−1√sz)dx − sin(k−1√sz)dy
)

X1

+(A0 B0)
− 1

4
√

s er
(

sin(k−1√sz)dx + cos(k−1√sz)dy
)

X2

+C
− 1

2
0

√
s e−2r dz X3 + k−1 dr X4. (3.52)

If ·i denotes the Xi -component of an element of the Lie algebra then

φ∗
s gs (t) = s−1 A(st)

(

φ∗
s (h−1dh)

)2

1
+ s−1 B(st)

(

φ∗
s (h−1dh)

)2

2
+ s−1 C(st)

×
(

φ∗
s (h−1dh)

)2

3
+ s−1 D(st)

(

φ∗
s (h−1dh)

)2

4
. (3.53)

We see that there is a limit as s → ∞ of φ∗
s gs (·), given by

g∞(t) = e2r (dx2 + dy2) + e−4r dz2 + 12t dr2. (3.54)

This is an expanding soliton with ηt (x, y, z, r) =
(

t− 1
2 x, t− 1

2 y, t− 1
2 z, r

)

. It has Sol40-
symmetry.
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3.4.7 A4

This is a product case G = Nil3 ×R.

3.4.8 A5

The group G is a semidirect product R
3
˜×R, where R acts on R

3 by φ(r) =
⎛

⎝

e− r
2 re− r

2 0
0 e− r

2 0
0 0 er

⎞

⎠. The nonzero Lie algebra relations are [X1, X4] = − 1
2 X1 + X2,

[X2, X4] = − 1
2 X2 and [X3, X4] = X3. The R-factor is spanned by X4.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.55)

where

dθ1 = 1

2
θ1 ∧ θ4, dθ2 = − θ1 ∧ θ4 + 1

2
θ2 ∧ θ4,

dθ3 = − θ3 ∧ θ4, dθ4 = 0. (3.56)

The Ricci flow asymptotics are

A(t) ∼ 2λ(ln t)
1
2 ,

B(t) ∼ 3λ(ln t)− 1
2 ,

C(t) = C0
D(t) ∼ 3t.

(3.57)

Then

gs(t) ∼ 2λs−1 (ln(st))
1
2 (θ1)2 + 3λs−1 (ln(st))−

1
2 (θ2)2

+ s−1 C0 (θ3)2 + 3t (θ4)2. (3.58)

We take coordinates (x, y, z, r) for G in which θ1 = dx + 1
2 xdr , θ2 = dy +

( y
2 − x

)

dr , θ3 = dz − zdr and θ4 = dr . Define φs : R
4 → R

4 by

φs(x, y, z, r) =
⎛

⎝

(

s

2λ(ln s)
1
2

) 1
2

x,

(

s(ln s)
1
2

3λ

)
1
2

y,

(

s

C0

) 1
2

z, r

⎞

⎠ . (3.59)

Then lims→∞ s−1φ∗
s g(st) = g∞(t), where

g∞(t) = (dx + 1

2
x dr)2 + (dy + 1

2
y dr)2 + (dz − zdr)2 + 3t dr2.

(3.60)
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This is an expanding soliton with ηt (x, y, z, r) =
(

t− 1
2 x, t− 1

2 y, t− 1
2 z, r

)

. It has Sol40-
symmetry.

3.4.9 A6

The group G is the four-dimensional nilpotent Lie group whose nonzero Lie algebra
relations are [X1, X4] = X2 and [X2, X4] = X3.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.61)

where

dθ1 = 0, dθ2 = − θ1 ∧ θ4, dθ3 = − θ2 ∧ θ4, dθ4 = 0. (3.62)

Put E0 = B0
A0 D0

and F0 = C0
B0 D0

. The Ricci flow solution is

A(t) = A0 (3E0t + 1)
1
3 ,

B(t) = B0 (3E0t + 1)− 1
3 (3F0t + 1)

1
3 ,

C(t) = C0 (3F0t + 1)− 1
3

D(t) = D0 (3E0t + 1)
1
3 (3F0t + 1)

1
3 .

(3.63)

Then

gs(t) ∼
(

3A2
0 B0

D0

) 1
3

s− 2
3 t

1
3 (θ1)2 + (A0 B0C0)

1
3 s−1 (θ2)2

+
(

B0C2
0 D0

3

) 1
3

s− 4
3 t−

1
3 (θ3)2 +

(

9C0 D0

A0

) 1
3

s− 1
3 t

2
3 (θ4)2. (3.64)

We take coordinates (x, y, z, r) for G in which θ1 = dx , θ2 = dy − xdr , θ3 =
dz − ydr and θ4 = dr . Define φs : R

4 → R
4 by

φs(x, y, z, r)=
⎛

⎝

(

D0s2

A2
0 B0

) 1
6

x,

(

s3

A0 B0C0

)

1
6

y,

(

s4

B0C2
0 D0

) 1
6

z,

(

A0s

C0 D0

) 1
6

r

⎞

⎠ .

(3.65)

Then lims→∞ s−1φ∗
s g(st) = g∞(t), where

g∞(t) = 3
1
3 t

1
3 (θ1)2 + (θ2)2 + 3− 1

3 t−
1
3 (θ3)2 + 3

2
3 t

2
3 (θ4)2 (3.66)

This is an expanding soliton with ηt (x, y, z, r) =
(

t− 2
6 x, t− 3

6 y, t− 4
6 z, t− 1

6 r
)

.
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3.4.10 A7(i)

The group G is the group Sol41 mentioned above. The nonzero Lie algebra relations
are [X2, X3] = X4, [X3, X1] = X2 and [X1, X2] = −X3.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.67)

where

dθ1 = 0, dθ2 = − θ3 ∧ θ1, dθ3 = θ1 ∧ θ2, dθ4 = − θ2 ∧ θ3. (3.68)

The Ricci flow asymptotics are

A(t) ∼ 4t,

B(t) ∼ (9B0C0 D2
0)

1
6 t

1
3 ,

C(t) ∼ (9B0C0 D2
0)

1
6 t

1
3 ,

D(t) = D0

(

1 + 3D0

B0C0
t

)− 1
3

.

(3.69)

Then

gs(t) ∼ 4t (θ1)2 + (9B0C0 D2
0)

1
6 s− 2

3 t
1
3

(

(θ2)2 + (θ3)2
)

+
(

B0C0 D2
0

3

) 1
3

s− 4
3 t−

1
3 (θ4)2. (3.70)

We take coordinates (x, y, z, r) for G in which θ1 = dr , θ2 + θ3 = dx − xdr ,
θ2 −θ3 = dy + ydr and θ4 = dz + 1

4 (xdy − ydx) + 1
2 xydr . Define φs : R

4 → R
4

by

φs(x, y, z, r)=
(

(B0C0 D2
0)−

1
12 s

1
3 x, (B0C0 D2

0)−
1

12 s
1
3 y, (B0C0 D2

0)−
1
6 s

2
3 z, r

)

.

