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Abstract
We consider the Kähler-Ricci flow on complete finite-volume metrics that live on
the complement of a divisor in a compact Kähler manifold X. Assuming certain
spatial asymptotics on the initial metric, we compute the singularity time in terms of
cohomological data on X. We also give a sufficient condition for the singularity, if
there is one, to be type II.

1. Introduction
In this article we study the Ricci flow on certain finite-volume complete Kähler metrics
that live on complements of divisors in compact Kähler manifolds. Our motivation,
which we now describe, comes from the general goal of understanding singularities
in Ricci flow.

It is known since Hamilton’s [13] first Ricci flow paper that singularities in a
Ricci flow on a manifold M arise from curvature blowup. The nature of the blowup
is important in the analysis of the singularity. We let Rm denote sectional curvatures.
If Tsing is a first singularity time, then the singularity is said to be type I if there is a
constant C < ∞ so that | Rm |(m, t) ≤ C/(Tsing − t) for all m ∈ M and t < Tsing.
Otherwise, the singularity is said to be type II.

In Ricci flow, the natural scaling is that t ime ∼ distance2. Since curvature ∼
distance−2, a naive dimensional analysis would suggest that all singularities are
type I; however, this is not the case. The first type II singularity was found on a
noncompact surface which is diffeomorphic to R2 but whose initial metric g(0)
describes a hyperbolic cusp capped off by a ball. The singular time is Tsing =

1
4π

Vol(R2, g(0)). At any time t < Tsing, the volume is Vol(R2, g(0)) − 4πt . Hence as
t → Tsing, there is no volume left. The geometric behavior as the time t approaches
Tsing is as follows. For t < Tsing, one can divide the surface into an inner region It

and an outer region Ot . As one goes out the end, the metric on Ot has asymptot-
ically constant negative curvature k(t), with k(t) remaining bounded as t → Tsing.
However, as t → Tsing, the outer region disappears and the inner region It dominates.
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The curvature on It goes to infinity pointwise as t → Tsing, and its geometry ap-
proaches a ray, in the pointed Gromov-Hausdorff sense. After a parabolic rescaling
to normalize the curvature, It approaches a special Ricci flow solution, the cigar
soliton, as one approaches the singularity time. For these results and more, we refer
to articles by Daskalopoulos, del Pino, Hamilton, and Sesum [7] – [10] and references
therein.

The goal of this article is to extend some of these two-dimensional results to
higher dimensions. A starting point in the two-dimensional analysis is the use of
isothermal coordinates on R2 to write the Ricci flow equation as a scalar equation
for the conformal factor. This method clearly does not work in higher dimensions, so
we must take another approach. Our approach is based on the observation that R2,
with a finite-volume asymptotically hyperbolic metric, can be considered as S2 − pt
with a metric on S2 which, in local coordinates near pt, approaches the Poincaré
metric 4 dz dz

|z|2 log2(|z|−2)
. This is an example of a quasi-projective manifold, meaning the

complement X = X − D of an effective divisor D with simple normal crossings in a
compact Kähler manifold X. Another simple example of a quasi-projective manifold
comes from taking the product X = (S2 − pt) × (S2 − pt) of the previous manifold
with itself. Then X = X − D, where X = S2 × S2 and D = (S2 × pt) ∪ (pt ×S2).

In what follows, we speak equivalently of a Kähler metric or a Kähler form. Let
ωX(0) be a complete Kähler metric with bounded sectional curvature on a complex
manifold X. It is known that there is some ε > 0 so that there is a Ricci flow solution on
the time interval [0, ε] with initial metric ωX(0), complete time slices, and uniformly
bounded sectional curvature (see [23]). It is easy to see that the time-t metric g(t) is
Kähler with respect to the initial (and fixed) complex structure, so it makes sense to
talk about the ensuing Kähler-Ricci flow (see [1]).

By definition, the singularity time Tsing is the supremum of the numbers T > 0
with the property that there is a Ricci flow solution ωX(t) with the given value at
t = 0, defined for t ∈ [0, T ], having complete time slices and uniformly bounded
sectional curvature on the time interval [0, T ]. Note that Tsing could be infinity, which
corresponds to not having a singularity.

To state the main result, we introduce some terminology. Given a compact Kähler
manifold X of complex dimension n, we write [KX] ∈ Im(H2(X; Z) → H2(X; R)) ∩
H(1,1)(X; R) for the first Chern class of the canonical line bundle KX = �n,0X. Note
that [KX] is the negative of the first Chern class of the holomorphic tangent bundle,
so [KX] = −c1(X).

For us, a divisor D = ∑
i Di in X is a formal sum of closed complex sub-

manifolds of X with complex codimension one. There is a corresponding class [D] ∈
Im(H2(X; Z) → H2(X; R))∩H(1,1)(X; R), whose Poincaré dual ∗[D] ∈ H2n−2(X; R)
is the sum of the pushforwards of the fundamental classes of the Di’s. Hereafter we
assume that D has normal crossings.
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Recall that a class c ∈ H(1,1)(X; R) is a Kähler class if there is a closed positive
form ω ∈ �(1,1)(X) whose de Rham cohomology class is c. In such a case, we write
c > 0.

The main theorem of the article concerns the Kähler-Ricci flow solution on
X = X − D, whose initial metric is a finite-volume Kähler metric ωX(0) with
superstandard spatial asymptotics. This notion, which is made precise in Definition
8.10, basically means that the metric at infinity can be decomposed into families of
products of hyperbolic cusp metrics. (An example of superstandard spatial asymptotics
is the product metric on X = (S2 − pt) × (S2 − pt) from before.) One motivation for
considering such asymptotics is that they arise for the finite-volume Kähler-Einstein
metric on X that exists when [KX + D] > 0 (see [16], [22], [24], [27], [28]).

If ωX(0) has superstandard spatial asymptotics, then in terms of the inclusion
X ⊂ X, we can extend ωX(0) by zero to get a closed (1, 1)-current on X (see
Theorem 6.6). There is a corresponding cohomology class [ωX(0)] ∈ H(1,1)(X; R).

The goal now is to express properties of the Kähler-Ricci flow on X in terms
of cohomological data. We remark that it may not be immediately clear which
cohomology group is the relevant one. For example, one may think that it should
be some sort of cohomology of X. However, it turns out that what is relevant is
the cohomology of the compactification X. (As a precedent, the cohomology of
the compactification is also key to the previously mentioned work on finite-volume
Kähler-Einstein manifolds.) We show that we can effectively compute Tsing from
cohomological data on X. We also give a sufficient condition to ensure a type II
singularity.

THEOREM 1.1
Suppose that ωX(0) is a Kähler metric on X with superstandard spatial asymptotics.
(1) The singularity time Tsing of the ensuing (unnormalized) Kähler-Ricci flow

equals the supremum of the numbers T > 0 so that [ωX(0)]+2πT [KX +D] ∈
H(1,1)(X; R) is a Kähler class on X.

(2) If D 
= ∅, Tsing < ∞, and [ωX(0)]+2πTsing[KX+D] vanishes in H(1,1)(X; R),
then there is a type II singularity at time Tsing.

When X has one complex dimension, Theorem 1.1 recovers some of the surface results
mentioned before (see Example 9.4).

In the course of proving Theorem 1.1 we obtain some results about Kähler-Ricci
flow that are valid for a wider class of initial metrics. We now describe some of these
results, in order of decreasing generality.

In Theorem 4.1 we characterize the singularity time for a normalized Kähler-
Ricci flow on any complex manifold X, whose initial metric ωX(0) is complete with
bounded curvature. For T ≥ 0, put ωT = −Ric(ωX(0))+ e−T (ωX(0) + Ric(ωX(0))).
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Theorem 4.1 says that the singularity time Tsing equals the supremum of the numbers
T > 0 with the property that there is some FT ∈ C∞(X) so that
• ωT + √−1∂∂FT is a Kähler metric on X which is bi-Lipschitz to ωX(0);
• for each k ≥ 0, the kth covariant derivatives of FT (with respect to the initial

metric ωX(0)) are uniformly bounded on X.
Theorem 4.1 is an extension of the work of Tian and Zhang [26, Proposition 1.1],
which deals with the case when X is compact. The interest of Theorem 4.1 is that the
issue of computing Tsing is reduced to a flow-independent question on X.

The next main result, Theorem 5.1, concerns long-time convergence. Under the
assumption that the initial metric ωX(0) satisfies −Ric(ωX(0))+√−1∂∂̄f > εωX(0)
for some ε > 0 and some smooth function f with bounded covariant derivatives, we
show that the normalized Kähler-Ricci flow (3.2) exists forever and that its time slices
converge smoothly to a complete Kähler-Einstein metric on X with Einstein constant
−1. This is an extension of [4, Theorem 1.1] by Chau.

The next goal is to characterize the singularity time in cohomological terms. To
do so, we specialize to initial metrics on a quasi-projective manifold X = X − D

that satisfy standard spatial asymptotics. In Theorem 7.1 we show that this property
is shared by the time slices of the ensuing normalized Kähler-Ricci flow. We can
then extend ωX(t) by zero to define a closed (1, 1)-current on X and a corresponding
cohomology class [ωX(t)] ∈ H(1,1)(X; R). We prove that [ωX(t)] = e−t [ωX(0)] +
2π(1 − e−t ) [KX + D]. In Theorem 6.6 we show that if the Kähler-Ricci flow on X,
with initial metric ωX(0), extends to time T , then [ωX(T )] is a Kähler class on X. The
proof uses a characterization of Kähler classes that is due to Demailly and Paun [11].

In Theorem 8.17 we further specialize to initial metrics on X = X−D that satisfy
superstandard spatial asymptotics. We show that this property is again shared by the
time slices of the ensuing Kähler-Ricci flow. In Theorem 8.19 we show that if [ωX(t)]
happens to be a Kähler class on X, then ωX(t) can be written as ωt + √−1∂∂Ft for
an appropriate Ft ∈ C∞(X) ∩ L∞(X). Along with Theorem 4.1, this proves the first
part of Theorem 1.1.

The proof of the second part of Theorem 1.1 is by contradiction. Suppose that the
singularity is type I. By a result of Naber [20] (which is based on Perelman’s work
[21]), there is a space-time sequence (xi, ti) with ti → Tsing, so that after rescaling
by 1/(Tsing − ti), the corresponding pointed Ricci flow solutions converge to a κ-
noncollapsed gradient-shrinking soliton Y with uniformly bounded curvature. Since
D 
= ∅, the manifold Y is noncompact. By our assumption on the limit of the Kähler
class, Y has finite volume. This leads to a contradiction. Therefore, the singularity
must be type II.

We mention some open problems. The first problem is to understand what kind of
rescaling limits can arise from type II singularities as above. A general construction of
Hamilton gives a rescaling limit which is an eternal solution, that is, which exists for
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t ∈ R (see [6, Proposition 8.17]). The question is whether it must be a gradient-steady
soliton, as is the case in one complex dimension, where one gets the cigar soliton.
Another question is which gradient-steady solitons can occur as rescaling limits.

