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We give an infinite dimensional description of the differential 
K-theory of a manifold M . The generators are triples [H,A, ω]
where H is a Z2-graded Hilbert bundle on M , A is a 
superconnection on H and ω is a differential form on M . The 
relations involve eta forms. We show that the ensuing group 
is the differential K-group Ǩ0(M). In addition, we construct 
the pushforward of a finite dimensional cocycle under a 
proper submersion with a Riemannian structure. We give the 
analogous description of the odd differential K-group Ǩ1(M). 
Finally, we give a model for twisted differential K-theory.
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1. Introduction

Differential K-groups are invariants of smooth manifolds that combine K-theory 
with differential forms. As shown in [18], many results from local index theory fit into 
the framework of differential K-theory. For background and history about differential 
K-theory, we refer to the introduction of [18].
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Just as K-theory has different but equivalent descriptions, so does differential 
K-theory. The primary goal of this paper is to give a new description of differential 
K-theory, based on Hilbert bundles, that unifies other descriptions. A secondary goal is 
to provide a functional analytic framework for superconnections on Hilbert bundles.

We recall the generators for some of the descriptions of the K-group K0(M) of a 
compact manifold M :

(1) Vector bundles on M [1].
(2) Maps from M to the space of Fredholm operators [1, Appendix].
(3) Maps p : Z → M where Z is compact and p is K-oriented [17].
(4) Z2-graded Hilbert C(M)-modules equipped with certain bounded operators that 

commute with C(M) [25,28].
(5) Z2-graded Hilbert C(M)-modules equipped with certain possibly-unbounded oper-

ators that commute with C(M) [2].

Of these descriptions, perhaps the last one, based on unbounded KK-cycles, is the most 
encompassing one.

For the first three descriptions of K-theory, there are corresponding models for dif-
ferential K-theory:

(1) Vector bundles with connections, as in [18,34].
(2) The Hopkins–Singer model [21].
(3) The geometric families of Bunke–Schick [12].

All of these descriptions give isomorphic groups, which we denote by Ǩ∗
stan(M). In this 

paper we give a new model for the differential K-theory of M , extending the description 
of K-theory using unbounded KK-cycles. Our model is in terms of Hilbert bundles on M
equipped with superconnections. One motivation for our model is that it unifies earlier 
models, as described below. The main result of the paper is the following.

Theorem 1. The differential K-groups Ǩ∗(M), as defined using Hilbert bundles and su-
perconnections, are isomorphic to Ǩ∗

stan(M).

Given a finite dimensional Hermitian vector bundle on M with compatible connection, 
we can think of it as a Hilbert bundle on M with a very special superconnection. Hence 
our Hilbert bundle model includes the standard description of differential K-theory using 
finite dimensional vector bundles with connection. Similarly, given a geometric family 
in the sense of [12, Section 2], there is an ensuing Hilbert bundle equipped with the 
Bismut superconnection [4]. Hence our model also includes the description of differen-
tial K-theory using geometric families. However, we do not have an obvious way to 
construct a Hilbert bundle, with superconnection, from a Hopkins–Singer cocycle [21, 
Section 4.4].
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To motivate the use of superconnections, we recall that in the vector bundle de-
scription of Ǩ0

stan(M), the generators are triples [E, ∇, ω], where E is a finite dimen-
sional Hermitian Z2-graded vector bundle on M , ∇ is a compatible connection and 
ω ∈ Ωodd(M)/ Im(d). The relations involve Chern–Simons forms. There is an equivalent 
description whose generators are triples [E, A, ω], where A is a compatible supercon-
nection on E in the sense of Quillen [32], and whose relations involve eta forms. When 
we pass to infinite dimensional vector bundles, the Chern character construction using 
connections no longer make sense. However, under suitable hypotheses, we show that 
the construction using superconnections does make sense.

Hence one goal of this paper is to find the right setting for superconnections on 
Hilbert bundles. As an indication, such a setting should allow for Bismut superconnec-
tions. A first question is what the structure group G of such a Hilbert bundle should 
be. The answer to this is not immediately evident. One remark is that to deal with a 
geometric family whose fiber is a compact manifold Z, there should be a smooth homo-
morphism from Diff(Z) to G coming from the action of Diff(Z) on the Hilbert space H

of square-integrable half-densities on Z. However, with the norm topology on U(H), such 
an action is not even continuous (as seen in the action on the circle on itself by rotations).

To construct G in general, we use the data of a Hilbert space H and an unbounded 
self-adjoint operator D on H that is θ-summable for all θ > 0 (such as a Dirac-type 
operator). Using D, in Section 2 we define Sobolev spaces Hs and pseudodifferential 
operators opk that map Hs to Hs−k, following Connes and Moscovici [16, Appendix B]. 
As a set, we take G = U(H) ∩ op0. To put a smooth structure on G, we can use the fact 
that we only care about Hilbert bundles over finite dimensional manifolds, as opposed 
to more general base spaces. Hence it suffices to say what a smooth map, from a domain 
in Euclidean space to G, should be. This is the underlying idea of diffeological smooth 
structures [22]. In our case, we say that such maps are smooth if they are compatible in 
a certain sense with the Fréchet topologies on Hs and opk.

Given a Hilbert bundle H on M , with such a structure group, in Section 3 we develop 
the theory of superconnections A on H. We construct their Chern characters and eta 
forms. In Section 4 we give our generators and relations for Ǩ0(M). The generators are 
triples [H, A, ω] where H is a Z2-graded Hilbert bundle on M , A is a superconnection 
on H and ω ∈ Ωodd(M)/ Im(d). There are three relations. The first relation is about 
taking direct sums. The second relation arises when the degree-0 part A[0] of the super-
connection is invertible, and involves an eta form. The third relation says what happens 
when one changes A[0] by a family of operators in op0, and involves a relative eta form.