(3.71)

Then lims→∞ s−1φ∗
s g(st) = g∞(t), where

g∞(t) = 4t (θ1)2 + 3
1
3 t

1
3

(

(θ2)2 + (θ3)2
)

+ 3− 1
3 t−

1
3 (θ4)2. (3.72)

This is an expanding soliton with ηt (x, y, z, r) =
(

t− 1
3 x, t− 1

3 y, t− 2
3 z, r

)

.
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3.4.11 A8

The group G is a semidirect product Nil3 ˜×R, where R acts on Nil3, in appropriate
coordinates, by r · (x, y, z) = (cos(r)x + sin(r)y,− sin(r)x + cos(r)y, z). The non-
zero Lie algebra relations are [X2, X3] = −X4, [X3, X1] = X2, [X1, X2] = X3. The
R-factor is spanned by X1.

The metric is

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2, (3.73)

where

dθ1 = 0, dθ2 = − θ3 ∧ θ1, dθ3 = − θ1 ∧ θ2, dθ4 = θ2 ∧ θ3. (3.74)

The Ricci flow asymptotics are

A(t) ∼ D0

2
,

B(t) ∼ (9B0C0 D2
0)

1
6 t

1
3 ,

C(t) ∼ (9B0C0 D2
0)

1
6 t

1
3 ,

D(t) = D0

(

1 + 3D0

B0C0
t

)− 1
3

.

(3.75)

Then

gs(t) ∼ D0

2
s−1 (θ1)2 + (9B0C0 D2

0)
1
6 s− 2

3 t
1
3

(

(θ2)2 + (θ3)2
)

+
(

B0C0 D2
0

3

) 1
3

s− 4
3 t−

1
3 (θ4)2. (3.76)

Define a diffeomorphism φs : R
4 → G by

φs(x, y, z, r) = αs(x, y, z) β(r), (3.77)

whereαs(x, y, z)=e(B0C0 D2
0)

− 1
12 s

1
3(x X2+y X3)+(B0C0 D2

0)
−1

6 s
2
3 z X4 andβ(r)=eD

− 1
2

0 s
1
2 r X1 .

Letting h−1dh denote the Maurer–Cartan form on G, we have

φ∗
s (h−1dh) = β−1

s α−1
s dαs βs + β−1

s dβs . (3.78)

As conjugation by βs acts isometrically on α−1
s dαs , we see that there is a limit as

s → ∞ of φ∗
s gs (·), given by the expanding soliton g∞(·) on R×Nil3; see Sect. 3.3.3.
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3.4.12 A9

This is a product case G = ˜SL(2, R) × R.

3.4.13 A10

This is a product case G = SU(2) × R.

4 Expanding solitons on vector bundles

In this section we consider the expanding soliton equation in the case of a family
g(·) of R

N -invariant metrics on the total space M of a flat R
N -vector bundle over a

manifold B, with the property that the fiberwise volume forms are preserved by the
flat connection. The vector field V is assumed to be the standard radial vector field
along the fibers. We show that the expanding soliton equation on M becomes two
equations on B : a harmonic map equation G : B → SL(N , R)/ SO(N ) and an equa-
tion that relates dG to RicB . We give examples of expanding soliton solutions with
dim(B) = 1, which are generalized Sol-solutions, and an example with dim(B) = 2.
We then show that if a rescaling limit limk→∞ gsk (·) exists for such an R

N -invariant
Ricci flow then the limit satisfies the harmonic-Einstein equations.

The expanding solitons (M∞, g∞(t)) of Sect. 3 all have a certain fibration struc-
ture. Namely, there is a Riemannian submersion π : M∞ → B∞ whose fibers are
diffeomorphic to a nilpotent Lie group N and whose holonomy preserves the natural
flat linear connection ∇a f f on N . (The connection ∇a f f has the property that left-
invariant vector fields are parallel.) The diffeomorphisms {ηt }t>0 act fiberwise and
arise from a 1-parameter group {at }t>0 of automorphisms of N , by ηt = at−1 . We
list below the relevant groups N that appeared in Sect. 3, along with the subsection
in which they appeared. (There are also some product cases that we omit.)

{e} 3.2,3.3.1,3.4.1,3.4.2
R 3.1,3.3.5

R
2 3.3.2,3.4.3,3.4.12

R
3 3.3.4,3.4.5,3.4.6,3.4.8

R
4 3.4.4

Nil3 3.3.3,3.4.7,3.4.10,3.4.11
Nil4 3.4.9

(4.1)

These special fibration structures are related to the results of Cheeger–Fukaya–
Gromov on collapsing with bounded sectional curvature [4]. Namely, any sufficiently
collapsed manifold can be slightly perturbed to have a so-called Nil-structure, where
“Nil” refers to a local nilpotent Lie algebra of Killing vector fields. It will follow from
Sect. 5.6 that if (M, p, g(·)) is a pointed type-III Ricci flow solution then there is a
sequence {s j }∞j=1 tending to infinity so that there is a limit flow g∞(·) = lim j→∞ gs j (·)
in an appropriate sense which, if limt→∞ t− 1

2 injg(t)(p) = 0, will have a Nil-structure.
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This suggests looking for expanding soliton solutions with a special fibration
structure of the type mentioned above, with the action of the diffeomorphisms {ηt }t>0
being compatible with the fibration structure. In terms of the fiber, it is known that
there are many nilpotent Lie groups that do admit Ricci soliton metrics and also some
that do not [19].

Based on these considerations, in this section we look at what the expanding soliton
equation becomes if we assume compatibility with the simplest type of Nil-structure.
Namely, we consider the expanding soliton equation on the total space of an R

N -vector
bundle π : M → B. We assume that

1. π is a Riemannian submersion.
2. For each b ∈ B, there is a neighborhood Ub of b in B so that there is a free

isometric R
N -action on π−1(Ub) which acts by translation on the fibers.

3. The diffeomorphism ηt is fiberwise multiplication by t− 1
2 .

Let s : B → M be the zero-section. The R
N -action on π−1(Ub) gives a local

trivialization of the vector bundle by (b′, �v) → s(b′) + �v. In view of this, it is natural
to reduce the data to

1. A vector bundle on B with a flat vector bundle connection ∇,
2. A Riemannian metric on B and
3. Flat Riemannian metrics on the fibers.

There is a corresponding canonical metric on M . We do not assume that ∇ preserves
the fiberwise metrics.

For simplicity of notation, in this section we write gI J for the metric on M , RI J

for the Ricci tensor on M , etc. We write gαβ for the metric on B, Rαβ for the Ricci
tensor on B, etc. We let Greek indices denote horizontal directions and we let lower
case Roman indices denote vertical directions. In terms of local coordinates {xα, xi },
we can write the metric on M as

gαβ = gαβ(b)

giα = 0 (4.2)

gi j = gi j (b).