A second problem is to work out a spatial asymptotic expansion for the metric
ωX(t), assuming some precise spatial asymptotics for ωX(0). The analogous question
for a Kähler-Einstein metric on X = X − D, which exists when [KX + D] > 0, was
addressed in [22] and [28].

2. Conventions
Given a Kähler manifold X of complex dimension n, the Kähler form is a real (1, 1)-
form ω which can be expressed in holomorphic normal coordinates at a point p by
ω(p) =

√−1
2

∑n

i=1 dzi ∧ dzi . The Kähler form of the Poincaré metric is given on the

upper half plane H = {w ∈ C : Im(w) > 0} by
√−1

2
dw∧ dw

(Im(w))2 . This is the pullback of
the Kähler form

2
√−1

dz ∧ dz

|z|2 log2(|z|−2)
= −√−1∂∂̄ log

(|z|2 log2(|z|−2)
)

(2.1)

on �∗ = � − {0}, under the map z = e
√−1w. Here � denotes the unit ball in C.

Let L be a holomorphic line bundle over X with Hermitian metric hL. If σ is a
section of L, then we write |σ |2L = hL(σ, σ ). There is a unique connection ∇L which
is compatible with both the Hermitian metric hL and the holomorphic structure on L.
Let F (hL) ∈ �2(M) be the curvature form of ∇L. The de Rham cohomology class of√−1

2π
F (hL) equals c1(L) ∈ Im(H2(X; Z) → H2(X; R)). If σ is a local holomorphic

section of L, then F (hL) = − ∂∂ log |σ |2hL
. If KX = �n,0X is the canonical bundle

of X, then we write [KX] for c1(KX) = − c1(X).
The Ricci form is

Ric = −√−1F
(
hKX

) = √−1∂∂ log |σ |2KX
= −√−1∂∂ log det(gij ), (2.2)

where σ is locally dz1 ∧ · · · ∧ dzn. Then [Ric] = −2πc1(KX) = 2πc1(X) ∈
H2(X; R). For the Poincaré metric on C∗, |σ |2KX

= |z|2 log2(|z|−2), so Ric(ω) = −ω.

3. The potential flow
We consider Ricci flow on a connected complex manifold X of complex dimension
n, which may be noncompact. Suppose that ω0 is a smooth complete Kähler metric
on X with bounded curvature. The unnormalized Kähler-Ricci flow equation is

∂ω̃t

∂t
= −Ric(ω̃t ), ω̃0 = ω0, (3.1)
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while for us the normalized Kähler-Ricci flow equation is

∂ω̃t

∂t
= −Ric(ω̃t ) − ω̃t , ω̃0 = ω0. (3.2)

(Note that the right-hand side of (3.1) differs by a factor of two from the usual Ricci
flow equation dg/dt = −2 Ric.) One can pass between solutions of (3.1) and (3.2)
by rescaling the metric and reparameterizing time, so there is no essential difference
between the two equations. Theorem 1.1 is stated for the unnormalized equation (3.1)
but in the rest of the article, we use the normalized equation (3.2). The reason is that
the Poincaré metric is a static solution of (3.2); this fact will be convenient in some
constructions.

There is some T > 0 so that there is a solution of (3.2) on the time interval [0, T ],
having complete time slices and uniformly bounded curvature on [0, T ] (see [23]).
Furthermore, such a solution is unique on [0, T ] (see [5]).

As is standard in Kähler-Ricci flow, we reduce (3.2) to a scalar equation. To do
so, note that if we have a solution of (3.2), then after passing to de Rham cohomology,
we get an ordinary differential equation in H2(X; R):

d

dt
[ω̃t ] = −[Ric(ω̃t )] − [ω̃t ] (3.3)

= −[Ric(ω0)] − [ω̃t ].

The solution to (3.3) is [ω̃t ] = −[Ric(ω0)] + e−t ([ω0] + [Ric(ω0)]). This suggests
putting

ωt = −Ric(ω0) + e−t
(
ω0 + Ric(ω0)

)
(3.4)

and making an ansatz for a solution of (3.2), of the form ωt + √−1∂∂u for some
scalar function u.

Consider the equation

∂u

∂t
= log

(ωt + √−1∂∂̄u)n

ωn
0

− u, u(0, ·) = 0. (3.5)

It is implicit that we only consider solutions u of (3.5) on time intervals so that
ωt + √−1∂∂̄u > 0. Note that a solution of (3.5) automatically has ∂u

∂t
(0, ·) = 0.

LEMMA 3.6
Suppose that there is a solution to (3.2) on a time interval [0, T ], with complete time
slices and uniformly bounded curvature. Then there is a smooth solution for u in (3.5)
on the time interval [0, T ] so that
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(1) for each t ∈ [0, T ], ωt + √−1∂∂̄u is a Kähler metric which is bi-Lipschitz
equivalent to ω0;

(2) for each k, the kth covariant derivatives of u (with respect to the initial metric
ω0) are uniformly bounded.

Also, ω̃t = ωt + √−1∂∂̄u.
Conversely, suppose that there is a smooth solution to (3.5) on a time interval

[0, T ] so that
(1) for each t ∈ [0, T ], ωt + √−1∂∂̄u is a Kähler metric which is bi-Lipschitz

equivalent to ω0;
(2) for each k, the kth covariant derivatives of u (with respect to the initial metric

ω0) are uniformly bounded.
Then ω̃t = ωt + √−1∂∂̄u is a solution to (3.2) on [0, T ], with complete time slices
and uniformly bounded curvature.

Proof
Suppose that we have a solution to (3.2) on a time interval [0, T ], with complete time
slices and uniformly bounded curvature. Put

u(t) =
∫ t

0
es−t log

ω̃n
s

ωn
0

ds, (3.7)

so that

∂u

∂t
= log

ω̃n
t

ωn
0

− u. (3.8)

Then for each k, the kth covariant derivatives of u (with respect to the initial metric
ω0) are uniformly bounded. Also,

∂

∂t
(ω̃t − ωt − √−1∂∂̄u) = −(ω̃t − ωt − √−1∂∂̄u). (3.9)

As ω̃t − ωt − √−1∂∂̄u vanishes at t = 0, it follows that ω̃t = ωt + √−1∂∂̄u for all
t . Thus u satisfies (3.5).

Conversely, suppose that we have a smooth solution to (3.5) on a time interval
[0, T ] so that each ωt +

√−1∂∂̄u is a Kähler metric which is bi-Lipschitz equivalent to
ω0, and for each k, the kth covariant derivatives of u (with respect to the initial metric
ω0) are uniformly bounded. Putting ω̃t = ωt + √−1∂∂̄u gives a solution to (3.2) on
[0, T ]. Because ω̃t is bi-Lipschitz equivalent to ω0, each time slice is complete. From
the derivative bounds on u, the curvature of ω̃t is uniformly bounded on [0, T ]. �
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Remark 3.10
In view of the uniqueness of ω̃ on [0, T ], the uniqueness of u on [0, T ] is an immediate
consequence, since u must satisfy the equation (3.8) and hence be given by (3.7).

4. Existence result
In this section we characterize the first singularity time for a Kähler-Ricci flow solution
on a general complex manifold. Recall the definition of ωt from (3.4).

THEOREM 4.1
Suppose that ω0 is a complete Kähler metric on a complex manifold X, with bounded
curvature.

Let T1 be the supremum (possibly infinite) of the numbers T ′ so that there is a
smooth solution for u in (3.5) on the time interval [0, T ′] such that
(1) for each t ∈ [0, T ′], ωt + √−1∂∂̄u is a Kähler metric which is bi-Lipschitz

equivalent to ω0;
(2) for each k, the kth covariant derivatives of u (with respect to the initial metric

ω0) are uniformly bounded on [0, T ′].
Let T2 be the supremum (possibly infinite) of the numbers T for which there is a

function FT ∈ C∞(X) such that
(3) ωT + √−1∂∂̄FT is a Kähler metric which is bi-Lipschitz equivalent to ω0;
(4) for each k, the kth covariant derivatives of FT (with respect to the initial metric

ω0) are uniformly bounded.
Then T1 = T2.

Proof
If there is a solution for u in (3.5) on a time interval [0, T ′] satisfying (1) and (2), then
we can take FT ′ = u(T ′) to show that T2 ≥ T1. Thus it suffices to show that T1 ≥ T2.
That is, we need to show that if we can find a function FT satisfying (3) and (4), then
we can solve u in (3.5) on the time interval [0, T ) so that for each T ′ ∈ [0, T ), the
restriction of the solution to [0, T ′] satisfies (1) and (2).

We know that there is a solution u for short time satisfying (1) and (2). Suppose
initially that we have a solution on some time interval [0, T̂ ), with T̂ < T , so that (1)
and (2) are satisfied on subintervals [0, T ′] ⊂ [0, T̂ ). Our goal is to derive uniform
estimates for the solution u and ω̃t , that is, to show that there are positive numbers
C > 1 and {Ak}∞

k=0 so that for all t ∈ [0, T̂ ) and k ≥ 0, supx∈X |∇ku|(t, x) ≤ Ak and
C−1ω0 ≤ ω̃t ≤ Cω0.

Note that in what follows, C always stands for a positive constant, which might
be different from place to place.

