THE ETA FUNCTION AND SOME NEW ANOMALIES

John LOTT

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA and Center for Theoretical Physics, MIT, Cambridge, MA 02138, USA

Received 28 March 1984

The odd-dimensional parity anomaly and the induced vacuum charge in an even-dimensional space are computed in terms of the eta function of spectra geometry.

We wish to point out that two related anomalies [1,2] can be easily understood in terms of the η function of spectral geometry. For simplicity we take our manifolds to be closed, riemannian and with a spin structure and consider an elliptic self-adjoint differential operator H acting on fields (cross sections of a vector bundle) over the m-dimensional manifold M. Let the eigenvalues of H be $\{\lambda_i\}$. Then [3]

$$\eta_H(s) \equiv \sum_{\lambda_i \neq 0} (\operatorname{sign} \lambda_i) |\lambda_i|^{-s} .$$

This converges for Re s > m/(differential order of H)and can be analytically continued to the complex splane. Amazingly, $\eta_H(0)$ is always finite [3,4]. If $H(\epsilon)$ is a one-parameter family of invertible H's then

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon} \eta_H(s) = \frac{\mathrm{d}}{\mathrm{d}\epsilon} \operatorname{Tr} H(H^2)^{(-s-1)/2}$$
$$= -s \operatorname{Tr} \frac{\mathrm{d}H}{\mathrm{d}\epsilon} (H^2)^{(-s-1)/2} .$$

. . .

Thus to find $d\eta_H(s)/d\epsilon$ as $s \to 0$ it is only necessary to find the pole term in $(H^2)^{(-s-1)/2}$. Let tr denote the trace over the matrix part of the fields (the fiber trace on End(V)). For Re s large, we can write the operator trace as the integral over M of a local matrix trace giving, in the case that $dH/d\epsilon$ is a zeroth order operator,

$$-s \operatorname{Tr} \frac{\mathrm{d}H}{\mathrm{d}\epsilon} (H^2)^{(-s-1)/2}$$
$$= -s \int_{M} \operatorname{tr} \frac{\mathrm{d}H}{\mathrm{d}\epsilon} (x) (H^2)^{(-s-1)/2} (x, x) \sqrt{g} \,\mathrm{d}^m x ,$$

0370-2693/84/\$03.00 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

where g is the determinant of the metric tensor. Now

$$(H^2)^{(-s-1)/2}(x,x) = \frac{1}{\Gamma((s+1)/2)} \int_0^\infty T^{(s-1)/2}$$

 $\times e^{-TH^2}(x,x) dT$.

There is an asymptotic expansion

$$e^{-TH^2}(x,x) \sim T^{-m/2} \sum_{i=0}^{\infty} a_i(x,x) T^i$$
,

which gives

5-

$$\lim_{s \to 0} s(H^2)^{(-s-1)/2}(x,x)$$

= $\lim_{s \to 0} \frac{1}{\sqrt{\pi}} s \int_0^1 T^{(s-m-1)/2} \sum_{i=0}^\infty a_i(x,x) T^i \, \mathrm{d}T$
= $(2/\sqrt{\pi}) a_{(m-1)/2}(x,x)$.

Thus

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon} \eta_H(s)$$

$$= -\frac{2}{\sqrt{\pi}} \int_{M} \mathrm{tr}\left(\frac{\mathrm{d}H}{\mathrm{d}\epsilon} (x) a_{(m-1)/2}(x, x)\right) \sqrt{g} \,\mathrm{d}^m x.$$

The $a_{(m-1)/2}$ are computable and have been tabulated for $m \leq 7$ [5]. That is, variations of $\eta_H(0)$ are computable for invertible H's as local expressions.

If, on the other hand, $H(\epsilon)$ passes through a nonin-

179

vertible H then an eigenvalue can jump from, say, $\lambda < 0$ to $\lambda > 0$ as, say, ϵ goes from 0⁻ to 0⁺. Because $\eta_H(0)$ essentially adds the eigenvalues by sign, the jump in $\eta_H(0)$ from $\epsilon = 0^-$ to $\epsilon = 0^+$ is 2. Similarly if an eigenvalue goes from $\lambda > 0$ to $\lambda < 0$ as ϵ goes from 0⁻ to 0⁺ then the jump in $\eta_H(0)$ at $\epsilon = 0$ is -2. The preceding is all well known to mathematicians.