We will use the Einstein summation convention freely.
Hereafter we assume that ∇ preserves the fiberwise volume forms, as this is what

arises in the examples of Sect. 3. We write

gi j;αβ = gi j,αβ − �σ
αβ gi j,σ . (4.3)

Proposition 4.4 The expanding soliton equation becomes the pair of equations

Rαβ − 1

4
gi j g jk,α gkl gli,β + 1

2t
gαβ = 0 (4.5)

and

gαβ gi j;αβ − gαβ gik,α gkl gl j,β = 0. (4.6)
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Proof The nonzero Christoffel symbols are

�
α

βγ = � α
βγ

�
α

i j = −1

2
gαβ gi j,β (4.7)

�
i
jα = �

i
α j = 1

2
gik gk j,α.

The nonzero components of the curvature tensor are

R
α

βγ δ = Rα
βγ δ

R
α

iβ j = −1

2
gαγ gi j;γβ + 1

4
gαγ gik,β gkl gl j,γ

R
i
jαβ = −1

4
gik gkl,α glm gmj,β + 1

4
gik gkl,β glm gmj,α

R
i
jkl = −1

4
gir grk,α gαβ g jl,β + 1

4
gir grl,α gαβ g jk,β .

(4.8)

The Ricci tensor is

Rαβ = Rαβ − 1

2
gi j gi j;αβ + 1

4
gi j g jk,α gkl gli,β

Rαi = 0 (4.9)

Ri j = −1

2
gαβ gi j;αβ + 1

2
gαβ gik,α gkl gl j,β − 1

4
gαβ gkl gkl,α gi j,β .

As ∇ preserves the fiberwise volume forms,

gi j gi j,α = 0 (4.10)

and

gi j gi j;αβ = gi j g jk,β gkl gli,α. (4.11)

Then

Rαβ = Rαβ − 1

4
gi j g jk,α gkl gli,β

Rαi = 0 (4.12)

Ri j = −1

2
gαβ gi j;αβ + 1

2
gαβ gik,α gkl gl j,β .
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On the long-time behavior of type-III Ricci flow solutions 653

If {V (t)}t>0 is the vector field generating {ηt }t>0 then

(LV g)αβ = 0

(LV g)αi = 0 (4.13)

(LV g)i j = −1

t
gi j .

The proposition follows. 	

Remark 4.14 Without assuming that ∇ preserves the fiberwise volume forms, it fol-
lows from (4.9) that gi j Ri j = − 1√|G| gαβ

(√|G|);αβ
, where |G| = det

(

gi j
)

. Then
under the Ricci flow,

∂
√|G|
∂t

= − √|G| gi j Ri j = gαβ
(

√|G|
)

;αβ
. (4.15)

Hence it is consistent to assume that |G| is spatially constant, i.e. that ∇ preserves the
fiberwise volume forms.

We will call equations (4.5)–(4.6) the harmonic-Einstein equations.
Now consider the space S of positive-definite symmetric matrices {Gi j } on R

N with
a fixed determinant. An element A ∈ SL(N , R) acts on S by sending G to AG AT .
This identifies S with SL(N , R)/ SO(N ). The corresponding Riemannian metric on S
can be written informally as Tr

(

G−1dG
)2

. That is, for a symmetric matrix K ∈ TGS

〈K , K 〉G = Gi j K jk Gkl Kli . (4.16)

Proposition 4.17 Equation (4.6) is the local expression for a harmonic map from B
to S.

Proof The energy of a map G : B → S is

E(G) = 1

2

∫

B

gαβ Tr
(

G−1 G,α G−1 G,β

)

dvol . (4.18)

Consider a variation of G of the form δG = K G with Tr K = 0. The variation of E
is

δE =
∫

B

gαβ Tr
(

G−1G,αG−1 K,βG
)

dvol=
∫

B

gαβ Tr
(

G,αG−1 K,β

)

dvol . (4.19)

If K is compactly supported then integration by parts gives

δE = −
∫

B

gαβ Tr

(

(

G,α G−1
)

;β K

)

dvol . (4.20)
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If this vanishes for all such K then

gαβ
(

G,α G−1
)

;β = σ I (4.21)

for some function σ on B. On the other hand, as G has constant determinant,

Tr
(

G,α G−1
)

= 0 (4.22)

and so

Tr
(

G,α G−1
)

;β = 0. (4.23)

Tracing (4.21) gives σ = 0, so the variational equation is

gαβ
(

G,α G−1
)

;β = gαβ G;αβ G−1 − gαβ G,α G−1 G,β G−1 = 0. (4.24)

Equivalently,

gαβ G;αβ − gαβ G,α G−1 G,β = 0, (4.25)

which is the same as (4.6). 	

The equations (4.5) and (4.6) are defined locally. To give them global meaning,

let ρ : π1(B) → SL(N , R) be the holonomy representation of the flat connection
∇. Let ˜B be the universal cover of B. The flat vector bundle M over B can be writ-
ten as ˜B ×π1(B) R

N , where π1(B) is represented on R
N via ρ. Then the family of

fiberwise metrics {gi j (b)}b∈B corresponds to a π1(B)-equivariant map G : ˜B →
SL(N , R)/ SO(N ), where π1(B) acts on SL(N , R)/ SO(N ) via left multiplication by
ρ. Equation (4.6) says that G is a harmonic map. As Ri j = 0, the metrics {gi j (b)}b∈B

are constant in time and so the map G is time-independent. The metric gαβ on B is
proportionate to t . Equation (4.5) relates the metric on B to the harmonic map G.

If, after an appropriate choice of basis, the representation ρ takes value in SL(N , Z)

then we can quotient M fiberwise by Z
N . The resulting space ˜M/(ZN

˜×π1(B)) is a
flat torus bundle over B and carries a quotient Ricci flow metric.

Example 4.26 If B is compact and ρ is trivial then G must be a point map (see, for
example, [17, Sect. 1.2]). Thus the expanding soliton metric (M, g(t)) is just a product
metric (B, tgB) × (RN , g f lat ) for an Einstein metric gB on B with Einstein constant
− 1

2 .

Example 4.27 Suppose that B = R. Let X be a real diagonal (N × N )-matrix with
vanishing trace. Then there is a geodesic G : R → S given by G(s) = es X . Equation
(4.5) is satisfied by the metric t

2 Tr(X2) ds2 on B. This generalizes the Sol-solutions
of Sects. 3.3.2 and 3.4.5.

If e
X
2 is conjugate to an integer matrix A ∈ SL(N , Z) then one obtains a quotient

Ricci flow solution on the total space of a flat T N -bundle over S1 with holonomy A.
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Example 4.28 Take B = SL(N , R)/ SO(N ). The identity map G from B to
SL(N , R)/ SO(N ) is harmonic. Equation (4.5) is satisfied by the canonical metric
on B, after appropriate normalization. As B is the moduli space for constant-volume
inner products on R

N , the manifold M is the corresponding universal Euclidean bun-
dle over B. If � is a finite-index torsion-free subgroup of SL(N , Z) then there is a
quotient T n-bundle over �\ SL(N , Z)/ SO(N ), with a quotient Ricci flow solution.