We now give some equations derived from (3.5), as in [26]. All of the inner
products and Laplacians are computed using the metric ω̃t = ωt +

√−1∂∂̄u. We also
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use the fact that

�u = Tr(ω̃−1
t

√−1∂∂̄u), (4.2)

where � stands for the Laplacian operator with respect to the flow metric ω̃t .
First, the t-derivative of (3.5) gives

∂

∂t

(∂u

∂t

)
= �

(∂u

∂t

)
− e−t Tr

(
ω̃−1

t (ω0 + Ric(ω0))
) − ∂u

∂t
. (4.3)

This implies that

∂

∂t

(
et ∂u

∂t

)
= �

(
et ∂u

∂t

)
− Tr

(
ω̃−1

t (ω0 + Ric(ω0))
)
. (4.4)

Also, since

n = Tr(ω̃−1
t ω̃t ) = Tr

(
ω̃−1

t (ωt + √−1∂∂̄u)
)

= Tr
(
ω̃−1

t (− Ric(ω0) + e−t (ω0 + Ric(ω0))
) + �u, (4.5)

we get

∂

∂t

(∂u

∂t
+ u

)
= �

(∂u

∂t
+ u

)
− n − Tr(ω̃−1

t Ric(ω0)). (4.6)

A linear combination of (4.4) and (4.6) gives that for any T > 0,

∂

∂t

(
(1 − et−T )

∂u

∂t
+ u

)
= �

(
(1 − et−T )

∂u

∂t
+ u

)
− n + Tr

(
ω̃−1

t ωT

)
. (4.7)

(Equation (4.6) can be viewed as the limiting case of equation (4.7) when T → ∞.)
Next, the t-derivative of (4.3) gives

∂

∂t

(∂2u

∂t2

)
= �

(∂2u

∂t2

)
− Tr

(
ω̃−1

t

∂ω̃t

∂t
ω̃−1

t

√−1∂∂̄
∂u

∂t

)
+ e−t Tr

(
ω̃−1

t (ω0 + Ric(ω0))
) + e−t Tr

(
ω̃−1

t

∂ω̃t

∂t
ω̃−1

t (ω0 + Ric(ω0))
)

− ∂2u

∂t2
. (4.8)

As

− Tr

(
ω̃−1

t

∂ω̃t

∂t
ω̃−1

t

[√−1∂∂̄
∂u

∂t
− e−t

(
ω0 + Ric(ω0)

)])

= − Tr
(
ω̃−1

t

∂ω̃t

∂t

)2
= −

∣∣∣∂ω̃t

∂t

∣∣∣2
, (4.9)
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we obtain

∂

∂t

(∂2u

∂t2

)
= �

(∂2u

∂t2

)
+ e−t Tr

(
ω̃−1

t (ω0 + Ric(ω0))
) − ∂2u

∂t2
−

∣∣∣∂ω̃t

∂t

∣∣∣2
. (4.10)

Its summation with (4.3) is

∂

∂t

(∂2u

∂t2
+ ∂u

∂t

)
= �

(∂2u

∂t2
+ ∂u

∂t

)
−

(∂2u

∂t2
+ ∂u

∂t

)
−

∣∣∣∂ω̃t

∂t

∣∣∣2
. (4.11)

By assumption the curvature is uniformly bounded on compact intervals of [0, T̂ ).
Hence we can apply the maximum principle freely on such intervals. Applying it to
(4.11) gives

∂2u

∂t2
+ ∂u

∂t
≤ Ce−t , (4.12)

where C = supx∈X

(
∂2u

∂t2 + ∂u

∂t

)
(0, x). From (3.8),

ω̃n
t = e

∂u
∂t

+uωn
0 . (4.13)

Hence (4.12) indicates the essential decreasing of the volume form along the flow,
that is,

∂

∂t

(∂u

∂t
+ u

)
≤ Ce−t . (4.14)

Equivalently, ∂

∂t
(et ∂u

∂t
) ≤ C, so

∂u

∂t
≤ Cte−t , (4.15)

which implies that

u ≤ C. (4.16)

To get a lower bound on u, we use (4.7). We have a smooth bounded function FT

so that ωT + √−1∂∂̄FT is a Kähler metric. Then (4.7) can be reformulated as

∂

∂t

(
(1 − et−T )

∂u

∂t
+ u − FT

)
= �

(
(1 − et−T )

∂u

∂t
+ u − FT

)
− n

+ Tr
(
ω̃−1

t (ωT + √−1∂∂̄FT )
)
. (4.17)
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The maximum principle gives

(1 − et−T )
∂u

∂t
+ u − FT + nt ≥ − sup FT . (4.18)

Equations (4.15) and (4.18) imply a uniform lower bound for u on [0, T̂ ) of the form

u ≥ −Cte−t (1 − et−T ) + FT − sup FT − nt. (4.19)

Also, equations (4.16) and (4.18) imply a uniform lower bound for ∂u

∂t
on [0, T̂ ) of the

form

∂u

∂t
≥ −C + FT − sup FT − nt

1 − et−T
. (4.20)

So far we have obtained 0th-order estimates for u and ∂u

∂t
. To get uniform higher-

order estimates (for u) on [0, T̂ ), we modify the background form ωt to make it a
Kähler form.

First, for any t ∈ [0, T̂ ), one has

ωt =
(e−t − e−T

1 − e−T

)
ω0 +

( 1 − e−t

1 − e−T

)
ωT . (4.21)

Putting

ω̂t =
(e−t − e−T

1 − e−T

)
ω0 +

( 1 − e−t

1 − e−T

)
(ωT + √−1∂∂̄FT ) (4.22)

gives a Kähler form which, in fact, is uniformly Kähler for t ∈ [0, T̂ ). If we put

v = u −
( 1 − e−t

1 − e−T

)
FT , (4.23)

then from (4.21), (4.22), and (4.23),

ω̃t = ωt + √−1∂∂̄u = ω̂t + √−1∂∂̄v. (4.24)

The evolution equation for v is

∂v

∂t
= log

(ω̂t + √−1∂∂̄v)n

ωn
0

− v − FT

1 − e−T
, v(0, ·) = 0. (4.25)

The initial value for ∂v

∂t
is no longer zero, but this will not cause any problems. The

extra term FT /(1 − eT ) in the right-hand side of (4.25) is also well controlled. The
point is that equation (4.25) is phrased in terms of a background metric ω̂t which
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is uniformly Kähler on [0, T̂ ). The 0th-order bounds on u and ∂u

∂t
imply 0th-order

bounds on v and ∂v

∂t
.

In the following, we sketch the argument to obtain the higher-order estimates, which
is fairly standard.

We begin with an estimate on �ω̂v. We use computations in [29] to derive an
inequality for solutions of (4.25). This inequality is closely related to [1, (1.5)], [26,
(2.3)]), and [27, (15)].

LEMMA 4.26
Given a solution of (4.25), there is an inequality of the form

eCv
(
� − ∂

∂t

)(
e−Cv(n + �ω̂t

v)
) ≥�ω̂t

(
log

�

ω̂n
t

)
− n2 inf

i 
=j
Riīj j̄ ,t − n

+
(
C

∂v

∂t
− C

)
(n + �ω̂v)

+ (C + inf
i 
=j

Riīj j̄ ,t )e
−

∂v
∂t

+v+log �
ω̂n
t

n−1 (n + �ω̂v)
n

n−1 ,

(4.27)

where

n + �ω̂t
v = Tr

(
ω̂−1

t (ω̂t + √−1∂∂̄v)
) = Tr(ω̂−1

t ω̃t ) > 0, (4.28)

� = e
FT

1−e−T ωn
0 (4.29)

and C is a constant that depends on t , ω0, and FT .

Proof
As in [29, Section 2], suppose that φ is a smooth solution of

(ω + √−1∂∂̄φ)n = ef ωn, (4.30)

where ω is a Kähler metric on a Kähler manifold X and f is a smooth function. We
have the following inequality at any point p ∈ X:

eCφ�
(
e−Cφ(n + �ωφ)

) ≥�ωf − n2 inf
i 
=j

Riīj j̄ − Cn(n + �ωφ)

+ (C + inf
i 
=j

Riīj j̄ )e− F
n−1 (n + �ωφ)

n
n−1 . (4.31)
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Here Riīj j̄ comes from the curvature tensor for the metric ω (written in terms of any
unitary frame {ei}n

i=1), C is any (fixed) positive constant such that C+infi 
=j Riīj j̄ > 0
at p, and � is the Laplacian with respect to ω + √−1∂∂̄φ. We emphasize that this
inequality is pointwise and the “inf” is taken at the point p.

Now we consider the flow. Equation (4.25) can be reformulated as

(ω̂t + √−1∂∂̄v)n = e
∂v
∂t

+v+log �

ω̂n
t ω̂n

t . (4.32)

From (4.31),

eCv�
(
e−Cv(n + �ω̂t

v)
) ≥�ω̂t

(∂v

∂t
+ v + log

�

ω̂n
t

)
− n2 inf

i 
=j
Riīj j̄ ,t

− Cn(n + �ω̂t
v)

+ (C + inf
i 
=j

Riīj j̄ )e−
∂v
∂t

+v+log �
ω̂n
t

n−1 (n + �ω̂t
v)

n
n−1 , (4.33)

where Riīj j̄ ,t is computed using the metric ω̂t , C is a positive constant such that
C + infi 
=j Riīj j̄ ,t > 0 and � is the Laplacian with respect to the flow metric ω̂t +√−1∂∂̄v. Next, one computes that

eCv
(
− ∂

∂t

) (
e−Cv(n + �ω̂t

v)
) =C

∂v

∂t
(n + �ω̂t

v) − ∂

∂t
(n + �ω̂t

v)

=C
∂v

∂t
(n + �ω̂t

v) − ∂

∂t
Tr

(
ω̂−1

t

√−1∂∂̄v
)

=C
∂v

∂t
(n + �ω̂t

v) + Tr
(
ω̂−1

t

∂ω̂t

∂t
ω̂−1

t

√−1∂∂̄v
)

− �ω̂t

(∂v

∂t

)
. (4.34)

Adding (4.33) and (4.34) gives

eCv
(
� − ∂

∂t

)(
e−Cv(n + �ω̂t

v)
) ≥�ω̂t

(
log

�

ω̂n
t

)
− n2 inf

i 
=j
Riīj j̄ ,t − n

+
(
−Cn + C

∂v

∂t
+ 1

)
(n + �ω̂t

v)

+ Tr
(
ω̂−1

t

∂ω̂t

∂t
ω̂−1

t

√−1∂∂̄v
)

+ (C + inf
i 
=j

Riīj j̄ ,t )e
−

∂v
∂t

+v+log �
ω̂n
t

n−1 (n + �ω̂t
v)

n
n−1 .

(4.35)
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Since ∂ω̂t

∂t
is relatively bounded with respect to ω̂t , equation (4.28) implies that

Tr
(
ω̂−1

t

∂ω̂t

∂t
ω̂−1

t

√−1∂∂̄v
)

≥ −C(n + �ω̂v) − C (4.36)

for some C > 0. Hence after a redefinition of C, we have

eCv
(
� − ∂

∂t

)(
e−Cv(n + �ω̂v)

) ≥�ω̂t

(
log

�

ω̂n
t

)
− n2 inf

i 
=j
Riīj j̄ ,t − C

+
(
C

∂v

∂t
− C

)
(n + �ω̂v)

+ (C + inf
i 
=j

Riīj j̄ ,t )e
−

∂v
∂t

+v+log �
ω̂n
t

n−1 (n + �ω̂v)
n

n−1 .

(4.37)

This proves the lemma. �

Using Lemma 4.26 and the 0th-order bounds on v and ∂v

∂t
, along with the uniform

control on ω̂t as a metric, we conclude that there is an estimate of the form(
� − ∂

∂t

)(
e−Cv(n + �ω̂t

v)
) ≥ −C +

(
C

∂v

∂t
− C

)
(n + �ω̂t

v)

+ C(n + �ω̂t
v)

n
n−1

≥ −C − C(n + �ω̂t
v)

+ C(n + �ω̂t
v)

n
n−1 . (4.38)

The maximum principle now gives an a priori upper bound for e−Cv(n + �ω̂t
v) and

hence also for (n + �ω̂t
v).