If c is a generator for Ǩ0(M) then we construct a generator q(c) for Ǩ0
stan(M), based 

on certain choices. We show that the class of q(c) in Ǩ0
stan(M) is independent of the 

choices. We prove that q passes to a map q : Ǩ0(M) → Ǩ0
stan(M). We then show that 

q is an isomorphism, thereby proving Theorem 1.
One advantage of a Hilbert bundle approach to differential K-groups is that, as in [12], 

the pushforward becomes essentially tautological. We recall that using the finite dimen-
sional model Ǩ0

stan for differential K-theory, in [18] two pushforwards were defined, 
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called the analytic index and the topological index. The definition of the analytic index 
there involved some perturbations. The main theorem of [18] said that the two indices 
coincide. Given a fiber bundle π : M → B with even dimensional compact fibers and 
a Riemannian structure, in Section 5 we define the pushforward π∗[H, A, ω] of a finite 
dimensional representative [H, A, ω] for Ǩ0(M).

Theorem 2. The pushforward π∗ on cocycles passes to a map π∗ : Ǩ0(M) → Ǩ0(B). It 
coincides with the analytic index of [18].

The proof of Theorem 2 partially uses results from [10,26].
Another advantage of using Hilbert bundles is that it allows a unified treatment of 

even and odd differential K-groups. (By way of contrast, in [18, Section 9] and [35], the 
odd differential K-groups were constructed based on the model of odd K-theory coming 
from maps to unitary groups.) In Section 6 we indicate how the results of the preceding 
sections extend to the odd differential K-group Ǩ1(M).

Yet another advantage of using Hilbert bundles is that it allows for a simple model of 
twisted differential K-theory. We recall that ordinary K-theory can be twisted by an ele-
ment of H3(M ; Z). The corresponding twisted differential K-theory has been considered 
in many papers, including [11,13,14,31]. Some applications to mathematical physics are 
in [24]. In Section 7 we give the basic definitions for a Hilbert bundle model Ǩ0

L(M) of 
twisted differential K-theory, where L is a unitary gerbe on M . If one restricts to finite 
dimensional vector bundles in the definition then one can only deal with twistings by 
torsion elements of H3(M ; Z).

There are many directions for further study, including the following.
1. Extend the pushforward to infinite dimensional cocycles for Ǩ0; see Remark 4.
2. Show that the twisted differential K-groups Ǩ0

L(M) satisfy an axiomatic characteri-
zation, as outlined in [13, Section 7].
3. Construct a topological pushforward in Ǩ0. We recall that the topological pushforward 
in KK-theory involves a Kasparov product with a ∂-operator [25].

The paper has an appendix in which we prove a formula for the Chern character of a 
superconnection in relative cohomology. There is an application to eta forms.

More detailed descriptions of the content of the paper appear at the beginnings of the 
sections.

We thank Dan Freed for discussions about superconnections and differential K-theory, 
and for comments on an earlier version of this paper. We thank Jean-Pierre Bourguignon 
and Alan Weinstein for telling us about diffeology. We also thank the referees for helpful 
comments.

2. Pseudodifferential calculus

This section is devoted to functional analytic preliminaries. Given a Z2-graded Hilbert 
space and an odd self-adjoint operator D that is θ-summable for all θ > 0, in Subsec-
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tion 2.1 we define order-s Sobolev spaces Hs and order-k pseudodifferential operators opk. 
We prove basic composition properties of the pseudodifferential operators. In Subsec-
tion 2.2 we consider a space P of “Dirac-type” order-1 operators. We prove in particular 
that P is preserved by the addition of order-0 operators. Subsection 2.3 shows that for 
any ε > 0, the map that sends P to e−εP 2 is smooth, in the diffeological sense, as a 
map from P to the space of trace-class operators. The heart of the proof is to justify a 
Duhamel formula in this setting.

2.1. Operator norms

Let H = H+ ⊕ H− be a Z2-graded Hilbert space (possibly finite dimensional) with 
inner product 〈·, ·〉H . Let L(H) denote the bounded operators on H, with operator 
norm ‖ · ‖. Let L1(H) be the trace ideal of H, with its norm ‖ · ‖L1 . Let D be an odd 
(with respect to the Z2-grading) self-adjoint operator on H, possibly unbounded, which 
is θ-summable for all θ > 0, i.e.

Tr e−θD2
< ∞. (2.1)

In particular, D2 has a discrete spectrum. Let PKer(D2) be orthogonal projection onto 
Ker(D2). Define

|D| =
√
D2 + PKer(D2). (2.2)

If D is invertible then |D| has the usual meaning, but for us |D| is always a strictly 
positive operator.

For s ∈ Z nonnegative, put Hs = Dom (|D|s), with the inner product

〈v1, v2〉Hs = 〈|D|sv1, |D|sv2〉H . (2.3)

For s ∈ Z negative, put Hs = (H−s)∗. Put H∞ =
⋂

s≥0 H
s, a dense subspace of H.

Following [16, Appendix B], let opk be the closed operators F such that

(1) H∞ ⊂ Dom(F ),
(2) F (H∞) ⊂ H∞, and
(3) For all s ∈ Z, the operator F : H∞ → H∞ extends to a bounded operator from Hs

to Hs−k.