In the case N = 2, we can identify SL(2, R)/ SO(2) with the space of transla-
tion-invariant complex structures on R

2. The manifold M is the resulting universal
complex line bundle. It has a homogeneous complex geometry, called F4 in [29]. The
quotient of M by Z

2
˜× SL(2, Z) is the universal curve of complex structures on T 2,

which we equip with constant volume.

Turning from the expanding soliton equation, we now consider Ricci flow on a
1-parameter family of metrics g(·) on M of the type considered above. We ask for
sufficient conditions to ensure that the limit of a convergent subsequence of rescaled
flows s−1

j g(s j ·) (modulo diffeomorphisms) is in fact an expanding soliton. This is a
different question than that addressed in Proposition 2.5 where we assumed that there
is an actual limit as s → ∞ of s−1 g(s·), instead of just a convergent subsequence.

Suppose first that N = 0, i.e. we just have Ricci flow on B. Given a type-III
Ricci flow g(·) on a compact manifold B, suppose that there is a sequence {s j }∞j=1
of positive numbers converging to infinity and diffeomorphisms {φ j }∞j=1 of B so

that
{

s−1
j φ∗

j g(s j ·)
}∞

j=1
converges to a Ricci flow g∞(·) on B. Then g∞(t) = t gE

for a Einstein metric gE on B satisfying Ric(gE ) = − 1
2 gE [6, Theorem 1.3],[14,

Sect. 7]. The hypotheses are equivalent to saying that we have a type-III Ricci flow

solution g(·) on a manifold B such that lim supt→∞ t− 1
2 diam(B, g(t)) < ∞ and

lim inf t→∞ t− 1
2 inj(B, g(t)) > 0.

We now consider the case N > 0. An automorphism of a flat vector bundle
(W,∇ f lat ) over B is an invertible vector bundle map ̂φ : W → W with ̂φ∗∇ f lat =
∇ f lat . It covers a diffeomorphism φ of B.

Proposition 4.29 Fix a flat R
N -vector bundle M on a compact manifold B. Let

{g(t)}t∈(0,∞) be a 1-parameter family of metrics on M of the type considered above.
Suppose that g(·) satisfies the Ricci flow equation. Suppose that

1. There is a sequence {s j }∞j=1 of positive numbers converging to infinity and

2. There are automorphisms {̂φ j }∞j=1 of the flat vector bundle M so that

3.
{

s−1
j

̂φ∗
j g(s j ·)

}∞
j=1

converges to a Ricci flow solution g∞(·).
Then g∞(·) satisfies the harmonic-Einstein equations (4.5)–(4.6).

Proof The proof is an adaptation of one of the proofs of [6, Theorem 1.3], this partic-
ular proof being due to Hamilton. We write Gi j for gi j . On M we have the equation

∂ R

∂t
= � R + 2 |RI J |2. (4.30)
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Translating this to an equation on B gives

∂

∂t

(

R− 1

4
gαβ Tr

(

G−1 G,α G−1 G,β

)

)

=�
(

R− 1

4
gαβ Tr

(

G−1 G,α G−1 G,β

)

)

+ 2

∣

∣

∣

∣

Rαβ − 1

4
Tr

(

G−1 G,α G−1 G,β

)

∣

∣

∣

∣

2

+ 2 Tr

(

− 1

2
gαβ G−1 G;αβ + 1

2
gαβ G−1 G,α G−1 G,β

)2

. (4.31)

The maximum principle implies that

R − 1

4
gαβ Tr

(

G−1 G,α G−1 G,β

)

+ n

2t
≥ 0, (4.32)

where n = dim(B). On the other hand, putting Ṽ (t) = t− n
2

∫

B dvolB , one has

dṼ

dt
= − t−

n
2

∫

B

(

R − 1

4
gαβ Tr

(

G−1 G,α G−1 G,β

)

+ n

2t

)

dvolB .

(4.33)

Then Ṽ (t) is nonincreasing in t and the corresponding quantity Ṽ∞(t) for g∞(·) must
be constant in t . Equation (4.33), applied to g∞(·), implies

R∞ − 1

4
gαβ∞ Tr

(

G−1∞ G∞,α G−1∞ G∞,β

)

+ n

2t
= 0. (4.34)

Plugging this into (4.31) (applied to g∞) gives

n

2t2 = 2

∣

∣

∣

∣

R(∞)αβ − 1

4
Tr

(

G−1∞ G∞,α G−1∞ G∞,β

)

∣

∣

∣

∣

2

+2 Tr

(

− 1

2
gαβ∞ G−1∞ G∞;αβ + 1

2
gαβ∞ G−1∞ G∞,α G−1∞ G∞,β

)2

, (4.35)

or

0 = 2

∣

∣

∣

∣

R(∞)αβ − 1

4
Tr

(

G−1∞ G∞,α G−1∞ G∞,β

)

+ 1

2t
g∞,αβ

∣

∣

∣

∣

2

+2 Tr

(

−1

2
gαβ∞ G−1∞ G∞;αβ + 1

2
gαβ∞ G−1∞ G∞,αG−1∞ G∞,β

)2

. (4.36)

The proposition follows. 	

Based on Proposition 4.29, one can speculate the expanding solitons that arise

in type-III Ricci flows again involve some sort of harmonic-Einstein equations. Of
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course, the relevant nilpotent Lie groups may be more complicated than R
N and they

may act with orbits of varying dimensions. Nevertheless, a Nil-structure has a quotient
space with bounded geometry in a certain sense [4, Appendix 1], which is where the
harmonic-Einstein equations would live.

5 Ricci flow on étale groupoids

An étale groupoid is a mathematical object which in some sense combines the notions
of topological spaces and discrete groups. A Riemannian groupoid is an étale groupoid
equipped with an invariant Riemannian metric. The relevance for us comes from the
Cheeger–Fukaya–Gromov theory of bounded curvature collapse, which implies that
when a Riemannian manifold collapses with bounded sectional curvature, it asymp-
totically obtains local symmetries.

In this section we recall some basic definitions about Riemannian groupoids. A
good source for background information is [12, Sect. 7]. Further references are [3,
Chap. IIIG], [11] and [26, Appendix D]. We then prove an extension of Hamilton’s
compactness theorem, not assuming a lower bound on the injectivity radius. Although
it takes a bit of time to set up the right framework, once the framework is in place then
the proof is almost the same as in Hamilton’s paper [13]. We discuss how the long-time
behavior of type-III Ricci flow solutions becomes a problem about the dynamics of
the R

+-action on a compact space Sn,K . We list the Riemannian groupoids that arise
in the long-time behavior of finite-volume locally homogeneous three-dimensional
Ricci flow solutions.