The first anomaly is that of induced vacuum charge in an even-dimensional space [1]. The renormalized charge for a quantized spinor field in a classical background field is $Q = -\frac{1}{2}\eta_H(0)$, *H* being the spinor hamiltonian [6]. Because $a_{(m-1)/2} = 0$ for *m* even, *Q* is given solely by the integer jumps of above. Take *H* $= -i\gamma^j(\nabla_j + A_j) + \phi\gamma^5$. For $\phi = 0$ there is a conjugation symmetry and $\eta_H(0) = 0$. Write the kernel of *H* as Ker $H = W^+ \oplus W^-$ such that for $V \in W^{\pm}$, $\gamma^5 V = \pm V$. For $\phi = 0^+$ the vectors in W^+ will acquire a positive energy while those in W^- will acquire a negative energy, giving

$$Q = -\frac{1}{2} (\dim W^+ - \dim W^-)$$
$$= -\frac{1}{2} \operatorname{Index}(-i\gamma^j (\nabla_j + A_j)),$$

the last operator mapping positive chirality spinors to negative chirality spinors.

From the Atiyah–Singer index theorem [7],

$$Q = -\frac{1}{2} \int_{\mathbf{M}} (\operatorname{ch} F) \hat{A}(g) ,$$

the integral of the product of the Chern character of the gauge field and the \hat{A} character of the metric. On a flat space

$$Q = -\frac{1}{2} \frac{1}{(2\pi i)^{m/2}} \frac{1}{(m/2)!} \int_{M} tr F^{m/2}$$

which is the result of ref. [1]. The $\phi\gamma^5$ term in H comes from the use of a regulator mass in the lagrangian approach.

The second anomaly is a parity-violating current in odd-dimensional space—time [2]. Let the wave equation for a massless spinor be $\mathcal{D}\psi = 0$ and let \mathcal{D} have (real) spectrum $\{\lambda_i\}$. Formally define the effective action to be

 $\Gamma = \ln \det \mathcal{D} \equiv \frac{1}{2} \ln \det \mathcal{D}^2 + (2n+1)i\pi$

X (number of $\lambda_i < 0$).

Under a parity transformation,

$$\Gamma \rightarrow \Gamma_{\mathbf{P}} = \ln \det(-\mathcal{D})$$

$$\equiv \frac{1}{2} \ln \det \mathbb{D}^2 + (2n+1)i\pi (\text{number of } \lambda_i > 0).$$

We define

 $\Gamma - \Gamma_{\mathbf{P}} = -(2n+1) \,\mathrm{i}\pi \,\eta_{\mathbf{D}}(0) \,.$

If only gauge fields are present then the Atiyah-Patodi-Singer theorem [3] implies that

 $\frac{1}{2}(\eta_{\mathbb{D}}(0) + \dim \operatorname{Ker} \mathbb{D}) = \operatorname{CS}(\mathbb{M}) \pmod{\mathbb{Z}},$

the evaluation of the Chern–Simons secondary charac teristic class (CS) with values in R/Z [8]. This is the result of ref. [2]. If a mass term ϕ is added to \mathcal{P} then, with $\{\lambda_i\}$ being the new spectrum, a parity transformation takes λ_i to $2\phi - \lambda_i$. Then

 $\operatorname{Im}(\Gamma - \Gamma_{\mathbf{P}}) = (\text{formally}) (2n + 1)i\pi$

× [(number of $\lambda_i < 0$) – (number of $2\phi - \lambda_i < 0$)]

= $(2n+1)i\pi[(\text{number of }\lambda_i \in (0, 2\phi]) - \eta_{\mathbb{D}}(0)]$.

By the methods of the first paragraph $\frac{1}{2}(\eta_{\mathcal{D}}(0) + \dim \operatorname{Ker} \mathcal{D}) \pmod{Z}$ can be found. For m = 3,

$$Im(\Gamma - \Gamma_{\mathbf{P}}) = (2n+1)i\pi \left((number of \lambda_i \in (0, 2\phi]) + \dim \operatorname{Ker} \mathcal{P} - 2\operatorname{CS}(\mathbf{M}) + \frac{1}{3} \int \phi^3 \sqrt{g} \, \mathrm{d}^m x \right) (\mod 2i\pi Z) \,.$$

On an open manifold the last term may be infinite, but the currents are finite.

I thank R. Jackiw for his comments.

References

- [1] A.J. Niemi and G.W. Semenoff, Phys. Rev. Lett. 51 (1983) 2077.
- [2] A.N. Redlich, Phys. Rev. Lett. 52 (1984) 18;
 L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B, to be published.
- [3] M.F. Atiyah, V.K. Patodi and I.M. Singer, Bull. London Math. Soc. 5 (1973) 229, and subsequent papers.
- [4] P. Gilkey, Adv. Math. 40 (1981) 290.
- [5] P. Gilkey, J. Diff. Geom. 10 (1975) 601.
- [6] J. Lott, Commun. Math. Phys., to be published.
- [7] M.F. Atiyah and I.M. Singer, Ann. Math. (NY) 87 (1968) 546.
- [8] S.S. Chern, Complex manifolds without potential theory 2nd ed. (Springer, Berlin, 1979).

180