This Laplacian upper bound gives a trace upper bound on ω̃t , relative to ω̂t , from
(4.24). There is also a determinant lower bound on ω̃t relative to ω̂t , coming from
(4.32), where we use the lower bounds on v and ∂v

∂t
. This gives a uniform bound on

ω̃t , relative to ω̂t .
Next, we look at third-order estimates. Following [1] and [29], we consider the

expression S = g̃ij̄ g̃kl̄ g̃λη̄vil̄λvj̄kη̄, where g̃ij̄ is the metric tensor corresponding to ω̃t .
As in [4, Section 5.3], there are estimates of the form(

� − ∂

∂t

)
S ≥ −C · S − C,

(
� − ∂

∂t

)
�ω̂t

v ≥ C · S − C. (4.39)
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Choosing A > 0 large enough, as in [1, (1.25)] and [4, (5.17)], there is an estimate
of the form (

� − ∂

∂t

)
(S + A�ω̂t

v) ≥ C · S − C. (4.40)

Applying the maximum principle and using the uniform control on �ω̂t
v, we obtain

an a priori upper bound on S. This provides a spatial C2,α-bound for v and a Cα-bound
for the metric coefficients of ω̃t .

One can then obtain further derivative bounds (cf. [4, Section 5.4]) and apply
parabolic Schauder estimates (cf. [4, Section 5.5]). In this way, one obtains a priori
estimates on all of the derivatives of v. These imply the desired derivative estimates
on u.

To summarize, we assumed that we have a solution of (3.5) on a time interval
[0, T̂ ), with T̂ < T , so that conditions (1) and (2) are satisfied on compact subintervals
of [0, T̂ ). Then we have shown that there are numbers C > 1 and {Ak}∞

k=0 so that for
all t ∈ [0, T̂ ) and x ∈ X, we have |∇ku|(t, x) ≤ Ak and C−1ω0 ≤ ω̃t ≤ Cω0.

Let {ti}∞
i=1 be a sequence in [0, T̂ ) with limi→∞ ti = T̂ . We can extract a

subsequence of {u(ti , ·)}∞
i=1 that converges in the pointed C∞-topology to some

uT̂ (·) ∈ C∞(X). Now uT̂ is uniformly bounded on X, along with its covariant deriva-
tives (with respect to ω0). From (4.13), it follows that ωT̂ + √−1∂∂̄u∞ is Kähler and
bi-Lipschitz to ω0, with bounded curvature. Hence we can solve the equation in (3.5)
to get a solution U on a time interval [T̂ , T̂ + ε) with initial condition U (T̂ ) = uT̂ .
One then shows that the solutions u(·), on [0, T̂ ), and U (·), on [T̂ , T̂ + ε), join to
form a smooth solution of (3.5) on [0, T̂ + ε), which satisfies conditions (1) and (2)
on compact subintervals. It follows that there is a solution of (3.5) on [0, T ) so that
for each T ′ ∈ [0, T ), the restriction of the solution to [0, T ′] satisfies conditions (1)
and (2). This finishes the proof. �

5. Long-time convergence
In this section we prove a long-time convergence result for the normalized Kähler-Ricci
flow equation, under the assumption that the initial metric satisfies an inequality of the
form −Ric(ω0) + √−1∂∂̄f > εω0 for some bounded function f and some positive
constant ε. We show that the solution smoothly approaches a complete Kähler-Einstein
metric, having Einstein constant −1. This result can be seen as a generalization of
results in [1] and [26] concerning Kähler-Ricci flow solutions on compact manifolds.
It is also a generalization of [4, Theorem 1.1], which proves the same conclusion under
the assumption that −Ric(ω0) + √−1∂∂̄f = ω0.
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THEOREM 5.1
(1) Suppose that ω0 is a complete Kähler metric on a complex manifold X with

bounded curvature, such that −Ric(ω0) + √−1∂∂̄f ≥ 0 for some smooth
function f with bounded kth covariant derivatives (with respect to ω0) for
each k ≥ 0. Then the flow (3.2) (or, equivalently, (3.5)) exists forever.

(2) Suppose in addition that −Ric(ω0) + √−1∂∂̄f > εω0 for some ε > 0.
Then the flow (3.2) (or, equivalently, (3.5)) converges smoothly to a complete
Kähler-Einstein metric with Einstein constant −1.

Proof
Suppose first that −Ric(ω0) + √−1∂∂̄f ≥ 0. Then

ωt +(1−e−t )
√−1∂∂f = e−tω0+(1−e−t )

(−Ric(ω0)+√−1∂∂f
) ≥ e−tω0. (5.2)

From Theorem 4.1, the flow (3.2) exists forever.
Now suppose that −Ric(ω0) + √−1∂∂̄f > εω0. To prove the long-time conver-

gence, we need estimates that are uniform in time. The upper bounds on u and ∂u

∂t
from

(4.16) and (4.15) are uniform for all time. For the lower bound, we use the following
variation on (4.6):

∂

∂t

(∂u

∂t
+u−f

)
= �

(∂u

∂t
+u−f

)
−n+ Tr

(
ω̃−1

t (−Ric(ω0) +√−1∂∂̄f )
)
. (5.3)

Now

Tr
(
ω̃−1

t (−Ric(ω0) + √−1∂∂̄f )
) ≥ n ·

( (−Ric(ω0) + √−1∂∂̄f )n

ω̃n
t

) 1
n

≥ n ·
( (εω0)n

ω̃n
t

) 1
n

= nε e− 1
n

( ∂u
∂t

+u), (5.4)

so (5.3) gives

∂

∂t

(∂u

∂t
+ u − f

)
≥ �

(∂u

∂t
+ u − f

)
− n + nε e− f

n e− 1
n

( ∂u
∂t

+u−f ). (5.5)

Putting Y (t) = infx∈X( ∂u

∂t
+u−f )(x, t), we can apply the maximum principle to (5.5)

to conclude that Y (t) is bounded below by the solution c(t) to the ordinary differential
equation

dc

dt
= −n + nε e− sup f

n e− c
n (5.6)
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with initial condition c(0) = Y (0). It follows that there is a lower bound

∂u

∂t
+ u ≥ −C (5.7)

which is uniform in t . When combined with the upper bounds on u and ∂u

∂t
, equation

(5.7) provides uniform lower bounds for u and ∂u

∂t
.

As in the proof of Theorem 4.1, we now transform the flow equation to prove the
higher-order estimates. Putting

ω̂t = e−tω0 + (1 − e−t )
( − Ric(ω0) + √−1∂∂̄f

)
, (5.8)

we have

ω̂t ≥ (
e−t + ε(1 − e−t )

)
ω0, (5.9)

so the family {ω̂t}t≥0 is uniformly Kähler. Next, putting

w = u − (1 − e−t )f, (5.10)

we can write

ω̃t = ωt + √−1∂∂̄u = ω̂t + √−1∂∂̄w. (5.11)

Then the flow equation (3.5) becomes

∂w

∂t
= log

(ω̂t + √−1∂∂̄w)n

ωn
0

− w − f, w(0, ·) = 0. (5.12)

We can use this equation to find higher-order estimates on u, as in the proof of
Theorem 4.1. Note that the background metric ω̂t is uniformly Kähler, and from (5.8)
it is uniformly bounded above. Hence the higher-order estimates will also be uniform
in time. So we have achieved uniform estimates on u for all time.

We now justify the convergence. Using the uniform bounds that we have obtained
so far, equation (4.3) implies an inequality of the form

∂

∂t

(
et ∂u

∂t

)
≥ �

(
et ∂u

∂t

)
− C. (5.13)

From the maximum principle, et ∂u

∂t
+ Ct ≥ 0, and so

∂u

∂t
≥ −Cte−t . (5.14)

Combining (4.15) and (5.14), we conclude that limt→∞ u(x, t) = u∞(x) for some
function u∞ on X. Using the uniform higher-order bounds on u(t), one sees that there
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is uniform CK -convergence of u(t) toward u∞ for any K > 0. Taking the limit
of (3.2) as t → ∞ shows that the limiting Kähler metric ω∞ = − Ric(ω0) +√−1∂∂u∞ satisfies Ric(ω∞) = −ω∞. Also, ω∞ is bi-Lipschitz equivalent to ω0; see
the discussion after (4.38), and note that

ω∞ = ( − Ric(ω0) + √−1∂∂f
) + √−1∂∂(u∞ − f ). (5.15)

Thus ω∞ is complete. �

For an example of Theorem 5.1, see Example 6.18.

6. Standard spatial asymptotics
In this section we begin to specify the spatial asymptotics that we want to consider. The
goal is to come up with the widest class of spatial asymptotics which is preserved by the
Ricci flow and for which we can prove something nontrivial. We introduce the notion
of standard spatial asymptotics for a Kähler metric ωX on a quasi-projective manifold
X = X −D. Assuming standard spatial asymptotics, we prove some properties of the
extension of ωX by zero to X. As an example of standard spatial asymptotics, in the
case when [KX + D] > 0, we show how to recover the Kähler-Einstein metric on X

(see [16], [24], [27]) by using the Kähler-Ricci flow, via Theorem 5.1 or [4, Theorem
1.1].

In the next section we show that the property of having standard spatial asymp-
totics is preserved by Ricci flow. In Section 8 we consider a refinement called super-
standard spatial asymptotics.

Suppose that X is a compact n-dimensional complex manifold and D is an
effective divisor with simple normal crossings. Put X = X − D. Let D = ∑k

i=1 Di

be the decomposition of D into its irreducible components. Let Li be the holomorphic
line bundle on X corresponding to Di . Put LD = ⊗k

i=1 Li .
Let hLi

be a Hermitian metric on Li . There is a holomorphic section σi of Li

whose zero-set is Di , unique up to multiplication by a nonzero complex number.
The section σi is nondegenerate along Di (see [12, Theorem II, (6.6)]). That is, the
restriction of the bundle map ∇Li σi : T X → Li to Di factors through an isomorphism
T X/T Di → Li

∣∣
Di

.

Given a multiindex I = (i1, . . . , im), put DI = ⋂m

j=1 Dij . We write |I | = m.
Put Dint

I = DI − ⋃
I ′:|I ′|>m DI ′ . Then Dint

I is a smooth complex manifold of complex
dimension n − m, possibly noncompact.

Let � denote the open unit ball in C. Put �∗ = � − {0} and H = {z ∈
C : Im(z) > 0}. There is a holomorphic covering map π : H → �∗ given by
π(z) = eiz. Suppose that x ∈ Dint

I . After permutation of indices, we can assume
that x ∈ (D1 ∩ D2 ∩ · · · ∩ Dm) − (Dm+1 ∪ Dm+2 ∪ · · · ∪ Dk). We write 0 for
(0, . . . , 0) ∈ �n. Then there is a neighborhood U of x in X and a biholomorphic map
Fx : �n → U so that
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(1) for i > m, U ∩ Di = ∅;
(2) Fx(0) = x;
(3) for 1 ≤ i ≤ m, Fx(�i−1 × {0} × �n−i) = U ∩ Di;
(4) for 1 ≤ i ≤ m, ‖ σi(Fx(z)) ‖2

Li
= hi |zi |2 for some positive function hi ∈

C∞(�n).
In particular, Fx((�∗)m × �n−m) = U ∩ X. Passing to the universal cover gives a
holomorphic covering map F̃x : Hm × �n−m → U ∩ X.