5.1 Etale groupoids

A groupoid G consists of

1. Sets G(0) and G(1),
2. An injection e : G(0) → G(1) (with which we will think of the “units” G(0) as a

subset of G(1)),
3. “Source” and “range” maps s, r : G(1) → G(0) with s ◦ e = r ◦ e = Id

∣

∣

G(0) and
4. A partially-defined multiplication G(1) × G(1) → G(1)

so that

1. The product γ γ ′ of γ, γ ′ ∈ G(1) is defined if and only if s(γ ) = r(γ ′), and then
s(γ γ ′) = s(γ ′) and r(γ γ ′) = r(γ ).

2. (γ γ ′)γ ′′ = γ (γ ′γ ′′) whenever the two sides are defined.
3. γ s(γ ) = r(γ )γ = γ .
4. For all γ ∈ G(1), there is an element γ −1 ∈ G(1) so that γ γ −1 = r(γ ) and

γ −1γ = s(γ ).

A morphism m : G1 → G2 between two groupoids is given by maps m(1) :
G(1)

1 → G(1)
2 and m(0) : G(0)

1 → G(0)
2 that satisfy obvious compatibility conditions.

An isomorphism between G1 and G2 is an invertible morphism.
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Given x ∈ G(0), we write Gx = r−1(x), Gx = s−1(x) and Gx
x = Gx ∩ Gx , the

latter being the isotropy group of x . The orbit of x is the set Ox = s(r−1(x)). There
is an orbit space O.

A pointed groupoid (G, Ox ) is a groupoid G equipped with a preferred orbit Ox .
A morphism m : (G1, Ox1) → (G2, Ox2) of pointed groupoids will be assumed to
have the property that m(0) sends Ox1 to Ox2 .

A groupoid G is smooth if G(1) and G(0) are smooth manifolds, e is a smooth embed-
ding, s and r are submersions, and the structure maps are all smooth. (For example,
multiplication is supposed to be a smooth map from {(γ, γ ′) ∈ G(1) × G(1) : s(γ ) =
r(γ ′)} to G(1).) Morphisms between smooth groupoids are assumed to be smooth.
A smooth groupoid is étale if s and r are local diffeomorphisms. Hereafter, unless
otherwise stated, groupoids will be smooth and étale. We do not assume that G(1)

has a countable basis, although in the cases of interest G(0) will have a countable
basis.

An étale groupoid G is Hausdorff if G(1) is Hausdorff and whenever c : [0, 1] →
G(1) is a continuous path such that limt→1 s(c(t)) and limt→1 r(c(t)) exist, there is a
limit limt→1 c(t) in G(1). Hereafter we assume that G is Hausdorff.

Example 5.1 If M is a smooth manifold then there is an étale groupoid G with G(1) =
G(0) = M , where s and r are the identity maps. The product m · m′ is defined if and
only if m = m′, in which case the product is m. We will call this the groupoid M .

Example 5.2 If a discrete group � acts smoothly on M , define the cross-product grou-
poid G = M � � as follows. Put G(1) = M × � and G(0) = M , with r(m, γ ) = m
and s(m, γ ) = mγ . The product (m, γ ) · (m′, γ ′) is defined if mγ = m′, in which
case the product is (m, γ γ ′).

For example, we can take Z acting on S1 by rotations. Or we can take SO(2) acting
on S1 by rotations. Note that in the latter case we give SO(2) the discrete topology so
that G will be étale.

5.2 Equivalence of étale groupoids

If U = {Ui }i∈I is an open cover of G(0) then there is a new étale groupoid GU , called
the localization of G to U . It has G(1)

U = {(i, γ, j) : s(γ ) ∈ U j , r(γ ) ∈ Ui } and

G(0)

U = {(i, γ, i) : γ ∈ Ui }. The source and range maps send (i, γ, j) to ( j, s(γ ), j)
and (i, r(γ ), i), respectively. The product is (i, γ, j) · ( j, γ ′, k) = (i, γ γ ′, k).

Two étale groupoids G1 and G2 are equivalent if there are open covers U1 and
U2 of G(0)

1 and G(0)
2 , respectively, so that the localizations (G1)U1 and (G2)U2 are

isomorphic. Other ways of expressing this are given in [3, p. 597, 599–601] but the
above definition is good enough for our purposes.

Example 5.3 Let G = M be the groupoid of Example 5.1. Let {Ui }∞i=1 be an open

cover of M . Then G(1)

U is the disjoint union of the Ui ’s and G(1)

U consists of pairs of
points (mi , m j ) ∈ Ui × U j that get identified to the same point in M . By definition,
GU is equivalent to G = M .
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Example 5.4 In the setup of Example 5.2, suppose that � acts freely and properly
discontinuously on M . Then the cross-product groupoid M � � is equivalent to the
groupoid M/�.

Remark 5.5 We wish to identify equivalent groupoids. A more intrinsic approach is to
consider instead the category BG of G-sheaves. Here a G-sheaf is a local homeomor-
phism σ : E → G(0) equipped with a continuous right G-action E ×G(0) G(1) → E .
Pulling back the differentiable structure to E , we may assume that σ is a local diffeo-
morphism. Then BG is a topos and equivalent groupoids give rise to equivalent topoi
[20,21]. However, we will not pursue this approach.

5.3 Riemannian groupoids

A smooth path c in G consists of a partition 0 = t0 ≤ t1 ≤ · · · ≤ tk = 1, and
a sequence c = (γ0, c1, γ1, . . . , ck, γk) where ci : [ti−1, ti ] → G(0) is smooth,
γi ∈ G(1), ci (ti−1) = s(γi−1) and ci (ti ) = r(γi ). The path is said to go from r(γ0) to
s(γk). The groupoid G is path connected if any x, y ∈ G(0) can be joined by a smooth
path. We will generally assume that G is path connected.

Given γ ∈ G(1), there is a neighborhood U of γ in G(1) so that {(s(γ ′), r(γ ′)) :
γ ′ ∈ U } is the graph of a diffeomorphism h : V → W between neighborhoods (in
G(0)) of s(γ ) and r(γ ). In this way, G gives rise to a pseudogroup of diffeomorphisms
of G(0). Conversely, if P is a pseudogroup of diffeomorphisms of G(0) then there is a
corresponding étale groupoid G, with G(1) consisting of the germs of elements of P .
We say that an étale groupoid G is effective when the germ of an element γ ∈ G(1)

is trivial if and only if γ ∈ G(0). An example of a noneffective groupoid comes from
a nontrivial discrete group �, with G(1) = � and G(0) = {e}. Hereafter the étale
groupoids will be assumed to be effective.