Let |F |k,s be the operator norm for F : Hs → Hs−k. Then opk is a Fréchet space 
with respect to the norms |F |k,s. We take a product of operators to act from right to 
left. Using the isometric isomorphism |D|−s : H0 → Hs, if F ∈ opk then

|F |k,s =‖ |D|s−kF |D|−s ‖ . (2.4)
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Let Lfr
∞ be the ideal of finite rank operators, i.e. the set of operators T on H that can 

be expressed as

T (v) =
∑
i

ξi〈ηi, v〉H , (2.5)

where the sum is finite and ξi, ηi ∈ H∞. Then Lfr
∞ ⊂

⋂
k∈Z

opk.

Lemma 1.

(1) If F1 ∈ opk1 and F2 ∈ opk2 then F1F2 ∈ opk1+k2 and

|F1F2|k1+k2,s ≤ |F1|k1,s−k2 |F2|k2,s. (2.6)

(2) If F ∈ opk, and F : Hs → Hs−k is an isomorphism for each s ∈ Z, then F−1 ∈ op−k.
(3) If F ∈ op0 then its adjoint F ∗ in B(H) satisfies F ∗ ∈ op0.

Proof. (1). The proof is straightforward.
(2). By the bounded inverse theorem, F−1 : Hs−k → Hs is bounded for each s ∈ Z. In 
particular, H∞ ⊂ Dom(F−1) and F−1(H∞) ⊂ H∞.
(3). If v ∈ Hs then for all w ∈ H∞, we have

〈Fw, v〉H = 〈
(
|D|−sF |D|s

)
|D|−sw, |D|sv〉H , (2.7)

showing that

F ∗v = |D|−s
(
|D|−sF |D|s

)∗ |D|sv. (2.8)

In particular,

|D|sF ∗v =
(
|D|−sF |D|s

)∗ |D|sv ∈ H, (2.9)

showing that F ∗(Hs) ⊂ Hs, with

F ∗ = |D|−s
(
|D|−sF |D|s

)∗ |D|s (2.10)

being a bounded operator on Hs. �
Example 1. Suppose that H is finite dimensional. Then H∞ = H and Hs = H for all 
s ∈ Z. Also, opk = B(H) for all k ∈ Z.

Example 2. Let Z be a compact Riemannian manifold. Let V be a Clifford module over Z, 
equipped with a compatible connection. Let D 1

2 be the half-density line bundle on Z. Put 
H = L2(Z; D 1

2⊗V ). Let D be the Dirac-type operator on H. Then H∞ = C∞(Z; D 1
2⊗V )
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and Hs = Hs(Z; D 1
2 ⊗ V ). A pseudodifferential operator of order k gives an element 

of opk.

2.2. The space of Dirac-type operators

Definition 1. P is the space of odd self-adjoint operators P ∈ op1 such that |P |−1 ∈ op−1.

In Section 3, the elements of P will become the possible degree-0 terms of the super-
connection.

Recall that |P | is defined to be 1 on Ker(P 2). If P ∈ P then P 2|P |−1 ∈ op1. As |P | −
P 2|P |−1 ∈ Lfr

∞ , it follows that |P | ∈ op1. Then for any s ∈ Z, the operators |D|s|P |−s

and |P |s|D|−s lie in op0 and, in particular, are bounded on H. It follows that if we defined 
Hs using P instead of D then we would get the same spaces. If we think of D as being a 
given Dirac operator then we can think of P as being a collection of Dirac-type operators. 
For example, if D is the operator of Example 2, and P is the operator arising from a 
different Riemannian metric on Z and a different Clifford connection on V , then P ∈ P.

Lemma 2.

(1) Any P ∈ P is θ-summable for all θ > 0.
(2) If P ∈ P, and Q ∈ op0 is odd and self-adjoint, then P + Q is θ-summable for all 

θ > 0. More precisely, for any ε ∈ (0, 1), we have

Tr e−θ(P+Q)2 ≤ eθ
(
ε−2−1

)
‖Q‖2 · Tr e−θ(1−ε2)P 2

. (2.11)

(3) Given P ∈ P, F1 ∈ opk1 , F2 ∈ opk2 and ε > 0, for every t ≥ ε we have

‖F1e
−tP 2

F2‖L1 ≤ C(ε, P, k1, k2)|F1|k1,k1 |F2|k2,0 (2.12)

and

Tr
(
F1e

−tP 2
F2

)
= Tr

(
e−tP 2

F2F1

)
= Tr

(
F2F1e

−tP 2
)
. (2.13)

Proof. (1). Since |P |−1D2|P |−1 lies in op0, it is bounded on H. Hence there is some 
C < ∞ so that D2 ≤ C(I + P 2). Thus P 2 ≥ C−1D2 − I, so P is θ-summable.
(2). We follow the method of proof of [19, Theorem C]. For any ε > 0, we have

0 ≤ (εP + ε−1Q)2 = ε2P 2 + (PQ + QP ) + ε−2Q2. (2.14)

If ε ∈ (0, 1) then

−θ(P + Q)2 = − θ(P 2 + PQ + QP + Q2) (2.15)
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≤− θ(1 − ε2)P 2 + θ(ε−2 − 1)Q2

≤− θ(1 − ε2)P 2 + θ(ε−2 − 1)‖Q‖2.

The claim follows.
(3). We have

F1e
−tP 2

F2 =
(
F1|D|−k1

)
·
(
|D|k1 |P |−k1

)
· e− ε

2P
2 · (2.16)(

|P |k1e−(t− ε
2 )P 2 |P |k2

)
·
(
|P |−k2 |D|k2

)
·(

|D|−k2F2
)
.

By assumption, each of the six factors in (2.16) is bounded on H. Part (1) shows that 
e−

ε
2P

2 is trace class. Hence the product is trace class. Using (2.4), we obtain

‖F1e
−tP 2

F2‖L1 ≤|F1|k1,k1 · ‖|D|k1 |P |−k1‖· (2.17)

‖e− ε
2P

2‖L1 · ‖|P |k1e−(t− ε
2 )P 2 |P |k2‖·

‖|P |−k2 |D|k2‖ · |F2|k2,0.