The map Gx on �n−m, given by Gx(w) = Fx(0, w), is a biholomorphic map from
�n−m to a neighborhood of x in Dint

I .
Let ωX be a Kähler metric on X. Then F̃ ∗

x ωX is a Kähler metric on Hm × �n−m

which is invariant under translation in the Hm-factor by 2πZm. Given r ∈ (R+)m,
define a biholomorphic map αr : Hm → Hm by αr (h1, . . . , hm) = (r1h1, . . . , rmhm).
If Z is an auxiliary space, then we will also write αr for (αr, Id) : Hm×Z → Hm×Z.

Definition 6.1
Let {ωDint

I
} be complete Kähler metrics on {Dint

I }. Let {ci}m
i=1 be positive numbers.

Then ωX has standard spatial asymptotics associated to {ωDint
I
} and {ci}m

i=1 if for every
x ∈ X and every local parameterization Fx ,

lim
r→∞

α∗
r F̃

∗
x ωX =

m∑
i=1

ci

√−1

2

dzi ∧ dzi

(Im(zi))2
+ G∗

xωDint
I
, (6.2)

where limr→∞ means that ri → ∞ for each 1 ≤ i ≤ m. The limit in (6.2) is taken in
the pointed C∞-topology around the base point (

√−1, . . . ,
√−1)×0 ∈ Hm×�n−m.

Definition 6.3
Let {uDint

I
} be smooth functions on {Dint

I }. Then a function uX ∈ C∞(X) has stan-
dard spatial asymptotics associated to {uDint

I
} if for every x ∈ X and every local

parameterization Fx ,

lim
r→∞

α∗
r F̃

∗
x uX = G∗

xuDint
I
, (6.4)

where limr→∞ means that ri → ∞ for each 1 ≤ i ≤ m. The limit in (6.2) is taken in
the pointed C∞-topology around the base point (

√−1, . . . ,
√−1)×0 ∈ Hm×�n−m.

Remark 6.5
Note that if U is any neighborhood of (

√−1, . . . ,
√−1) ∈ Hm, then for some KU >

0,
⋃

r≥1 αr (U ) contains {z ∈ Cm : Re(zi) ∈ [0, 2π], Im(zi) ≥ KU for 1 ≤ i ≤ m}.
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THEOREM 6.6
If ωX has standard spatial asymptotics, then
(1) ωX extends by zero to an element [ωX] ∈ H(1,1)(X; R);
(2) for any 0 ≤ j ≤ n, ω

j

X extends to an element of H(j,j )(X; R) which equals
[ωX]j ;

(3) Ric(ωX) extends by zero to an element [Ric(ωX)] ∈ H(1,1)(X; R) which equals
−[KX + D];

(4) [ωX] lies in the Kähler cone of X.

Proof
(1) We use results from [12, Chapter 3]. From Definition 6.1, the Kähler metric
F ∗

x ωX is uniformly bi-Lipschitz equivalent to 2
√−1

∑m

i=1 ci
dzi∧ dzi

|zi |2 log2(|zi |−2)
+ G∗

xωDint
I

on (�∗)m × �n−m. It follows that ωX, considered as a current on X, has locally
finite mass in the sense of [12, Remark III, (1.15)]. From the Skoda–El Mir extension
theorem (see [12, Theorem III, (2.3)]), ωX extends to a closed current on X and hence
a class [ωX] ∈ H(1,1)(X; R).

(2) The same argument as in part (1) shows that ω
j

X extends to an element
[ωj

X] ∈ H(j,j )(X; R). The extension of ωX to X has no singular support. Also, ω
j

X is
L1 on X, so it is plausible that [ωj

X] = [ωX]j .
To see this, let gX be a Kähler metric on X. Let �(j,j ) denote the (nonnegative)

Hodge Laplacian on �(j,j )(X) associated to the Kähler form ωX. For small ε > 0, the

Schwartz kernel e−ε�(j,j )
(x, y) is well approximated by (4πε)−n e− d

X
(x,y)2

4ε Px,y , where
Px,y denotes parallel transport from �(j,j )

y to �(j,j )
x along a minimal geodesic from y

to x. (In what follows, we can assume that x is not in the cut locus of y.)
For any ε > 0, e−ε�(1,1)

ωX is a smooth closed form on X whose cohomology class
equals [ωX] ∈ H(1,1)(X; R). Hence (e−ε�(1,1)

ωX)j represents [ωX]j , while e−ε�(j,j )
ω

j

X

represents [ωj

X]. In particular, for any smooth closed form α ∈ �(n−j,n−j )(X), we
have ∫

X

[ωj

X] ∧ [α] = lim
ε→0

∫
X

(
e−ε�(j,j )

ω
j

X

) ∧ α

= lim
ε→0

∫
X

ω
j

X ∧ (
e−ε�(n−j,n−j )

α
) =

∫
X

ω
j

X ∧ α. (6.7)
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On the other hand,∫
X

[ωX]j ∧ [α] = lim
ε→0

∫
X

(
e−ε�(1,1)

ωX

)j ∧ α. (6.8)

We claim that there is an L1-convergence

lim
ε→0

(
e−ε�(1,1)

ωX

)j = ω
j

X. (6.9)

If not, then there is a sequence {Ok}∞
k=1 of nonempty open subsets of X, with

diam(Ok) ≤ 1/k, so that for each k we do not have L1-convergence in (6.9) on
Ok . After passing to a subsequence, we can assume that there is some x ∈ X so
that limk→∞ Ok = {x} in the Hausdorff topology. Choose a biholomorphic map
Fx : �n → U as before with Gx(�n−m) = Fx(0, �n−m) ⊂ Dint

I . The standard
asymptotics from Definition 6.1 control ωX on U . In particular, as (z1, . . . , zm) → 0,
F ∗

x ωX approaches 2
√−1

∑m

i=1 ci
dzi∧ dzi

|zi |2 log2(|zi |−2)
+G∗

xωDint
I

. Combining with the uniform

heat kernel asymptotics of e−ε�(1,1)
on U , one sees that there is some K > 0 so that

for any k ≥ K , there is L1-convergence in (6.9) on Ok . This is a contradiction.
It follows that

lim
ε→0

∫
X

(
e−ε�(1,1)

ωX

)j ∧ α =
∫

X

ω
j

X ∧ α. (6.10)

Thus [ωj

X] = [ωX]j in H(j,j )(X; R).
(3) The same argument as in part (1) shows that Ric(ωX) extends to an element

[Ric(ωX)] ∈ H(1,1)(X; R). From the asymptotics in Definition 6.1,
hKX∏k

i=1 |σi |2Li
log2(|σi |−2

Li
)

extends to a continuous Hermitian metric hKX
on KX. Now hKX

⊗ ⊗k

i=1 hLi
is a

Hermitian metric on KX ⊗ LD , and on X, there is an equality of currents:

Ric(ωX) = − √−1F (hKX
) = −√−1F

(
hKX

⊗
k⊗

i=1

hLi

)

+ √−1∂∂

k∑
i=1

log log2
(|σi |−2

Li

)
. (6.11)

The extension by zero of
√−1∂∂

∑k

i=1 log log2(|σi |−2
Li

) to X is a closed

(1, 1)-current which is the image under
√−1∂∂ of

∑k

i=1 log log2(|σi |−2
Li

) ∈
L1(X). Hence [

√−1∂∂
∑k

i=1 log log2(|σi |−2
Li

)] vanishes in H(1,1)(X; R) and so
[Ric(ωX)] = −2π[KX + D].
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(4) Let ωX be an arbitrary smooth Kähler form on X. From [11, Theorem 4.2], it
suffices to show that

∫
Y

[ωX]p−j [ωX]j > 0 for all irreducible analytic sets Y and all
0 ≤ j ≤ p, where dimC Y = p.

For any ε > 0,
∫

Y
[ωX]p−j [ωX]j = ∫

Y
ω

p−j

X
∧ (e−ε�(j,j )

ω
j

X). Suppose first that
Y 
⊂ D. Then Y − D is dense in Y . By taking ε small and using the asymptotics in
Definition 6.1, it follows that

∫
Y

[ωX]p−j [ωX]j = ∫
Y

ω
p−j

X
∧ ω

j

X > 0. Now suppose
that Y ⊂ DI and DI is minimal with respect to this property. For x ∈ Dint

I , let
R∗

x : �(j,j )
x X → �(j,j )

x Dint
I be the pullback map. Using the asymptotics in Definition

6.1, if x ∈ Dint
I , then

lim
ε→0

R∗
x

(
(e−ε�(j,j )

ω
j

X)(x)
) = lim

ε→0

∫
X

R∗
x

(
e−ε�(j,j )

(x, y) ω
j

X(y)
)

dvolX(y)

= lim
ε→0

∫
X

(4πε)−n e− d
X

(x,y)2

4ε R∗
xPx,yω

j

X(y)

× dvolX(y)

= ω
j

Dint
I

(x). (6.12)

It follows that
∫

Y
[ωX]p−j [ωX]j = ∫

Y
ω

p−j

X
∧ ω

j

Dint
I

> 0 �

Remark 6.13
Part (2) of Theorem 6.6 has a more direct proof if ωX has superstandard spatial
asymptotics in the sense of Definition 8.10. Part (3) of Theorem 6.6 also follows from
[19, Section 1].

Example 6.14
Let ωX be a Kähler metric on X. Given positive numbers {ci}k

i=1, define a (1, 1)-form
on X by

ωX = ωX − √−1∂∂

k∑
i=1

ci log log2 |σi |−2
Li

= ωX − 2
√−1

∂∂
∑k

i=1 ci log |σi |−2
Li

log |σi |−2
Li

+ 2
√−1

k∑
i=1

ci

∂ log |σi |−2
Li

log |σi |−2
Li

∧ ∂ log |σi |−2
Li

log |σi |−2
Li

.

(6.15)

Now ω̂ = ωX + 2
√−1

∑k

i=1 ci

∂ log |σi |−2
Li

log |σi |−2
Li

∧ ∂ log |σi |−2
Li

log |σi |−2
Li

is a Kähler metric on X. For any

ε > 0, if the Hermitian metrics hLi
are multiplied by a sufficiently small constant,
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then

−εω̂ ≤ 2
√−1

∂∂
∑k

i=1 ci log |σi |−2
Li

log |σi |−2
Li

≤ εω̂. (6.16)

Hence by rescaling the Hermitian metrics, we can achieve that ωX defines a Kähler
metric on X.

