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Abstract. We show that at the level of formal expansions, any compact Rie-
mannian manifold is the sphere at infinity of an asymptotically conical gradient

expanding Ricci soliton.

1. Introduction

When looking at Ricci flow on noncompact manifolds, the asymptotically con-
ical geometries are especially interesting. An asymptotically conical Riemannian
manifold (M, g0) is modelled at infinity by its asymptotic cone C(Y ). We take the
link Y to be a compact manifold with Riemannian metric h. If ? is the vertex of
C(Y ) then the Riemannian metric on C(Y )− ? is dr2 + r2h, with r ∈ (0,∞).

Suppose that there is a Ricci flow solution (M, g(t)) on M that exists for all
t ≥ 0, with g(0) = g0. One can analyze the large time and large distance behavior
of the flow by parabolic blowdowns. With a suitable choice of basepoints, there is
a subsequential blowdown limit flow g∞(·) that is defined at least on the subset of
C(Y )× [0,∞) given by {(r, θ, t) ∈ (0,∞)×Y × [0,∞) : t ≤ εr2}, for some ε > 0 [3,
Proposition 5.6]. For each t > 0, the metric g∞(t) is asymptotically conical, with
asymptotic cone C(Y ).

Since g∞(·) is a blowdown limit, the simplest scenario is that it is self-similar in
the sense that it is an expanding Ricci soliton flow coming out of the cone C(Y ).
This raises the question of whether such an expanding soliton exists for arbitrary
choice of (Y, h). Note that the relevant expanding solitons need not be smooth and
complete. For example, if (M, g0) is an asymptotically conical Ricci flat manifold,
then the blowdown flow g∞ is the static Ricci flat metric on C(Y ) − ?; this is an
expanding soliton, although C(Y ) may not be a manifold.

The equation for a gradient expanding Ricci soliton (M, g), with potential f , is

(1.1) Ric + Hess(f) = − 1

2
g.

The main result of this paper says that any (Y, h) is the sphere at infinity of an
asymptotically conical gradient expanding Ricci soliton, at least at the level of
formal expansions.
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Theorem 1.1. Given a compact Riemannian manifold (Y, h), there is a formal
solution to (1.1) on (0,∞)× Y , of the form

g = dr2 + r2h+ h0 + r−2h2 + · · ·+ r−2ih2i + · · ·(1.2)

f = − 1

4
r2 + f0 + r−2f2 + · · ·+ r−2if2i + · · · ,

where h2i is a symmetric 2-tensor field on Y and f2i ∈ C∞(Y ). The solution is
unique up to adding a constant to f0.

When writing (1.1) in the (0,∞)× Y decomposition, one obtains two evolution
equations and a constraint equation. The main issue in proving Theorem 1.1 is to
show that solutions of the evolution equations automatically satisfy the constraint
equation.

There has been earlier work on asymptotically conical expanding solitons.

(1) Schulze and Simon considered the Ricci flow on an asymptotically conical
manifold with nonnegative curvature operator [5]. They showed that there
is a long-time solution and its blowdown limit is an gradient expanding
soliton solution.

(2) Deruelle showed that if (Y, h) is simply connected and C(Y )−? has nonneg-
ative curvature operator then there is a smooth gradient expanding Ricci
soliton (M, g, f) with asymptotic cone C(Y ) [1].

(3) In the Kähler case, the analog of Theorem 1.1 was proven by the first author
and Zhang [3]. The Kähler case differs from the Riemannian case in two
ways. First, in the Kähler case the Ricci soliton equation reduces to a scalar
equation. Second, a Kähler cone has a natural holomorphic vector field that
generates a rescaling of the complex coordinates. In [3, Propositions 5.40
and 5.50] it was shown that there is a formal expanding soliton based on
this vector field, and then that the vector field is the gradient of a soliton
potential f . In the Riemannian case there is no a priori choice of vector
field. Instead, we work directly with the gradient soliton equation (1.1).

In what follows, we use the Einstein summation convention freely.
We thank MSRI for its hospitality during the Spring 2016 program. We thank

the referee for helpful comments.