From the spectral theorem,

‖|P |k1e−(t− ε
2 )P 2 |P |k2‖ ≤ sup

r∈R

(
(1 + r2)

k1+k2
2 e−

ε
2 r

2
)
< ∞. (2.18)

Next, we can write

Tr
(
F1e

−tP 2
F2

)
= Tr

(
F1e

− ε
4P

2 · e−
(
t− ε

2
)
P 2 · e− ε

4P
2
F2

)
(2.19)

= Tr
(
e−

(
t− ε

2
)
P 2 · e− ε

4P
2
F2 · F1e

− ε
4P

2
)

= Tr
(
e−

ε
4P

2
e−

(
t− ε

2
)
P 2

e−
ε
4P

2
F2F1

)
= Tr

(
e−tP 2

F2F1

)
.

Similarly,

Tr
(
F1e

−tP 2
F2

)
= Tr

(
F1e

− ε
4P

2 · e−
(
t− ε

2
)
P 2 · e− ε

4P
2
F2

)
(2.20)

= Tr
(
e−

ε
4P

2
F2 · F1e

− ε
4P

2 · e−
(
t− ε

2
)
P 2
)

= Tr
(
F2F1e

− ε
4P

2
e−

(
t− ε

2
)
P 2

e−
ε
4P

2
)

= Tr
(
F2F1e

−tP 2
)
.

This proves the claim. �
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Proposition 1. An odd self-adjoint operator P ∈ op1 is in P if and only if there is some 
odd self-adjoint operator Q ∈ op−1 with PQ − I ∈ op−1 and QP − I ∈ op−1.

To prove Proposition 1, we begin with some lemmas.

Lemma 3. Suppose that P ∈ op1 is an odd self-adjoint Fredholm operator. Then the 
spectrum of P is disjoint from [−ε, 0) ∪ (0, ε], for some ε > 0. Put R = f(P ), where

f(t) =
{

1/t if |t| > ε,

1 otherwise.
(2.21)

(This is independent of the choice of such ε.) Then |P |−1 ∈ op−1 if and only if R ∈ op−1.

Proof. Suppose that |P |−1 ∈ op−1. Then P |P |−2 ∈ op−1. As R − P |P |−2 ∈ Lfr
∞ , it 

follows that R ∈ op−1.
Now suppose that R ∈ op−1. Since R−1 − P ∈ Lfr

∞ , it follows that R−1 ∈ op1. Given 
s ∈ Z, write

|D|s+1|P |−1|D|−s =
(
|D|s+1Rs+1) · (R−s−1|P |−1Rs

)
·
(
R−s|D|−s

)
. (2.22)

As |D|s+1Rs+1 ∈ op0 and R−s|D|−s ∈ op0, they are bounded operators. Since R = f(P )
we have R−s−1|P |−1Rs = R−1|P |−1, which is bounded. Hence |P |−1 ∈ op−1. �
Lemma 4. If Q0 is an odd self-adjoint element of op−1 such that Q0P − 1 ∈ Lfr

∞(H), 
then R−Q0 ∈ Lfr

∞(H).

Proof. First, Q0PR − R = (Q0P − I)R ∈ Lfr
∞(H). Note that I − PR is the projection 

on the kernel of P , hence in Lfr
∞ . Then Q0 − Q0PR = Q0(I − PR) ∈ Lfr

∞ . The lemma 
follows. �
Lemma 5. If A ∈ opk is an even operator, with k < 0, then A is a limit of even elements 
of Lfr

∞ , in the op0-topology.

Proof. Write A = B|D|k, with B ∈ op0. Put

χn(t) =
{

1 if t ≤ n,

0 otherwise.
(2.23)

Put An = Aχn(|D|). Then for every s ∈ Z,

|A−An|0,s =‖|D|sB|D|k · (1 − χn)(|D|) · |D|−s‖ (2.24)

=‖|D|sB|D|−s · |D|k(1 − χn)(|D|)‖
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≤‖|D|sB|D|−s‖ · ‖|D|k(1 − χn)(|D|)‖
=|B|0,s · ‖|D|k(1 − χn)(|D|)‖ ≤ |B|0,snk.

Hence limn→∞ |A −An|0,s = 0. This proves the lemma. �
Proof of Proposition 1. Suppose that P ∈ P. Then we can take Q to be the operator R
of Lemma 3.

Conversely, suppose that we have an odd self-adjoint operator P ∈ op1, and Q ∈ op−1

is an odd self-adjoint operator such that PQ − I ∈ op−1 and QP − I ∈ op−1. It follows 
that P is Fredholm, and we therefore can define R as in (2.21). By the proof of Lemma 5, 
for every N ∈ Z

+, we can write

QP − I = FN −AN , (2.25)

where FN and AN are even operators, FN ∈ Lfr
∞(H) and CN = max{|AN |0,s : |s| ≤

N} < 1. Then I−AN is an even invertible operator on H and for all s ∈ Z with |s| ≤ N ,

|(I −AN )−1|0,s =

∣∣∣∣∣
∞∑

m=0
Am

N

∣∣∣∣∣
0,s

≤ 1
1 − CN

. (2.26)

Equation (2.25) implies that

(I −AN )R−Q = Q(PR− I) − FNR. (2.27)

Multiplying on the left by (I −AN )−1 shows that

R− (1 −AN )−1Q = (I −AN )−1(Q(PR− I) − FNR). (2.28)