One can check that ωX has standard spatial asymptotics. To describe ωDint
I

, suppose
that DI = ⋂m

j=1 Dij . After permuting indices, we can assume that DI = D1 ∩ D2 ∩
· · · ∩ Dm. Then

ωDint
I

= ωX

∣∣∣
Dint

I

− √−1∂∂

k∑
i=m+1

ci log log2 |σi |−2
Li

, (6.17)

where the last computation is performed on Dint
I .

Example 6.18
Suppose that X is a compact Kähler manifold, D is an effective divisor in X with simple
normal crossings, and [KX +D] > 0. We use the Kähler-Ricci flow and Theorem 5.1
or [4, Theorem 1.1] to construct the Kähler-Einstein metric on X = X − D which is
known to exist from [16], [24], and [27].

The first step, as in [16], [24], and [27], is to construct a 0th-order approximation
to the Kähler-Einstein metric by using an idea of Carlson and Griffiths [3, Proposition
2.1]. Namely, since [KX + D] > 0, we can find a Hermitian metric hKX⊗LD

on
KX ⊗ LD so that

√−1F (hKX⊗LD
) > 0. Fix ωX = √−1F (hKX⊗LD

). Now perform
the construction of Example 6.14 with c1 = c2 = · · · = ck = 1 to get a Kähler metric
ωX on X, with corresponding Hermitian metric hKX

on KX. The construction also
produces a Hermitian metric hD on LD . This, along with hKX⊗LD

, gives a Hermitian
metric hKX

on KX. Then

− Ric(ωX) + √−1∂∂ log
hKX

hKX

∏k

i=1 |σi |2Li
log2 |σi |−2

Li

= ωX (6.19)

on X. From the standard spatial asymptotics, log
hKX

hK
X

∏k
i=1 |σi |2Li

log2 |σi |−2
Li

has bounded

covariant derivatives (with respect to ωX). We can now apply Theorem 5.1 or [4,
Theorem 1.1] to ωX.

However, to be more general, suppose that f1 is any smooth function on X so that
(1) f1 has bounded covariant derivatives (with respect to ωX);
(2) ωX + √−1∂∂f1 is a Kähler metric which is bi-Lipschitz equivalent to ωX.
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Then

− Ric(ωX + √−1∂∂f1)

+ √−1∂∂
(

log
ωn

XhKX

(ωX + √−1∂∂f1)nhKX

∏k

i=1 |σi |2Li
log2 |σi |−2

Li

+ f1

)

= ωX + √−1∂∂f1. (6.20)

Putting

f = log
ωn

XhKX

(ωX + √−1∂∂f1)nhKX

∏k

i=1 |σi |2Li
log2 |σi |−2

Li

+ f1, (6.21)

Theorem 5.1, or [4, Theorem 1.1], implies that the normalized Kähler-Ricci flow
starting with the initial metric ω0 = ωX +√−1∂∂f1 converges to a complete Kähler-
Einstein metric on X with Einstein constant −1. (Such a metric is necessarily unique.)
From the evolution formulas for the volume and scalar curvature under Ricci flow, one
easily shows that the Kähler-Einstein metric has finite volume. In the case of complex
dimension one, we recover some of the results of [15].

7. Preservation of standard spatial asymptotics
In this section we show that the property of having standard spatial asymptotics
is preserved by the Kähler-Ricci flow. We use this to give an upper bound on the
singularity time Tsing.

THEOREM 7.1
Suppose that ωX(0) has standard spatial asymptotics associated to {ωDint

I
(0)} and

{ci}k
i=1. Suppose that the normalized Kähler-Ricci flow ωX(t), with initial Kähler

form ωX(0), exists on a maximal time interval [0, T ) in the sense of Theorem 4.1.
Then for all t ∈ [0, T ), ωX(t) has standard asymptotics associated to {ωDint

I
(t)} and

{1+ (ci −1)e−t}k
i=1, where ωDint

I
(t) is a normalized Kähler-Ricci flow solution on Dint

I

with initial Kähler-form ωDint
I

(0).

Proof
Suppose first that D is a smooth divisor C with a trivial holomorphic normal bundle.
Then there is a biholomorphic map F : � × C → V to a neighborhood V of C, with
F restricting to the identity map from {0} × C to C ⊂ V . The restriction F |�∗×C :
�∗ × C → V ∩ X has a lift to a holomorphic covering map F̃ : H × C → V ∩ X.
Suppose that the conclusion of the theorem is not true. Then for some t ′ ∈ [0, T ) and
some ε > 0, there is a sequence rj → ∞ so that each α∗

rj
F̃ ∗ωX(t ′) has distance at
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least ε from (1 + (c1 − 1)e−t ′)
√−1

2
dz1∧ dz

1

(Im(z1))2 + ωC(t ′) in the pointed C∞-topology. (We

use base point {√−1} × c0 for some arbitrary c0 ∈ C.)
From our assumptions, there is a uniform positive lower bound on the injectivity

radius of F̃ ∗ωX(0) at αrj
({√−1}×c0) or, equivalently, of α∗

rj
F̃ ∗ωX(0) at {√−1}×c0.

By Hamilton’s compactness theorem [14], after passing to a subsequence, there is a
pointed limit

lim
j→∞

(
H × C, {√−1} × c0, α

∗
rj
F̃ ∗ωX(t)

) = (
H × C, {√−1} × c0, ω∞(t)

)
(7.2)

for some normalized Ricci flow solution ω∞(t) on H × C that exists for t ∈ [0, T ),
with bounded curvature on compact time intervals. (Note that in taking the limit we
do not have to perform diffeomorphisms. Note also that the metric α∗

rj
F̃ ∗ωX(t) on

H × C is not complete, but nevertheless we can apply Ricci flow compactness to
get the complete limiting metric ω∞(t).) Also by assumption, limj→∞ α∗

rj
F̃ ∗ωX(0) =

c1

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(0). From the uniqueness of Ricci flow solutions with bounded
curvature on compact time intervals (see [5]), it follows that ω∞(t ′) = (1 + (c1 −
1)e−t ′)

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(t ′), where ωC(·) is a normalized Ricci flow solution on C.
This is a contradiction, thereby proving the theorem in this special case.

We now discuss the case when D is a smooth divisor C but its holomorphic
normal bundle need not be trivial. In this case we may not be able to use the covering
space argument from before; for example, if V is a tubular neighborhood of C, then
V − C may be simply connected and we cannot increase the injectivity radius by
passing to a cover. On the other hand, in some sense this problem is irrelevant since
we can localize the argument and parameterize a neighborhood U ⊂ X of x ∈ C by a
holomorphic map Fx : �n → X with Fx(0) = x and Fx({0} × �n−1) ⊂ C. Then we
can consider the pullback metric F̃ ∗

x ωX(t) on the cover H × �n−1 of �∗ × �n−1 and
try to run the previous argument. However, there is a new problem because the limiting
metric on H × �n−1 would not be complete, whereas the uniqueness results are for
complete metrics. Again, this problem is somewhat irrelevant since we should be able
to patch together the local parameterizations Fx : �n → X as x varies over C and
thereby effectively pass to the setting of complete metrics. To do so, it is convenient
to use the language of étale groupoids. We use the notion of a Ricci flow on an étale
groupoid, as explained in [17, Section 5] and [18, Section 3].

Let us first reformulate the earlier setting, when the holomorphic normal bundle
is trivial, in terms of étale groupoids. Let Tv denote translation in H by v ∈ R.
Then α−1

r Tvαr = Tr−1v . It follows that α∗
r F̃

∗ωX(0) is invariant under translation by

2πr−1Z. Then limr→∞ α∗
r F̃

∗
x ωX(0) =

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(0), where the right-hand

side is invariant under translation by limr→∞ 2πr−1Z = Rδ on H . Here Rδ denotes
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the group R with the discrete topology. Equivalently, the pointed limit

lim
r→∞

(
X, F̃ (αr (

√−1), c0), ωX(0)
)∼= lim

r→∞
(
�∗ × C, (π(αr (

√−1)), c0), F ∗ωX(0)
)

(7.3)

exists as a pointed Riemannian groupoid whose underlying étale groupoid is the cross-
product groupoid (H × C) � Rδ , with the Kähler form on the space of units H × C

being c1

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(0). Then the normalized Kähler-Ricci flow solution on the
étale groupoid is given by the Rδ-invariant normalized Kähler-Ricci flow solution
((1 + (c1 − 1)e−t ))

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(t) on the space of units H × C.
In the case when the holomorphic normal bundle of C is not trivial, we take

x ∈ C and choose a local parameterization Fx : �n → X with Fx(0) = x and
Fx({0} × �n−1) ⊂ C. Then the pointed limit limr→∞(X, F̃x(αr (

√−1), 0), ωX(0))
exists as a pointed Riemannian groupoid whose underlying étale groupoid is the cross-
product groupoid (H × C) � Rδ , with the Kähler form on the space of units H × C

being c1

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(0). Again, the normalized Kähler-Ricci flow solution on
the étale groupoid is given by the Rδ-invariant normalized Kähler-Ricci flow solution
((1 + (c1 − 1)e−t ))

√−1
2

dz1∧ dz1

(Im(z1))2 + ωC(t) on the space of units H × C, where ωC(·) is
a normalized Kähler-Ricci flow solution on C.

Now the uniqueness argument of [5] extends to Ricci flow solutions on étale
groupoids. Along with the compactness result for Ricci flow solutions on étale
groupoids [17, Theorem 1.4], we can prove the theorem by using a contradiction
argument as before.

Finally, in the case of general D, suppose that x ∈ Dint
I . Let Fx :

�n → U be the holomorphic parameterization near x. Then the pointed
limit limr→∞(X, F̃x(αr (

√−1, . . . ,
√−1), 0), ωX(0)) exists as a pointed Rieman-

nian groupoid whose underlying étale groupoid is the cross-product groupoid
(Hm × Dint

I ) � R
m
δ , with the Kähler form on the space of units Hm × Dint

I being∑m

i=1 ci

√−1
2

dzi∧ dzi

(Im(zi ))2 + ωDint
I

(0). The normalized Kähler-Ricci flow solution on the
étale groupoid is given by the R

m
δ -invariant normalized Kähler-Ricci flow solution∑m

i=1((1 + (ci − 1)e−t ))
√−1

2
dzi∧ dzi

(Im(zi ))2 + ωDint
I

(t) on the space of units Hm × Dint
I , where

ωDint
I

(t) is a complete normalized Kähler-Ricci flow solution on Dint
I . The theorem

now follows from a contradiction argument as before. �

Remark 7.4
It follows that under the hypotheses of Theorem 7.1, the normalized Kähler-Ricci flow
exists on each Dint

I for a time interval of at least [0, T ), with bounded curvature on
compact subintervals of [0, T ). Note in this regard that Theorem 1.1 is consistent with
passing to the divisor, in the sense that (KX + LDI

)
∣∣
DI

= KDI
, and if c is a Kähler

class on X, then its pullback to DI is a Kähler class on DI .
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Remark 7.5
Continuing with Remark 7.4, the divisor D is itself a complex space in the sense of
[12, Chapter II.5]. This suggests that one should be able to extend the results of this
article from the setting of pairs (X, D) to the setting of complex spaces Y , or some
class thereof. For example, a standard Kähler metric on such a complex space would
consist of complete Kähler metrics on the strata Yj −Yj−1 of Y having standard spatial
asymptotics as one approaches (in Yj ) a substratum Yk of Yj .