An étale groupoid is Riemannian if there is a Riemannian metric g on G(0) so that the
germs of elements of G(1) act isometrically. There is an obvious notion of the length of
a smooth path in G. There is a pseudometric d on the orbit space O, given by saying that
for x, y ∈ G(0), d(Ox , Oy) is the infimum of the lengths of the smooth paths joining
x to y. The Riemannian groupoid G is complete if (O, d) is a complete pseudomet-
ric space. Hereafter the Riemannian groupoids will be assumed to be complete. The
diameter of G is the diameter of the pseudometric space (O, d). If (G, Ox ) is a pointed
Riemannian groupoid then we write BR(Ox ) = ⋃{Oy : d(Oy, Ox ) < R} ⊂ G(0).
Two Riemannian groupoids are (pointed) isometrically equivalent if there is a (pointed)
isometric equivalence between them, as defined in terms of localizations.

Let J1 be the groupoid of 1-jets of local diffeomorphisms of G(0). With the natu-
ral topology on J (1)

1 , it is a smooth nonétale groupoid with J (0)
1 = G(0). There is a

continuous morphism j1 : G → J1 which is injective, as the germ of an isometry
is determined by its 1-jet. Taking the closure of j1

(

G(1)
)

in J (1)
1 gives a space that

can be written as the embedding j1 : G → J1 of a unique Riemannian groupoid G

with G
(0) = G(0). It is called the closure of G. In effect, G

(1)
is obtained by taking

the closure of j1
(

G(1)
)

and changing the topology to give it the structure of an étale
groupoid.
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The orbits of G are closed submanifolds of G(0). The orbit space of G is Hausdorff.
There is a locally constant sheaf g on G(0) of finite-dimensional Lie algebras, called
the structure sheaf, with the following properties :

1. g is a G-sheaf.
2. g is a sheaf of germs of Killing vector fields.

3. The elements of G that are close to units in J1 are germs of local isometries exp(ξ),
where ξ is a local section ξ of g that is close to zero.

Hereafter we assume that the Riemannian groupoids are closed, unless otherwise
stated.

Example 5.6 If G = S1
� Z is the groupoid of Example 5.2, with the generator of Z

acting by an irrational rotation, then G = S1
� SO(2) and g is the constant R-sheaf

on S1.

Example 5.7 Let M be a complete Riemannian manifold with sectional curvatures
between −K and K , for some K > 0. Given r < π√

K
, for any m ∈ M the expo-

nential map expm : Tm M → M restricts to a local diffeomorphism from the r -ball
B(m)

r (0) ⊂ Tm M to Br (m) ⊂ M . Put the metric (expm)∗g on B(m)
r (0).

Let {mi }i∈I be points in M so that {Br (mi )}i∈I covers M . Define a Riemannian

groupoid G with G(1) = ⊔

i, j∈I {(vi , v j ) ∈ B(mi )
r (0) × B

(m j )
r (0) : expmi

(vi ) =
expm j

(v j )} and G(0) = ⊔

i∈I B(mi )
r (0) by r(vi , v j ) = vi , s(vi , v j ) = v j and (vi , v j ) ·

(v j , vk) = (vi , vk). Then G is isometrically equivalent to the groupoid M .

5.4 Convergence of Riemannian groupoids

Definition 5.8 Let {(Gi , Oxi )}∞i=1 be a sequence of pointed n-dimensional
Riemannian groupoids. Let (G∞, Ox∞) be a pointed Riemannian groupoid. Let J1 be
the groupoid of 1-jets of local diffeomorphisms of G(0)∞ . We say that limi→∞(Gi , Oxi )

= (G∞, Ox∞) in the pointed smooth topology if for all R > 0,

1. There are pointed diffeomorphisms φi,R : BR(Ox∞) → BR(Oxi ), defined for

large i , from the pointed R-ball in G(0)∞ to the pointed R-ball in G(0)
i , so that

limi→∞ φ∗
i,R gi

∣

∣

BR(Oxi )
= g∞

∣

∣

BR(Ox∞ )
.

2. After conjugating by φi,R , the images of s−1
i (BR/2(Oxi )) ∩ r−1

i (BR/2(Oxi )) in
J1 converge in the Hausdorff sense to the image of s−1∞ (BR/2(Ox∞)) ∩ r−1∞
(BR/2(Ox∞)) in J1.

This definition is similar to [25, Definition A.4]. The paper [25] considers Lipschitz
convergence instead of smooth convergence.

We will allow ourselves to freely replace a Riemannian groupoid by an isometrically
equivalent one, without saying so explicitly.

Proposition 5.9 Let {(Mi , pi )}∞i=1 be a sequence of pointed complete n-dimensional
Riemannian manifolds. Suppose that for each a ∈ Z

≥0 and R > 0, there is some
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Ka,R < ∞ so that for all i , one has ‖ ∇a Riem(Mi ) ‖∞ ≤ Ka,R on BR(pi ). Then
there is a subsequence of {(Mi , pi )}∞i=1 that converges to some pointed n-dimensional
Riemannian groupoid (G∞, Ox∞) in the pointed smooth topology.

Proof Put r( j) = π

2
√

K0,2 j
. With reference to Example 5.7, for each j ∈ Z

+ there

is a number N j so that we can find points {xi, j,k}N j
k=1 in B j (pi ) − B j−1(pi ) with the

property that
⋃∞

j=1
⋃N j

k=1 Br( j)(xi, j,k) covers Mi . As in Example 5.7, we form the

corresponding Riemannian groupoid Gi with G(0)
i = ⊔∞

j=1
⊔N j

k=1 B
(xi, j,k )

r( j) (0). It is
isometrically equivalent to the Riemannian groupoid Mi . After passing to a subse-
quence, we may assume that {G(0)

i }∞i=1 converges smoothly to some G(0)∞ in the sense
of Definition 5.8.1. The rest of the argument is basically the same as in [7, Pf. of
Theorem 0.5], which in turn uses ideas from [10, Chap. 8C and 8D]. Namely, after
passing to a further subsequence, we can construct G(1)∞ as a pointed Hausdorff limit,
in the sense of Definition 5.8.2, of the images of G(1)

i in J (1)
1 , where J1 is the groupoid

of 1-jets of local diffeomorphisms of G(0)∞ . (Because of the convergence of the metrics
in the sense of Definition 5.8.1, the images of G(1)

i in J (1)
1 come closer and closer to

taking value in the 1-jets of local isometries.) 	

From the construction of G∞, there is a G∞-invariant sheaf g on G(0)∞ consisting

of local Killing vector fields that generate the collapsing directions. From [7, Sect. 4],
g is a sheaf of nilpotent Lie algebras.

The orbit space of G∞ is the same as the pointed Gromov-Hausdorff limit of the
convergent subsequence of {(Mi , pi )}∞i=1.

Proposition 5.9 is essentially equivalent to [25, Theorem A.5(i)], except that we
use smooth convergence instead of Lipschitz convergence. Ricci flow will provide the
needed smoothness.

Example 5.10 Let Mi be the circle of radius i−1. Then limi→∞ Mi is the cross-product
groupoid R � R of Example 5.2.