Note that Q(PR − I) − FNR ∈ Lfr
∞ . Given s ∈ Z, if N is sufficiently large then the 

right-hand side of (2.28) is a bounded operator from Hs to Hs+1. Hence the operator

|D|s+1R|D|−s −
(
|D|s+1(1 −AN )−1|D|−s−1) (|D|s+1Q|D|−s

)
, (2.29)

defined originally on H∞, extends to an odd bounded operator on H. For N sufficiently 
large, we know that |D|s+1(I − AN )−1|D|−s−1 extends to a bounded operator on H. 
Also, for any s ∈ Z, the operator |D|s+1Q|D|−s extends to a bounded operator on H. 
Therefore |D|s+1R|D|−s extends to an odd bounded operator on H and R ∈ op−1. 
Lemma 3 now implies the proposition. �
Corollary 1. If P ∈ P, and A ∈ op0 is an odd self-adjoint operator, then P + A ∈ P.

Proof. From Proposition 1, there is some odd self-adjoint Q ∈ op−1 so that PQ − I ∈
op−1 and QP − I ∈ op−1. Then (P + A)Q − I ∈ op−1 and Q(P + A) − I ∈ op−1. The 
corollary now follows from Proposition 1. �



A. Gorokhovsky, J. Lott / Advances in Mathematics 328 (2018) 661–712 671
2.3. Duhamel formula

We say that a map from Rn to P is smooth if the composite map Rn → P ⊂ op1 is 
smooth with respect to the Fréchet topology on op1.

Proposition 2. If f : Rn → P is smooth, then x �→ e−εf(x)2 is a smooth map from Rn

to L1(H).

Proof. Consider first the case when n = 1. Let f : R → P be a smooth map, parametrized 
by u ∈ R. We claim that for u1 < u2, we have

e−εf(u2)2 − e−εf(u1)2 = −
u2∫

u1

ε∫
0

e−σf(v)2 df(v)2

dv
e−(ε−σ)f(v)2 dσ dv. (2.30)

To give meaning to the integral over σ, we rewrite it as
ε∫

0

e−σf(v)2 df(v)2

dv
e−(ε−σ)f(v)2 dσ = (2.31)

ε
2∫

0

e−σf(v)2
(
df(v)2

dv
e−

ε
2 f(v)2

)
e−

(
ε
2−σ

)
f(v)2 dσ+

ε∫
ε
2

e−
(
σ− ε

2
)
f(v)2

(
e−

ε
2 f(v)2 df(v)2

dv

)
e−(ε−σ)f(v)2 dσ.

Using Lemma 2.(3), the integrands in the last two integrals are continuous as maps from [
0, ε

2
]

(or 
[
ε
2 , ε

]
) to L1(H).

To prove (2.30), we first prove the corresponding statement for resolvents. For λ ∈
C − R

≥0, and −∞ < v1 < v2 < ∞, we have

(λ− f(v2)2)−1 − (λ− f(v1)2)−1 = (2.32)

(λ− f(v2)2)−1 · (f(v2)2 − f(v1)2) · (λ− f(v1)2)−1.

Then

(λ− f(v2)2)−1 − (λ− f(v1)2)−1

v2 − v1
− (2.33)

(λ− f(v2)2)−1 · df(v)2

dv

∣∣∣
v=v1

· (λ− f(v1)2)−1 =

(λ− f(v2)2)−1 ·
(
f(v2)2 − f(v1)2

v2 − v1
− df(v)2

dv

∣∣∣
v=v1

)
·

(λ− f(v1)2)−1.
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By assumption, f : R → op1 is differentiable, so f2 : R → op2 is differentiable. 
Using the fact that Hs can be defined using f(v) ∈ P instead of D, it follows that 
(λ − f(v)2)−1 ∈ op−2. From (2.32),

(λ− f(·)2)−1 : R → op−2 (2.34)

is continuous. Then (2.33) implies that (2.34) is differentiable and the derivative is given 
by

d

dv
(λ− f(v)2)−1 = (λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1. (2.35)

Hence

(λ− f(u2)2)−1 − (λ− f(u1)2)−1 = (2.36)
u2∫

u1

(λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1 dv,

where the integrand is a continuous map from [u1, u2] to op−2.
Put Γ = {(|t| − 1, t) : t ∈ R}, a parametrized curve in the complex plane. By the 

spectral theorem,

e−εf(u)2 = 1
2πi

∫
Γ

e−ελ(λ− f(u)2)−1 dλ. (2.37)

Then

e−εf(u2)2 − e−εf(u1)2 = (2.38)

1
2πi

∫
Γ

u2∫
u1

e−ελ(λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1 dv dλ =

1
2πi

∫
Γ

u2∫
u1

e−ελ I + f(v)2

λ− f(v)2 (I + f(v)2)−1 df(v)2

dv
(I + f(v)2)−1·

I + f(v)2

λ− f(v)2 . dv dλ

The spectral theorem gives a uniform bound on 
∥∥∥ I+f(v)2
λ−f(v)2

∥∥∥ for v ∈ R and λ ∈ Γ. Also, 

‖I + f(v)2)−1 df(v)2
dv (I + f(v)2)−1‖ is uniformly bounded for v ∈ [u1, u2]. Combined with 

the exponential decay of e−ελ = e−ε(|t|−1+it) as t → ±∞, one can justify switching the 
order of integration to obtain
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e−εf(u2)2 − e−εf(u1)2 = (2.39)

1
2πi

u2∫
u1

∫
Γ

e−ελ(λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1 dλ dv.

We claim that

1
2πi

∫
Γ

e−ελ(λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1 dλ = (2.40)

−
ε∫

0

e−σf(v)2 df(v)2

dv
e−(ε−σ)f(v)2 dσ.