COROLLARY 7.6
Let uDint

I
(t) ∈ C∞(Dint

I ) be the time-t solution of (3.5) on Dint
I . Then the time-t

solution uX(t) ∈ C∞(X) of (3.5) on X has standard spatial asymptotics associated to
{const.I (t) + uDint

I
(t)}, where const.I (t) is spatially constant and depends only on the

time t .

Proof
This follows from (3.7) and Theorem 7.1. �

COROLLARY 7.7
Suppose that ωX(0) has standard spatial asymptotics associated to {ωDint

I
(0)} and

{ci}k
i=1. Let T1 and T2 be the same as in Theorem 4.1.
Let T3 be the supremum (possibly infinite) of the numbers T ′ so that there is a

smooth solution for u in (3.5) on the time interval [0, T ′] such that ωt + √−1∂∂̄u

is a Kähler metric with standard spatial asymptotics associated to {ωDint
I

(t)} and
{(1 + (ci − 1)e−t )}k

i=1.
Let T4 be the supremum (possibly infinite) of the numbers T for which there is

a function FT ∈ C∞(X), with standard spatial asymptotics associated to {uDint
I

(T )},
such that ωT + √−1∂∂̄FT is a Kähler metric .

Then T1 = T2 = T3 = T4.

Proof
This follows from Theorem 4.1 and Corollary 7.6. �

COROLLARY 7.8
Under the hypotheses of Theorem 7.1, the maximal existence time Tsing ∈ (0, ∞] of
the normalized Kähler-Ricci flow on X is bounded above by

sup
{
t ∈ R

+ : e−t [ωX(0)] + 2π(1 − e−t )[KX + D] lies in the Kähler cone of X
}
.

(7.9)
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Proof
Suppose that T ′ < Tsing. From Theorem 6.6 and the normalized Ricci flow equation,

d

dt
[ωX(t)] = 2π[KX + D] − [ωX(t)] (7.10)

in H(1,1)(X; R). Thus

[ωX(T ′)] = e−T ′
[ωX(0)] + 2π(1 − e−T ′

)[KX + D]. (7.11)

Also from Theorem 6.6, [ωX(T ′)] is a Kähler class on X. The corollary follows. �

8. Superstandard spatial asymptotics
In this section we introduce the notion of superstandard spatial asymptotics. We show
that having this property is preserved under the Ricci flow. We then prove the first part
of Theorem 1.1.

We first prove a lemma regarding the singular support of the ∂∂-operator applied
to certain functions. In general, if X = X−D and J ∈ C∞(X), let J be a measurable
extension of J to X. Suppose that J ∈ L1(X). Note that since D has measure zero,
this element of L1(X) is independent of the particular measurable extension of J to
X that we choose. For concreteness, we use the extension by zero.

Consider the form
√−1∂∂J ∈ �(1,1)(X) on X. If it has finite mass, then we

can extend it by zero to X to obtain the current
√−1∂∂J , or we could consider the

(1, 1)-current
√−1∂∂̄J̄ on X. These two currents do not have to be the same. For

example, if X = S2 and D = pt, suppose that J ∈ C∞(S2 − pt) equals log |z|
in a neighborhood of pt = {0}. Then

√−1∂∂̄J has no singular support on S2 and
represents a nonzero class in H2(S2; R), whereas the current

√−1∂∂̄J̄ has singular
support at pt and vanishes in H2(S2; R).

The next lemma gives a sufficient condition on J for the two extensions to agree
on X.

LEMMA 8.1
Let ωX be a smooth Kähler form on X. Given J ∈ C∞(X), suppose that |J (x)| =
o(log

∏k

i=1 |σi |−2
Li

) as x → D. Suppose that
√−1∂∂J has locally finite mass on X,

and there is some C > 0 so that when restricted to X ⊂ X,

√−1∂∂J ≥ −CωX. (8.2)

If J denotes the extension of J by zero to X, then the current
√−1∂∂̄J̄ on X equals√−1∂∂J , the extension by zero of the current

√−1∂∂J on X.
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Proof
For ε ′ ≥ 0, define Jε′ ∈ C∞(X) by

Jε′(x) = J (x) − ε ′ log
k∏

i=1

∣∣σi(x)
∣∣−2

Li
. (8.3)

If ε ′ > 0, then Jε′ is bounded above on X. We can find a neighborhood Uε′ of D so
that Jε′ is almost-plurisubharmonic on Uε′ − D in the sense of (8.2). As in [12, Theo-
rem I.(5.24)], there is an extension J̄ ε′ of Jε′ to X which is almost-plurisubharmonic
on Uε′ . Now

√−1∂∂̄J̄ ε′ is a (1, 1)-current on X which is smooth on X − D. Using
[12, Theorem I.(5.8)],

√−1∂∂̄J̄ ε′ is measurable on Uε′ .

Let
√−1∂∂Jε′ denote the extension by zero, to X, of the current

√−1∂∂Jε′ on

X. As in the proof of part (1) of Theorem 6.6,
√−1∂∂Jε′ is a closed (1, 1)-current on

X. Putting

Tε′ = √−1∂∂̄J̄ε′ − √−1∂∂Jε′ (8.4)

gives a closed nonnegative measurable current which is supported on D. Now

√−1∂∂̄J̄ − √−1∂∂J = Tε′ + ε ′
(√−1∂∂̄ log

k∏
i=1

∣∣σi(x)
∣∣−2

Li

)∣∣∣
D

(8.5)

as currents on X. Since ε ′ was an arbitrary positive number, it follows that
√−1∂∂̄J̄ −√−1∂∂J is a closed nonnegative measurable current which is supported on D.

By [12, Corollary III.(2.14)],
√−1∂∂̄J̄ − √−1∂∂J = ∑k

i=1 ciδDi
for some

nonnegative constants {ci}k
i=1. However, it is easy to show that if ci is nonzero, then J

has a logarithmic singularity near Di (see the Green-Riesz formula [12, Proposition
I.(4.22a)] and [12, Example III.(6.9)]). This contradicts the assumption on J . �

To motivate the definition of superstandard spatial asymptotics, we first prove a result
about the Ricci curvature of a metric with standard spatial asymptotics.

LEMMA 8.6
If ωX has standard spatial asymptotics, then we can write

Ric(ωX) = η′
X

− √−1∂∂
(
−

k∑
i=1

log log2 |σi |−2
Li

+ H ′
)

(8.7)

on X, where
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• η′
X

is a smooth closed (1, 1)-form on X with [η′
X

] = −[KX + D];
• H ′ ∈ C∞(X) ∩ L∞(X).

Proof
Choose a Hermitian metric hKX⊗LD

on KX ⊗ LD . Along with Hermitian metrics
{hLi

}k
i=1 on {Li}k

i=1, we obtain a Hermitian metric hKX
on KX. Then

Ric(ωX) = − √−1F (hKX⊗LD
)

− √−1∂∂
(
−

k∑
i=1

log log2 |σi |−2
Li

+ log
hKX

∏k

i=1 |σi |2Li
log2 |σi |−2

Li

hKX

)
(8.8)

on X. Put η′
X

= −√−1F (hKX⊗LD
) and H ′ = log

hK
X

∏k
i=1 |σi |2Li

log2 |σi |−2
Li

hKX

. By the standard

spatial asymptotics, H ′ ∈ L∞(X). The lemma follows. �

Remark 8.9
It follows from elliptic estimates that for each k ≥ 0, the function H ′ has uniform
bounds on its kth covariant derivatives (see the end of the proof of Theorem 8.19).

Recall that Definition 6.1 of standard asymptotics involves some parameters {ci}k
i=1.

Definition 8.10
A Kähler metric ωX on X has superstandard spatial asymptotics if it has standard
spatial asymptotics, and one can write

ωX = ηX − √−1∂∂
( k∑

i=1

ci log log2 |σi |−2
Li

+ H
)
, (8.11)

where
• ηX is a smooth closed (1, 1)-form on X;
• hLi

is a Hermitian metric on the line bundle Li ;
• H ∈ C∞(X) ∩ L∞(X).

Example 8.12
If X = S2 and D = pt, suppose that in terms of a local coordinate z near pt, the
metric takes the form ωX = −√−1∂∂(log log2 |z|−2 + log log log2 |z|−2). Then ωX

has standard asymptotics but does not have superstandard asymptotics.
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LEMMA 8.13
The property of having superstandard spatial asymptotics is independent of the choice
of Hermitian metrics {hLi

}k
i=1.

Proof
Given a Hermitian metric hLi

, any other Hermitian metric on Li can be written as
φihLi

for some positive φi ∈ C∞(X). Then

log log2(φ−1
i |σi |−2

Li
) − log log2 |σi |−2

Li
= 2 log

(
1 + log φ−1

i

log |σi |−2
Li

)
, (8.14)

which is bounded on X. The lemma follows. �

Example 8.15
Continuing with Example 6.14, one can check that ω has superstandard spatial asymp-
totics.

LEMMA 8.16
If ωX has superstandard spatial asymptotics, then [ωX] = [ηX] in H(1,1)(X; R).

Proof
Let ωX be a smooth Kähler form on X. First, from (8.11) and the definition of
standard asymptotics, if C > 0 is sufficiently large, then there is some C > 0
so that

√−1∂∂(H − C
∑k

i=1 ci log log2 |σi |−2
Li

) ≥ −CωX on X. Lemma 8.1 im-

plies that the extension of
√−1∂∂(H − C

∑k

i=1 ci log log2 |σi |−2
Li

) by zero to X

vanishes in H(1,1)(X; R). It also follows from Lemma 8.1 that the extension of
−√−1∂∂

∑
i ci log log2 |σi |−2

Li
vanishes in H(1,1)(X; R) (see (6.15)). Thus [ωX] =

[ηX] ∈ H(1,1)(X; R). �

THEOREM 8.17
Suppose that ωX(0) has superstandard spatial asymptotics. Suppose that the normal-
ized Kähler-Ricci flow ωX(t), with initial Kähler metric ωX(0), exists on a maximal
time interval [0, T ) in the sense of Theorem 4.1. Then for all t ∈ [0, T ), ωX(t) has
superstandard spatial asymptotics.
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Proof
Recall the definition of ωt from (3.4). Applying (8.7) and (8.11) to ωX(0), we can
write

ωX(t) = ωt + √−1∂∂u(t)

= −η′
X

+ e−t (ηX + η′
X

)

−√−1∂∂
(∑

i

(
1 + e−t (ci − 1)

)
log log2 |σi |−2

Li

−H ′ + e−t (H + H ′) − u(t)
)
. (8.18)

From Corollary 7.6, u(t) ∈ L∞(X). �

THEOREM 8.19
Suppose that ωX(0) has superstandard spatial asymptotics. Then the maximal exis-
tence time T ∈ (0, ∞] of the Kähler-Ricci flow on X, in the sense of Theorem 4.1,
equals

sup{t ∈ R
+ : e−t [ωX(0)] + 2π(1 − e−t )[KX + D] lies in the Kähler cone of X}.