Example 5.11 As in Example 3.40, let � be a closed hyperbolic surface and let S1�

be its unit sphere bundle. Let Mi be S1� equipped with 1
i times the time-i Ricci flow

metric. Then limi→∞(Mi , p) is the cross-product groupoid (R × �) � R.

5.5 Convergence of Ricci flows on étale groupoids

Let G be a complete Riemannian groupoid. We can construct its Ricci tensor Ric(g)

as a symmetric covariant 2-tensor field on G(0) which is invariant in the sense that it
is preserved by the germs of elements of G(1).

Let {g(t)} be a smooth 1-parameter family of Riemannian metrics on the étale grou-
poid G, where smoothness in t can be checked locally on G(0). Then {g(t)} satisfies
the Ricci flow equation if ∂g

∂t = − 2 Ric. We say that it is an expanding soliton if the
flow is defined for t ∈ (0,∞) and g(t) is isometrically equivalent to t g(1) for all
t ∈ (0,∞).
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We now state an analog of [13, Theorem 1.2], except without the assumption of a
lower bound on the injectivity radius. We define convergence of a sequence of Ricci
flow solutions as in Sect. 2.2, except that now we allow the limit to be a Ricci flow on
an étale groupoid.

Theorem 5.12 Let {(Mi , pi , gi (·))}∞i=1 be a sequence of Ricci flow solutions on
pointed n-dimensional manifolds (Mi , pi ). We assume that there are numbers −∞ ≤
A < 0 and 0 < � ≤ ∞ so that

1. The Ricci flow solution (Mi , pi , gi (·)) is defined on the time interval (A,�).
2. For each t ∈ (A,�), gi (t) is a complete Riemannian metric on Mi .
3. For each compact interval I ⊂ (A,�) there is some K I < ∞ so that | Riem(gi )

(x, t)| ≤ K I for all x ∈ Mi and t ∈ I .

Then after passing to a subsequence, the Ricci flow solutions gi (·) converge
smoothly to a Ricci flow solution g∞(·) on a pointed n-dimensional étale groupoid
(

G∞, Ox∞
)

, defined again for t ∈ (A,�).

Proof The proof is virtually the same as that of [13, Theorem 1.2]. From local deriv-
ative estimates, the pointed Riemannian manifolds {(Mi , pi , gi (0))}∞i=1 satisfy the
assumptions of Proposition 5.9. Then after passing to a subsequence, we can assume
that {(Mi , pi , gi (0))}∞i=1 converges to a pointed Riemannian groupoid

(

G∞, Ox∞ ,

g∞(0)). In terms of the proof of Proposition 5.9, we have pointed time-0 convergence
of the Riemannian groupoids Gi to G∞. The remaining step is to get convergence on
the whole time interval (A,�), after passing to a further subsequence. The argument
for this is as in [13, Sect. 2]. Namely, for any R > 0, if i is sufficiently large then
one can use φi,R to transfer the time-t metric gi (t) on BR

(

Oxi

) ⊂ G(0)
i to the time-t

metric φ∗
i,R gi (t) on the time-zero set BR

(

Ox∞
) ⊂ G(0)∞ . As in [13, Lemma 2.4], for

any compact subinterval I ⊂ (A,�) one has uniform bounds on the norms (with
respect to g∞) of the spatial and temporal derivatives of φ∗

i,R gi (·) on I × BR
(

Ox∞
)

.
Then after passing to a further subsequence, one obtains a limiting metric g∞(·) on
G∞ which will necessarily satisfy the Ricci flow equation. 	

Remark 5.13 If one considers individual tangent spaces Tpi Mi instead of
groupoids then an analog of [13, Theorem 1.2] was proven in [8]. The result of [8]
was used in [5] to study three-dimensional type-II Ricci flow solutions.

Corollary 5.14 Let (M, p, g(·)) be a type-III Ricci flow solution. Then for any
sequence si → ∞, there are a subsequence (which we relabel as {si }∞i=1) and a Ricci
flow solution

(

G∞, Ox∞ , g∞(·)), defined for t ∈ (0,∞), so that limi→∞(M, p, gsi (·))
= (

G∞, Ox∞ , g∞(·)).

Corollary 5.15 Given K > 0, the space of pointed n-dimensional Ricci flow solu-
tions with supt∈(0,∞) t ‖ Riem(gt ) ‖∞ ≤ K is relatively compact among Ricci flows
on pointed n-dimensional étale groupoids, defined for t ∈ (0,∞).

5.6 Compactification of type-III Ricci flow solutions

With reference to Corollary 5.15, let Sn,K denote the closure of the pointed
n-dimensional Ricci flow solutions on manifolds with supt∈(0,∞) t ‖ Riem(gt ) ‖∞
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≤ K . Given g(·) ∈ Sn,K , there is a rescaled Ricci flow solution gs(·) ∈ Sn,K given
by gs(t) = s−1 g(st). This means that there is an R

+-action on Sn,K where s ∈ R
+

sends g to gs . Understanding the long-time behavior of a type-III Ricci flow solution
g boils down to understanding the dynamics of its orbit in the compact set Sn,K . We
make some elementary comments about Sn,K .

First, a Ricci flow in the boundary of Sn,K necessarily has a collapsing structure,
i.e. a nontrivial sheaf of nilpotent Lie algebras that act as local Killing vector fields
on the space of units. For simple examples of Ricci flows in the boundary of Sn,K ,
consider first the Ricci flow of a generic flat metric on the j-torus. Its rescaling limit
is the constant Ricci flow on the cross-product groupoid R

j
� R

j , where the first R
j

factor has a flat metric g0. Now if ( ̂M, ĝ(·)) is any pointed Ricci flow on an (n − j)-
dimensional manifold ̂M with supt∈(0,∞) t ‖ Riem(ĝt ) ‖∞ ≤ K then the product
flow ĝ(·)+ g0 on the groupoid ( ̂M ×R

j )�R
j is an element of the boundary of Sn,K ,

as it is a limit of Ricci flows on ̂M × T j . The R
+-action commutes with the inclusion

Sn− j,K → ∂Sn,K .
Now let En,K be the n-dimensional pointed Einstein metrics g with Einstein con-

stant − 1
2 and ‖ Riem(g) ‖∞ ≤ K , modulo pointed diffeomorphisms. We can

identify En,K with a set of Ricci flow solutions, with the Einstein metric g being
the time-1 metric of the solution. In this way there is an inclusion En,K ⊂ Sn,K .
We remark that by moving the basepoint on a finite-volume noncompact manifold
with constant sectional curvature − 1

2(n−1)
, we obtain examples where En,K intersects

∂Sn,K .
Consider a pointed n-dimensional compact Ricci flow solution (M, p, g(·)) with

supt∈(0,∞) t ‖ Riem(gt ) ‖∞ ≤ K . Suppose that for large s, the corresponding
orbit {gs(·)} in Sn,K stays away from the boundary. This is equivalent to saying that

lim inf t→∞ t− 1
2 injg(t)(p) > 0. If there is a pointed limit lim j→∞ gs j (·), with {s j }∞j=1

a sequence tending to infinity, then the limit is a Ricci flow on a finite-volume Einstein
manifold with negative Einstein constant [14, Sect. 7],[23, Sect. 7.1]. (The proof in
[14, Sect. 7] is for the normalized Ricci flow while the proof in [23, Sect. 7.1] is for the
unnormalized Ricci flow. Both proofs are for n = 3 but extend to general n.) It follows
that as s → ∞, the orbit {gs(·)} approaches En,K . However, it does not immediately
follow that the orbit approaches a fixed-point.