To see this, let e1 and e2 be eigenfunctions of f(v)2, with eigenvalues λ1 and λ2, respec-
tively. Then

1
2πi

∫
Γ

e−ελ〈e1, (λ− f(v)2)−1 df(v)2

dv
(λ− f(v)2)−1 e2〉 dλ = (2.41)

1
2πi

∫
Γ

e−ελ(λ− λ1)−1(λ− λ2)−1 〈e1,
df(v)2

dv
e2〉 dλ =

e−ελ2 − e−ελ1

λ2 − λ1
〈e1,

df(v)2

dv
e2〉,

where e
−ελ2−e−ελ1

λ2−λ1
is taken to be −εe−ελ1 if λ2 = λ1. On the other hand,

ε∫
0

〈e1, e
−σf(v)2 df(v)2

dv
e−(ε−σ)f(v)2e2〉 dσ = (2.42)

ε∫
0

e−σλ1e−(ε−σ)λ2 〈e1,
df(v)2

dv
e2〉 dσ =

− e−ελ2 − e−ελ1

λ2 − λ1
〈e1,

df(v)2

dv
e2〉,

which proves the claim.
This proves (2.30). It follows that u → e−εf(u)2 is differentiable as a map into L1(H), 

with derivative

d

du
e−εf(u)2 = −

ε∫
e−σf(u)2 df(u)2

du
e−(ε−σ)f(u)2 dσ. (2.43)
0
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If f : R
n → P is a smooth map then precomposing with smooth maps R → R

n, we see 
that x → e−εf(x)2 is differentiable as a map from Rn to L1(H). By a similar argument, 
we can take more derivatives and see that x → e−εf(x)2 is a smooth map from R

n

to L1(H). �
3. Superconnections

In this section we develop the theory of superconnections on Hilbert bundles. In Sub-
section 3.1 we define the relevant class of Hilbert bundles and specify, in particular, 
the structure group. In Subsection 3.2 we define superconnections on such Hilbert bun-
dles, using the pseudodifferential operators of the previous section. We construct Chern 
characters and eta forms. We prove additivity results for eta forms.

3.1. Structure group

Put G = U(H) ∩ op0.

Lemma 6. G is a group.

Proof. If g ∈ G then Lemma 1.(3) gives that g∗ ∈ op0, so g∗ is an inverse of g in G. �
We now put a smooth structure on G. Since we will be considering principal G-bundles 

over finite dimensional manifolds, it suffices to give a notion of smooth maps from open 
subsets of Euclidean spaces to G, i.e. plots in the sense of diffeology. A reference for 
diffeology is the book [22]. A brief introduction is in [8, Appendix A].

The smooth structure on G that we take is such that the adjoint action of G on op∗

is smooth and the action of G on H∗ is smooth. The precise definition is the following. 
(We define smooth maps to opk using the Fréchet structure on opk, and to Hs using the 
Hilbert space structure on Hs.)

In the rest of the paper, we fix a number K ∈ N; its role will eventually be to bound the 
pseudodifferential order of the connection form. Taking K large allows more flexibility. 
The results of the paper, such as Theorems 1 and 2, will hold independent of K.

Definition 2. If U is an open subset of Rn then a map g : U → G is a plot if

(1) For any smooth map F : U → opk, the maps gFg−1 : U → opk and g−1Fg : U → opk

are smooth.
(2) For any smooth map v : U → Hs, the maps gv : U → Hs and g−1v : U → Hs are 

smooth.
(3) There is a smooth map X : U → (Rn)∗ ⊗ opK so that for any smooth map v : U →

Hs, we have g−1d(gv) = dv + Xv in Ω1 (U ;Hs−K
)
.

It is straightforward to see that this defines a diffeology on G. Let M be a manifold and 
let q : P → M be a smooth principal G-bundle [22, Chapter 8.11]. Form the associated 
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Hilbert bundle H = P ×G H [22, Chapter 8.16]. We can find a covering {Uα} of M by 
open sets, diffeomorphic to open subsets of Rn, so that q−1(Uα) is G-diffeomorphic to 
Uα×G [22, Chapter 8.13]. Let gαβ : Uα∩Uβ → G be the transition map. By a connection 
on H, we will mean a collection of 1-forms Aα ∈ Ω1(Uα; opK) satisfying

Aα = g−1
αβAβgαβ + Xαβ , (3.1)

where Xαβ comes from Definition 2.(3). Because of our notion of smooth structure on G, 
we can talk about the space 

⊕
p≥0,k∈Z

Ωp(M ; opk(H)) of smooth op∗-valued differential 
forms on M . Since G preserves the space P from Definition 1, and acts smoothly on it, 
we can also talk about Ω0 (M ;P(H)).

Example 3. If H is finite dimensional then G = U(N) and H is a finite dimensional 
unitary vector bundle.

Example 4. Let Z be a compact manifold. Let D 1
2 be the half-density line bundle on Z. 

Let V be a Hermitian vector bundle on Z. Let L be the group of Hermitian isomorphisms 
of V to itself. We do not assume that the elements of L cover the identity diffeomorphism 
of Z. Put H = L2(Z; D 1

2 ⊗ V ). Then there is a homomorphism L → U(H). We give 
L the smooth topology. Note that if dim(Z) > 0 then the homomorphism will not be 
continuous if we give U(H) the topology coming from the norm topology on B(H).