2. Soliton equations

Put dim(Y ) = n. Consider a Riemannian metric on (0,∞) × Y given in radial
form by g = dr2 + H(r). Here for each r ∈ (0,∞), we have a Riemannian metric
H(r) on Y . Letting {xi}ni=1 be local coordinates for Y , the gradient expanding
soliton equation (1.1) becomes the equations

Rg
jk + (Hessg f)jk +

1

2
gjk = 0,(2.1)

Rg
rr + (Hessg f)rr +

1

2
= 0,

Rg
rl + (Hessg f)rl = 0.
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After multiplying by 2, these equations can be written explicitly as

−Hjk,rr + 2RH
jk −

1

2
HilHil,rHjk,r +HilHkl,rHij,r(2.2)

+ 2(HessH f)jk +Hjk,rf,r +Hjk = 0,

(2.3) −HjkHjk,rr +
1

2
HijHjk,rH

klHli,r + 2f,rr + 1 = 0

and

(2.4) Him (∇iHml,r −∇lHim,r) + 2f,rl −HmnHnl,rf,m = 0,

where the covariant derivatives are with respect to the Levi-Civita connection of
H(r).

We now write

H = r2h+ h0 + r−2h2 + · · ·+ r−2ih2i + · · · ,(2.5)

f = − 1

4
r2 + f0 + r−2f2 + · · ·+ r−2if2i + · · · .

We substitute (2.5) into (2.2)-(2.4) and equate coefficients. Using (2.4), one finds
that f0 is a constant. For i ≥ 0 we can determine h2i in terms of the quantities
{h, h0, . . . , h2i−2, f0, . . . , f2i} from (2.2), since the Hjk,rf,r-term and the Hjk-term
combine to give a factor of (i + 1)r−2i (h2i)jk. (When i = 0, we determine h0 in

terms of h and f0.) And we can determine f2i+2 in terms of {h, h0, . . . , h2i} from
(2.3), thanks to the f,rr-term. Iterating this procedure, one finds

Hjk = r2hjk − 2 [Rjk − (n− 1)hjk]

(2.6)

+ r−2
[
−∆LRjk +

1

3
(HesshR)jk +

4

3
Rhjk − 4Rjk − 4(

n

3
− 1)(n− 1)hjk

]
+O(r−4),

f = −1

4
r2 + const.−1

3
r−2

[
R− n(n− 1)

]
+

1

5
r−4

[
−∆R− 2|Ric |2h + 2(3n− 5)R− 4(n− 2)(n− 1)n

]
+O(r−6),

where all geometric quantities on the right-hand side of each equation are calculated
with respect to h. Here ∆L is the Lichnerowicz Laplacian.

As f can be changed by a constant without affecting (1.1), we will assume for
later purposes that the r0-term of f is −(n − 1). Then the asymptotic expansion
is uniquely determined by h.

By construction, the expressions that we obtain for (2.5) satisfy (2.2) and (2.3)
to all orders. It remains to show that (2.4) is satisfied to all orders. Using (2.6),
one can check that the left-hand side of equation (2.4) is O

(
r−7
)
.

3. Weighted contracted Bianchi identity

Consider a general Riemannian manifold (M, g) and a function f ∈ C∞(M).
We can consider the triple

(
M, g, e−f dvolg

)
to be a smooth metric-measure space.
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The analog of the Ricci tensor for such a space is the Bakry-Emery-Ricci tensor
Ric + Hess(f).

One can ask if there is a weighted analog of the contracted Bianchi identity
∇aRab = 1

2∇bR, in which the Ricci tensor is replaced by the Bakry-Emery-Ricci
tensor. It turns out that

(3.1) ∇a (Rab +∇a∇bf)− (∇af) (Rab +∇a∇bf) =
1

2
∇b

(
R+ 2∆f − |∇f |2

)
.

One recognizes R + 2∆f − |∇f |2 to be Perelman’s weighted scalar curvature [4,
Section 1.3].

A slight variation of (3.1) is

∇a

(
Rab +∇a∇bf +

1

2
gab

)
− (∇af)

(
Rab +∇a∇bf +

1

2
gab

)
=(3.2)

1

2
∇b

(
R+ 2∆f − |∇f |2 − f

)
.

A corollary is the known fact that if (M, g, f) is a gradient expanding Ricci soliton
then R+ 2∆f −|∇f |2− f is a constant. By adding this constant back to f , we can
assume that the soliton satisfies R+ 2∆f − |∇f |2 − f = 0.