To understand the asymptotics of the orbits that do not stay away from the boundary
of Sn,K , a first question is whether the orbit approaches the boundary, i.e. whether
Ricci flow favors the formation of continuous symmetries.

Independent of this question, one can ask about the dynamics of the R
+-action on

the boundary. As the boundary elements have a collapsing structure, in principle one
can use this to help analyze the Ricci flow equations. An example is Proposition 4.29,
where a monotonicity formula was used. An overall question is whether the orbits of
the R

+-action on Sn,K approach fixed points, i.e. expanding soliton solutions.
In the case of a finite-volume locally homogeneous three-manifold, the results of

Sect. 3 imply that the orbit approaches a fixed-point g∞(·). The next proposition makes
this explicit. In the statement of the proposition we allow the fundamental group � to
be a discrete subgroup of a maximal element G among groups of diffeomorphisms of
the universal cover that act transitively with compact isotropy group, and we take the
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Riemannian metric to be G-invariant; see [27, Sects. 4 and 5] and [28, Chap. 3] for
the description of such groups.

Proposition 5.16 Let (M, p, g(·)) be a finite-volume pointed locally homogeneous
three-dimensional Ricci flow solution that exists for all t ∈ (0,∞). Then lims→∞
(M, p, gs(·)) exists and is an expanding soliton on a pointed three-dimensional étale
groupoid G∞. Put � = π1(M, p). The groupoid G∞ and its metric g∞(t) are given
as follows.
1. If (M, g(0)) has constant negative curvature then G∞ is the cross-product groupoid
H3

� � (which is equivalent to M) and g∞(t) has constant sectional curvature − 1
4t .

2. If (M, g(0)) has R
3-geometry, there is a homomorphism α : Isom(R3) →

Isom(R3)/R
3. (Here R

3 is the translation subgroup of Isom(R3). The quotient Isom
(R3)/R

3 is isomorphic to O(3).) Put �R = α−1(α(�)). Then G∞ is the cross-product
groupoid R

3
� �R and g∞(t) is the constant flat metric.

3. If (M, g(0)) has Sol-geometry, there is a homomorphism α : Isom(Sol) →
Isom(Sol)/R

2. (Here R
2 is a normal subgroup of Sol, which is a normal subgroup

of Isom(Sol). The quotient Isom(Sol)/R
2 has R as a normal subgroup of index 8.)

Put �R = α−1(α(�)). Then G∞ is the cross-product groupoid Sol ��R, with g∞(t)
given by (3.9).
4. If (M, g(0)) has Nil-geometry, there is a homomorphism α : Isom(Nil) →
Isom(Nil)/ Nil. (Here Nil ⊂ Isom(Nil) acts by left multiplication. The quotient
Isom(Nil)/ Nil is isomorphic to O(2).) Put �R = α−1(α(�)). Then G∞ is the cross-
product groupoid Nil ��R, with g∞(t) given by (3.18).
5. If (M, g(0)) has (R× H2)-geometry, there is a homomorphism α : Isom

(

R × H2
)

→ Isom
(

R × H2
)

/R. (Here Isom
(

R × H2
)

/R is isomorphic to Z2 × Isom(H2).)
Put �R = α−1(α(�)). Then G∞ is the cross-product groupoid (R × H2) � �R and
g∞(t) = gR + gH2(t), where gH2(t) has constant sectional curvature − 1

2t .

6. If (M, g(0)) has S̃L2(R)-geometry, there is a homomorphism α : Isom
(

S̃L2(R)
)

→ Isom
(

S̃L2(R)
)

/R. (Here Isom
(

S̃L2(R)
)

/R is isomorphic to Isom(H2).) Then

G∞ is the cross-product groupoid (R× H2)� (R˜×α(�)) and g∞(t) = gR + gH2(t),
where gH2(t) has constant sectional curvature − 1

2t . In writing R˜×α(�), the group
α(�) ⊂ Isom(H2) acts linearly on R via the orientation homomorphism α(�) → Z2.

Proof This follows from the results of Sect. 3.3. We just give two examples.
In case 4, suppose for simplicity that � ⊂ Nil and M = �\ Nil is compact. Fix a

basepoint p ∈ M . Following the proof of Theorem 5.12, we will first construct a limit-
ing time-1 Riemannian groupoid (G∞, Ox∞) = lims→∞ (M, p, gs(1)). From (3.15),
we have lims→∞ diam(M, gs(1)) = 0. For any r > 0, if s is sufficiently large then the
exponential map expp(s) : B(p)

r (0) → M for M , with the metric gs(1), is a surjective
local diffeomorphism. From the calculations in Sect. 3.3.3, after performing appropri-
ate diffeomorphisms the pullback metrics expp(s)

∗gs(1) will approach exp∗
p∞ g∞(1),

where g∞(1) is the metric of (3.18) and expp∞ : B(p∞)
r (0) → M∞ is the correspond-

ing exponential map on the r -ball in the tangent space at the basepoint p∞ ∈ M∞. The
limit groupoid G∞ consists of germs of local isometries of B(p∞)

r (0), the latter being
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equipped with the Riemannian metric exp∗
p∞ g∞(1). This groupoid is isometrically

equivalent to the cross-product groupoid Nil � Nil, with metric g∞(1). The extension
to times t other than 1 gives the Ricci flow on the cross-product groupoid Nil � Nil
with metric g∞(·).

In case 6, suppose that M is the pointed unit sphere bundle S1� of an oriented
hyperbolic surface �. The pointed Gromov–Hausdorff limit lims→∞(M, p, gs(1)) is
the surface � with the metric rescaled to have sectional curvature − 1

2 . We choose
points x j,k as in the proof of Proposition 5.9; we can choose them to be independent
of the parameter s (which replaces i). In the limit we obtain a groupoid (G∞, Ox∞)

whose unit space G(0)∞ consists of a disjoint union of manifolds, each isometrically
equivalent to a domain in R × H2; see Example 3.40. After making the remaining
identifications, this groupoid is isometrically equivalent to (R × �) � R, equipped
with the product metric gR + g�(1). The extension to times t other than 1 gives the
Ricci flow on (R×�)�R with metric gR +g�(t), where g�(t) has constant sectional
curvature − 1

2t . This, in turn, is isometrically equivalent to the cross-product groupoid
(R × H2) � (R × α(�)) with the metric gR + gH2(t). 	
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