Suppose now that Z is even dimensional and V is a Clifford module. In particular, 
Z acquires a Riemannian metric. Let D be the associated Dirac-type operator. Putting 
G = U(H) ∩ op0 as before, with its diffeological structure, there is a homomorphism 
ρ : L → G that is smooth in the sense that if U is an open subset of Rn, and α : U → L

is a smooth map, then ρ ◦ α is a plot for G.
Now let π : Q → M be a fiber bundle with connected base M and compact even 

dimensional fibers. Let E be a Hermitian vector bundle on Q. Given m ∈ M , put 
Zm = π−1(m) and put Vm = E

∣∣∣
Zm

. Choose m0 ∈ M and let L be the Hermitian 

isomorphisms of Vm0 . Then (Q, E) is associated to some principal L-bundle P → M , 
using the action of L on Vm0 .

Suppose that E is a Clifford module with connection, in the sense of [3, Section 10.2]. 
Construct H and D as above, using Zm0 and Vm0 . Put Hm = L2(Zm; D

1
2
m ⊗ Vm). Then 

{Hm}m∈M are the fibers of a Hilbert bundle H associated to P using the representation ρ. 
The smooth sections of H → M are the same as the smooth sections of (DVQ) 1

2 ⊗E → Q, 
where (DV Q) 1

2 is the line bundle on Q of vertical half-densities.

3.2. Chern character and eta form

Definition 3. Let H = H+ ⊕ H− be a Z2-graded Hilbert bundle on M , in the sense of 
the previous subsection. A superconnection on H is a sum
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A = A[0] + A[1] + A[2] + . . . (3.2)

where

(1) A[0] ∈ Ω0(M ; P),
(2) A[1] is a connection on H and
(3) For i ≥ 2, we have A[i] ∈ Ωi(M, opki(H)) for some ki ∈ Z, and A[i] has total parity −1

(including the parity (−1)i of the exterior algebra part).

Example 5. In the fiber bundle setting of Example 4, the Bismut superconnection 
ABismut [3, Section 10.3] is an example of a superconnection on H.

As usual, we define e− A
2 by doing a Duhamel expansion around e− A

2
[0] . Because of 

the nilpotency of Ω≥1(M), the expansion has a finite number of terms.

Lemma 7.

(1) For any X ∈ Ω∗(M ; op∗(H)), we have that Xe− A
2 and e− A

2
X lie in Ω∗(M ; L1(H)), 

and

d Str
(
Xe− A

2
)

= Str
(
[A, X]e− A

2
)
. (3.3)

(2) Ch(A) = Str e− A
2 is a closed form on M .

Proof. Expanding e− A
2 ∈ Ω∗(M ; op∗) around e− A

2
[0] in a Duhamel expansion shows that 

the component in Ωi(M ; op∗) is a finite sum of terms of the form∫
Δk

e− t0 A
2
[0]F1e

− t1 A
2
[0]F2 . . . Fke

− tk A
2
[0] , (3.4)

where

Δk = {(t0, . . . , tk) ∈ R
k+1 :

k∑
j=0

tj = 1} (3.5)

and each Fj lies in Ω≥1(M ; op∗). For any (t0, . . . , tk) ∈ Δk, we have tj ≥ 1
k+1 for some j. 

Thus the integral in (3.4) can be written as a finite sum of integrals where in each 
integral, tj ≥ 1

k+1 for some j. The fact that Xe− A
2 and e− A

2
X lie in Ω∗(M ; L1(H))

now follows from Lemma 2.(3). Using (2.13), equation (3.3) can be proved along the 
same lines as the proof of [3, Lemma 9.15]. Finally, as in [3, Theorem 9.17(1)], part (2) 
of the lemma is an immediate consequence of (1). �
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Lemma 8. Let {A(t)}t∈[0,1] and {Â(t)}t∈[0,1] be two smooth 1-parameter families of 
superconnections on H with A(0) = Â(0) and A(1) = Â(1). Suppose that the two 
1-parameter families are homotopic relative to the endpoints, in sense that there is a 
smooth 2-parameter family of superconnections {Ã(s, t)}s,t∈[0,1] on H with Ã(0, t) = A(t), 
Ã(1, t) = Â(t), Ã(s, 0) = A(0) = Â(0) and Ã(s, 1) = A(1) = Â(1). Then

1∫
0

Str
(
dA(t)
dt

e− A
2(t)

)
dt =

1∫
0

Str
(
dÂ(t)
dt

e− Â
2(t)

)
dt (3.6)

in Ωodd(M)/ Im(d).

Proof. Define a superconnection B on [0, 1] × [0, 1] ×M by

B = ds ∧ ∂s + dt ∧ ∂t + Ã(s, t). (3.7)

Then Ch(B) is given by

Ch(B) = Ch(Ã(s, t)) − ds ∧ Str
(
dÃ(s, t)

ds
e− Ã

2(s,t)

)
− (3.8)

dt ∧ Str
(
dÃ(s, t)

dt
e− Ã

2(s,t)

)
+ O(ds ∧ dt).

From Lemma 7, Ch(B) is closed on [0, 1] × [0, 1] ×M . Modulo Im(dM ), we have∫
∂([0,1]×[0,1])

Ch(B) =
∫

[0,1]×[0,1]

d[0,1]×[0,1] Ch(B) = −
∫

[0,1]×[0,1]

dM Ch(B) (3.9)

= − dM

∫
[0,1]×[0,1]

Ch(B) = 0.

The lemma follows. �
Remark 1. We can weaken the homotopy hypothesis in Lemma 8 to just assume that 
there is a smooth 2-parameter family {O(s, t)}s,t∈[0,1] in Ω0(M ; P) with O(0, t) = A(t)[0], 
O(1, t) = Â(t)[0], O(s, 0) = A(0)[0] = Â(0)[0] and O(s, 1) = A(1)[0] = Â(1)[0]. Then we 
can construct a 2-parameter family {Ã(s, t)}0≤s,t≤1 as in the lemma.