4. Proof of Theorem 1.1

If we substitute an asymptotic expansion like (2.5) into (3.2) then it will be
satisfied to all orders. Returning to the variables {r, x1, . . . , xn}, let us write Xir =
Rir +∇i∇rf and S = R+ 2∆f − |∇f |2− f . If we assume that equations (2.2) and
(2.3) are satisfied then (3.2) gives

(4.1) ∇iXir − (∇if)Xir =
1

2
∂rS

and

(4.2) ∇rXir − (∂rf)Xir =
1

2
∂iS,

where the covariant derivatives on the left-hand side are with respect to the Levi-
Civita connection of g. Rewriting in terms of covariant derivatives with respect to
the Levi-Civita connection of H(r), the equations become

(4.3) Hij [∇jXir − (∂jf)Xir] =
1

2
∂rS

and

(4.4) ∂rXir −
1

2
HjkHki,rXjr − (∂rf)Xir =

1

2
∂iS.

Lemma 4.1. If S vanishes to all orders in r−1 then Xir vanishes to all orders in
r−1.

Proof. Suppose, by way of contradiction, that Xir = r−Nφ + O
(
r−N−1

)
for some

N ≥ 1 and some nonzero φ ∈ Ω1(Y ). Using the leading order asymptotics for
H and f from (2.6), the left-hand side of (4.4) is 1

2r
−N+1φi + O

(
r−N

)
. As the

right-hand side of (4.4) vanishes to all orders, we conclude that φ = 0, which is a
contradiction. This proves the lemma. �
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We now prove Theorem 1.1. It suffices to show that Xir vanishes to all orders.
Suppose, by way of contradiction, that Xir = r−Nφ + O

(
r−N−1

)
for some N ≥ 1

and some nonzero φ ∈ Ω1(Y ). From Lemma 4.1, S does not vanish to all orders.
Hence S = r−Mψ + O

(
r−M−1

)
for some M ≥ 1 and some nonzero ψ ∈ C∞(Y ).

Using the leading order asymptotics for H and f from (2.6), the left-hand side of
(4.4) is 1

2r
−N+1φi+O

(
r−N

)
. The right-hand side of (4.4) is 1

2r
−M∂iψ+O

(
r−M−1

)
.

Since φ is nonzero, we can say that M ≤ N − 1.
Next, the left-hand side of (4.3) is r−N−2hij∇jφi +O

(
r−N−3

)
, while the right-

hand side of (4.3) is − 1
2Mr−M−1ψ + O

(
r−M−2

)
. Since ψ is nonzero, we can say

that M ≥ N + 1. This is a contradiction and proves the theorem.

Remark 4.2. Consider the quantities

(4.5) Rg
rr + (Hessg f)rr +

1

2
− 1

2

(
Rg + 24gf − |∇f |2g − f

)
and Rg

rl +(Hessg f)rl. Without assuming that the gradient expanding soliton equa-
tions are satisfied, one finds that these quantities only involve first derivatives of
r. In this sense, the vanishing of these quantities on a level set of r is like the
constraint equations in general relativity. As a nonasymptotic statement, if (2.2)
and (2.3) hold, and the aforementioned quantities all vanish on one level set of r,
then from (4.3) and (4.4), they vanish identically.

Remark 4.3. Asymptotic expansions can also be constructed for asymptotically
conical gradient shrinking solitons. The leading term in the function f becomes
1
4r

2. The (nonasymptotic) uniqueness, in a neighborhood of the end, was shown in
[2].

References

[1] A. Deruelle, “Smoothing out positively curved metric cones by Ricci expanders”, Geom.
Funct. Anal. 26, p. 188-249 (2016)

[2] B. Kotschwar and L. Wang, “Rigidity of asymptotically conical shrinking gradient Ricci
solitons”, J. Diff. Geom. 100, p. 55-108 (2015)

[3] J. Lott and Zhou Zhang, “Ricci flow on quasiprojective manifolds II”, J. Eur. Math Soc. 18,

p. 1813-1854 (2016)
[4] G. Perelman, “The entropy formula for the Ricci flow and its geometric applications”,

preprint, https://arxiv.org/abs/math/0211159 (2002)

[5] F. Schulze and M. Simon, “Expanding solitons with non-negative curvature operator coming
out of cones”, Math. Z. 275, p. 625-639 (2013)

Department of Mathematics, University of California-Berkeley

E-mail address: lott@berkeley.edu

Department of Mathematics, University of California-Berkeley

E-mail address: patrickfw@berkeley.edu