(8.20)

Proof
From Theorem 4.1, it suffices to show that if e−t [ωX(0)] + 2π(1 − e−t )[KX +D] lies
in the Kähler cone of X, then there is a function Ft ∈ C∞(X) such that
(1) ωt + √−1∂∂Ft is a Kähler metric which is bi-Lipschitz equivalent to ωX(0);
(2) for each k, the kth covariant derivatives of Ft (with respect to the initial metric

ωX(0)) are uniformly bounded.
Suppose that ωX is a Kähler metric on X whose class in H(1,1)(X;

R) equals e−t [ωX(0)] + 2π(1 − e−t )[KX + D]. We construct a Kähler metric ωX

on X as in Example 8.15, using the constants {1 + e−t (ci − 1)}k
i=1. We now write

ωX = ωt + √−1∂∂F (8.21)

and show that we can solve for F . That is, we show that we can solve

√−1∂∂F = ωX + Ric
(
ωX(0)

) − e−t
(
ωX(0) + Ric(ωX(0))

)
. (8.22)

From Lemma 8.13, for the purposes of the proof we can assume that the Hermitian
metrics hLi

are the same in the construction of ωX and in the superstandard behavior of
ωX(0). Let ηX and η′

X
be the (1, 1)-forms on X involved in the superstandard behavior
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of ωX(0). From (6.15), (8.7), and (8.11), we can write

ωX + Ric
(
ωX(0)

) − e−t
(
ωX(0) + Ric(ωX(0))

) = ωX + η′
X

− e−t (ηX + η′
X

)

− √−1∂∂
(
H ′ − e−t (H + H ′)

)
.

(8.23)

From Lemma 8.16 and our assumption on ωX, we know that ωX and −η′
X

+ e−t (ηX +
η′

X
) both represent the same class in H(1,1)(X; R), namely, e−t [ωX(0)] + 2π(1 −

e−t )[KX + D]. Thus

ωX + η′
X

− e−t (ηX + η′
X

) = √−1∂∂f (8.24)

for some f ∈ C∞(X).
From (8.23) and (8.24), we can solve (8.21) for some F ∈ L∞(X). From (8.21),

the Laplacian �ωX(0)F = Tr(ωX(0)−1
√−1∂∂F ) has bounded kth covariant deriva-

tives (with respect to ωX(0)) for each k. By elliptic regularity (where near the divisor
we work on the covering spaces Hm × �n−m, which have bounded geometry), we
conclude that F also has bounded kth covariant derivatives for each k. This proves the
theorem. �

This finishes the proof of the first part of Theorem 1.1. Theorem 1.1 is stated for the
unnormalized Kähler-Ricci flow (3.1) instead of the normalized Kähler-Ricci flow
(3.2), so one has to make the translation between the two.

9. Singularity type
In this section we give sufficient conditions for the Kähler-Ricci flow on a quasi-
projective manifold to have a type II singularity. We give examples in which this
happens.

THEOREM 9.1
Suppose that ωX(t) is a Kähler-Ricci flow solution on a quasi-projective manifold
X = X − D, D 
= ∅, whose initial metric ωX(0) has superstandard spatial asymp-
totics. Suppose that the maximal existence time Tsing, in the sense of Theorem 4.1,
is finite. Suppose that there is a number C > 0 so that for all t ∈ [0, Tsing), we
have vol(X, g(t)) = 1

n!

∫
X

ωX(t)n ≤ C(Tsing − t)n. Then the Ricci flow has a type II
singularity at time Tsing; that is, lim supt→Tsing

((Tsing − t) supx∈X | Rm(x, t)|) = ∞.

Proof
If the theorem is not true, then there is some C ′ > 0 so that for all x ∈ X and
t ∈ [0, Tsing), we have | Rm(x, t)| ≤ C ′/(Tsing − t). From [20, Theorem 1.4], for any
x ′ ∈ X there is a sequence of times ti → Tsing so that if we put τi = Tsing − ti ,
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then the rescaled Ricci flow solutions gi(x, t) = τ−1
i g

(
x, Tsing + tτi

)
have a pointed

limit (X, gi, (x ′, −1))
i→∞→ (Y, g∞, (y∞, −1)). Here (Y, g∞) is a complete gradient

shrinking soliton with bounded curvature which is κ-noncollapsed at all scales, for
some κ > 0, in the sense of Perelman [21]. (Note that there is no κ > 0 so that the
initial metric ωX(0) is κ-noncollapsed at all scales. Nevertheless, in this setting the
blowup limit is κ-noncollapsed at all scales for some κ (see [20, Remark 2.2]).

From our assumption, (Y, g(−1)) has finite volume. However, the κ-
noncollapsing now implies that Y is compact. (We thank Lei Ni for this remark.)
Namely, if Y is noncompact, then it contains an infinite sequence of disjoint unit
balls. The κ-noncollapsing, along with the bounded curvature, implies that there is a
uniform positive lower bound on the volumes of these balls. This is a contradiction.

Thus Y is compact. This implies that X is compact, which is a contradiction. The
theorem follows. �

COROLLARY 9.2
Suppose that ωX(t) is a Kähler-Ricci flow solution on a quasi-projective manifold X =
X − D, D 
= ∅, whose initial metric ωX(0) has superstandard spatial asymptotics. If
Tsing < ∞ and limt→Tsing [ωX(t)] = 0 in H(1,1)(X; R), then there is a type II singularity
at time Tsing.

Proof
From the smoothness of [ωX(t)], we can write [ωX(t)] = (Tsing − t)R(t) for some
smooth function R : [0, Tsing] → H(1,1)(X; R). Then there is a constant C < ∞ so
that for t ∈ [0, Tsing), ∫

X

ωn
X(t) =

∫
X

[ωX(t)]n ≤ C(Tsing − t)n. (9.3)

The corollary follows. �

This finishes the proof of the second part of Theorem 1.1. We now give some examples,
using the unnormalized Kähler-Ricci flow of Theorem 1.1.

Example 9.4
Suppose that X = S2 and D = pt, so X = S2 − pt = R2. Let [S2] ∈
Im(H2(S2; Z) → H2(S2; R)) ∩ H(1,1)(S2; R) denote the fundamental class in co-
homology. Then [KX] = −2[S2] and [D] = [S2]. From Theorem 1.1, Tsing is the
supremum of the numbers T > 0 so that [ω0] − 2πT [S2] ∈ H(1,1)(X; R) is a Kähler
class. That is, Tsing = 1

2π

∫
R2 ωX(0) = 1

2π
Vol(R2, g(0)). (As we are now dealing with

the unnormalized Kähler-Ricci equation dω

dt
= − Ric, the singularity time given here

differs by a factor of two from the result 1
4π

Vol(R2, g(0)) stated in the introduction
for the unnormalized Ricci flow dg

dt
= −2 Ric.)
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As [ω0] − 2πTsing[S2] vanishes in H(1,1)(X; R), we conclude that there is a type
II singularity at time Tsing, in agreement with the results of Daskalopoulos, del Pino,
Hamilton, and Sesum [7] – [10].

Example 9.5
Taking a product of Example 9.4 with S2, suppose that X = S2×S2 and D = {pt}×S2.
Let [S2]1, [S2]2 ∈ Im(H2(S2 ×S2; Z) → H2(S2 ×S2; R))∩H(1,1)(S2 ×S2; R) denote
the fundamental classes of the two sphere factors. Then KX = −2[S2]1 − 2[S2]2

and D = [S2]2. We conclude that Tsing is the supremum of the times T so that∫
[S2]1

ωX(0) − 4πT > 0 and
∫

[S2]2
ωX(0) − 2πT > 0.

• If
∫

[S2]1
ωX(0)

4π
<

∫
[S2]2

ωX(0)

2π
, then Tsing =

∫
[S2]1

ωX(0)

4π
. Since [ωX(0)]+2πTsing[KX +

D] is nonvanishing, we cannot conclude that there is a type II singularity. In
fact, if the initial metric ωX(0) is a product metric, then the first S2-factor
shrinks to a point at the singularity time before the other factor can collapse,
and we have a type I singularity.

• If
∫

[S2]1
ωX(0)

4π
=

∫
[S2]2

ωX(0)

2π
, then Tsing is this common value. Since [ωX(0)] +

2πTsing[KX + D] = 0, there is a type II singularity.

• If
∫

[S2]1
ωX(0)

4π
>

∫
[S2]2

ωX(0)

2π
, then Tsing =

∫
[S2]2

ωX(0)

2π
. Since [ωX(0)]+2πTsing[KX +

D] is nonvanishing, we cannot conclude that there is a type II singularity,
although there is one if ωX(0) is a product metric.

Example 9.6
Suppose that X = CP n, and D consists of k copies of CP n−1 in general position. Let
[H ] ∈ Im(H2(CP n; Z) → H2(CP n; R)) ∩ H(1,1)(CP n; R) be the hyperplane class.
Then [KX] = −(n+1)[H ] and [D] = k[H ], so Tsing is the supremum of the numbers
T > 0 so that [ω0] + 2π(−n − 1 + k)T [H ] ∈ H(1,1)(X; R) is a Kähler class.
• If k > n + 1, then Tsing = ∞. In this case there is a finite-volume Kähler-

Einstein metric ωKE on X with Einstein constant −1 (see [16], [24], [27]).
Theorem 5.1 says that for a wide class of initial metrics, the normalized Kähler-
Ricci flow converges to ωKE .

• If k = n + 1, then Tsing = ∞. In this case there is a complete Ricci-flat Kähler
metric ωRicci−flat on X [25]. It should be possible to show that for a large class
of initial metrics, the unnormalized Kähler-Ricci flow converges to a multiple
of ωRicci−flat.

• If k < n + 1, then Tsing =
∫

CP 1∩X
ωX(0)

2π(n+1−k) , where CP 1 denotes a generic complex

line in X = CP n. If in addition k 
= 0, then there is a type II singularity.
Note that when k = 1, there is a U (n)-invariant superstandard initial Kähler
metric on X = Cn = CP n − CP n−1. At infinity, it looks like a fam-
ily of hyperbolic cusps parameterized by CP n−1. It is plausible that in this
case, there is a rescaling limit at the singular time which is a U (n)-invariant
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gradient-steady Kähler-Ricci soliton. Examples of the latter are in [2]. From
[7] – [10], we know that there is such a rescaling limit when n = 1.

Acknowledgments. We thank Lei Ni for a helpful comment. We thank the referees for
careful reading and helpful suggestions.
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