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The odd-dimensional parity anomaly and the induced vacuum charge in an even-dimensional space are computed in 
terms of the eta function of spectra geometry. 

We wish to point out that two related anomalies 
[1,2] can be easily understood in terms of the ~ func- 
tion of spectral geometry. For simplicity we take our 
manifolds to be closed, riemannian and with a spin 
structure and consider an elliptic self-adjoint differen- 
tial operator H acting on fields (cross sections of a 
vector bundle) over the m-dimensional manifold M. 
Let the eigenvalues o f H b e  {?~i)- Then [3] 

~H(S) =- x/~0 (sign Xi)IXi[-s. 

This converges for Re s > m/(differential order of H)  
and can be analytically continued to the complex s- 
plane. Amazingly, 71H(0 ) is always f'mite [3,4]. If 
H(e) is a one-parameter family of invertible H's then 

d rTH(s)=d Tr H(H2) (-s- l )~2 

- s  Tr ~ e  H (H2)( -s -1) /2 .  

Thus to find d~H(s)/de as s ~ 0 R is only necessary to 
find the pole term in (tt2) (-s-I)~2. Let tr denote the 
trace over the matrix part of the fields (the fiber trace 
on End(V)). For Re s large, we can write the operator 
trace as the integral over M of a local matrix trace giv- 
ing, in the case that dH/de is a zeroth order operator, 

- s  Tr dH (H2)(_s_l)/2 
( l e -  - 

=-s f tr ~(x)(H2)(-s-1)/2(x,x)x/~dmx, 
M 
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where g is the determinant of the metric tensor. Now 

1 : T(S- 1)/2 (H 2)( - s -  1)/2(x ' X) = P((s + 1 )/2) 

X e-THZ(x,x) dT. 

There is an asymptotic expansion 

e-TH2(x,x) ~ T-m/2 ~ ai(x,x)Ti, 
i=0 

which gives 

lim s(HZ)(-s-1)/2(x, x) 
s~O 

1 
= l'~Uno-~s f T(s-m-1)12 ~ ai(x'x)Ti 

o 

= (2/X/'~) a(m_ 1)/2(x, x ) .  

Thus 

d 
d'-e rIH(S) 

= - ~ "  tr "-~e (x)a(m_l)/2(x,x) x/gdmx. 

The a(m-1)/2 are computable and have been tabu- 
lated for m ~< 7 [5]. That is, variations of r~H(0 ) are 
computable for invertible H's as local expressions. 

If, on the other hand, H(e) passes through a nonin- 
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vertible H then an eigenvalue can jump from, say, h 
< 0 to h > 0 as, say, e goes from 0 -  to 0 +. Because 
r/H(0 ) essentially adds the eigenvalues by sign, the 
jump in r/H(0 ) from e = 0 -  to e = 0 + is 2. Similarly if 
an eigenvalue goes from h > 0 to h < 0 as e goes from 
0 -  to 0 + then the jump in r/H(0 ) at e = 0 is --2. The 
preceding is all well known to mathematicians. 

The first anomaly is that o f  induced vacuum charge 
in an even-dimensional space [ 1 ] .  The renormalized 
charge for a quantized spinor field in a classical back- 
ground field is Q = - 1 ~r~n(0), H being the spinor 
hamikonian [6].  Because a(m_l)/2 = 0 for rn even, Q 
is given solely by the integer jumps of  above. Take H 
= - i T i ( V / +  Aj) + Or/5 . For ¢ = 0 there is a conjugation 
symmetry and ~H(0) = 0. Write the kernel of  H as 
K e r H =  W + • W- such that for V E  W±,75V = +V. 
For ¢ = 0 + the vectors in W + will acquire a positive en- 
ergy while those in W- will acquire a negative energy, 
giving 

Q = - -~(dim W + - dim W-)  

= - ~ Index(- iT/ (V!  + A/ ) ) ,  

the last operator mapping positive chirality spinors to 
negative chirality spinors. 

From the Atiyah-Singer index theorem [7],  

1 
Q = - ~ f (ch F )  d ( g ) ,  

M 
the integral of  the product o f  the Chern character of  
the gauge field and the A character of  the metric. On 
a flat space 

1 1 1 f tr F m/2 , 
Q = 2 ( 2 ~ r i ) m / 2 ~  M 

which is the result o f  ref. [1] .  The ¢75 term in H 
comes from the use of  a regulator mass in the 
lagrangian approach. 

The second anomaly is a parity-violating current in 
odd-dimensional space-t ime [2]. Let the wave equa- 
tion for a massless spinor be Dff = 0 and let D have 
(real) spectrum { hi). Formally define the effective ac- 
tion to be 

x D 2 (2n + P = In det D --- 5 In det + 1)irt 

× (number of  h i < 0 ) .  

Under a parity transformation, 

r -~ 1-'p = In det(-~)) 

- - 1  
= ~ln det D 2 + (2n + 1)irr (number of  h i > 0) .  

We define 

P - Fp = - ( 2 n  + 1) in r~D(0 ) . 

If only gauge fields are present then the A t iyah -  
Patodi-Singer theorem [3] implies that 

½(r/D(0 ) + dim Ker D) = CS(M) (rood Z ) ,  

the evaluation of  the Chern-Simons secondary charac 
teristic class (CS) with values in R/Z [8]. This is the 
result of  ref. [2].  If  a mass term ¢ is added to I~ then, 
with {hi) being the new spectrum, a parity transfor- 
mation takes h i to 2¢ - h i. Then 

I m ( F  - -  U p )  = (formally)(2n + 1)irr 

X [(number of  X i < 0) - (number of  2¢ - X i < 0)] 

= (2 n + 1)in [(number of  h i E (0, 2¢] ) - r~D(0)]. 

1 By the methods of  the first paragraph 5(r~l~(0 ) 
+ dim Ker l~)(mod Z) can be found. For m = 3, 

Im(F - Fp) = (2n + 1)in((number of  h i E (0, 2¢] ) 

+ dim Ker D - 2CS(M) 

+ l f ¢3 x/gdmx)(mod 2i~rZ). 

On an open manifold the last term may be infinite, 
but the currents are finite. 

I thank R. Jackiw for his comments. 
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