Let A0 and A1 be two superconnections on H. Let A0,[0] and A1,[0] denote their 
order-zero parts. Suppose that A0,[0] −A1,[0] ∈ Ω0(M ; op0(H)). For t ∈ [0, 1], put A(t) =
(1 −t)A0 +tA1. By Corollary 1, for any t ∈ [0, 1], we have A(t)[0] ∈ P. Define η(A0, A1) ∈
Ωodd(M)/ Im(d) by
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η(A0,A1) =
1∫

0

Str
(
dA(t)
dt

e− A
2(t)

)
dt. (3.10)

Lemma 9.

Ch(A1) − Ch(A0) = −dη(A0,A1). (3.11)

Proof. Consider the superconnection on [0, 1] ×M given by

B = dt ∧ ∂t + A(t). (3.12)

Then Ch(B) ∈ Ω∗([0, 1] ×M) is given by

Ch(B) = Ch(A(t)) − dt ∧ Str
(
dA(t)
dt

e− A
2(t)

)
. (3.13)

From Lemma 7, Ch(B) is closed on [0, 1] ×M . This implies that

d

dt
Ch(A(t)) = −d Str

(
dA(t)
dt

e− A
2(t)

)
(3.14)

in Ω∗(M). The lemma follows by integrating over [0, 1]. �
Lemma 10. Let A0, A1 and A2 be three superconnections on H such that A0,[0] −A1,[0] ∈
Ω0(M ; op0(H)) and A1,[0] − A2,[0] ∈ Ω0(M ; op0(H)). Then

η(A0,A1) + η(A1,A2) = η(A0,A2). (3.15)

Proof. For s, t ∈ [0, 1], put

Ã(s, t) = (3.16){
(1 − t− st)A0 + 2stA1 + (1 − s)tA2 if 0 ≤ t ≤ 1

2 ,

(1 − s)(1 − t)A0 + 2s(1 − t)A1 + (−s + t + ts)A2 if 1
2 ≤ t ≤ 1.

Then {Ã(0, t)}t∈[0,1] is the linear path from A0 to A2, while {Ã(1, t)}t∈[0,1] is the con-
catenation of the linear path from A0 to A1, with the linear path from A1 to A2. 
After reparametrizing [0, 1] × [0, 1] to make Ã(s, t) smooth in s and t, we can apply 
Lemma 8. �

Given a superconnection A on H and t > 0, define a new superconnection by

At = tA[0] + A[1] + t−1
A[2] + . . . . (3.17)
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Lemma 11. Suppose that there is some c > 0 so that A2
[0] ≥ c2 Id fiberwise on H. Put

η(A,∞) =
∞∫
1

Str
(
dAt

dt
e− A

2
t

)
dt. (3.18)

Then

Ch(A) = dη(A,∞) (3.19)

Proof. Given m ∈ M , let {λi} denote the eigenvalues of A2
[0] on the fiber Hm. By 

assumption, λi ≥ c2 for each i. Then for t ≥ 1,∑
i

e−t2λi =
∑
i

e−(t2−1)λie−λi ≤ e−c2(t2−1)
∑
i

e−λi . (3.20)

Hence ∥∥∥e−t2A2
[0]

∥∥∥
1
≤ e− c2(t2−1)

∥∥∥e−A
2
[0]

∥∥∥
1

(3.21)

and it follows from the proof of Lemma 2 that on any compact subset of M ,

Str
(
e− A

2
t

)
= O

(
e−c2t2/2

)
(3.22)

and

Str
(
dAt

dt
e− A

2
t

)
= O

(
e−c2t2/2

)
. (3.23)

In particular, the integrand in (3.18) is integrable.
As in the proof of Lemma 9,

d

dt
Ch(At) = −d Str

(
dAt

dt
e− A

2
t

)
. (3.24)

Using (3.22) and (3.23), we can integrate (3.24) over [1, ∞), from which (3.19) follows. �
Lemma 12. Let E be a superconnection on a Hilbert bundle over [0, 1] × M . Let E(s)
be the superconnection on the restriction of the Hilbert bundle to {s} ×M . If E(s)[0] is 
invertible for all s ∈ [0, 1] then

η(E(0),∞) − η(E(1),∞) = −
1∫
Ch(E) (3.25)
0
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in Ωodd(M)/ Im(d). In the case of a product Hilbert bundle, meaning that it pulls back 
from a Hilbert bundle on M , (3.25) becomes

η(E(0),∞) − η(E(1),∞) = η(E(0),E(1)). (3.26)

Proof. Consider the superconnection F on [1, ∞) × [0, 1] ×M given by

dt ∧ ∂t + Et, (3.27)

where t is the coordinate on [1, ∞). Given L > 1, integrating Ch(F) over [1, L] × [0, 1]
(cf. (3.9)) gives

L∫
1

Str
(
dE(0)t
dt

e−E(0)2t
)
dt−

L∫
1

Str
(
dE(1)t
dt

e−E(1)2t
)
dt = (3.28)

−
1∫

0

Ch(E) +
1∫

0

Ch(EL).

From (3.22),

lim
L→∞

1∫
0

Ch(EL) = 0. (3.29)

This proves (3.25). Equation (3.26) follows as in (3.13). �
In Appendix A we prove a generalization of (3.26) where we no longer assume the 

invertibility of {E(s)[0]}s∈[0,1].

4. Differential K-theory

This section contains the main results of the paper. In Subsection 4.1 we define the 
differential K-group Ǩ0(M) in terms of superconnections on Hilbert bundles over M . In 
Subsection 4.2 we construct a map q from Ǩ0(M) to the standard differential K-group 
Ǩ0

stan(M). Subsection 4.3 makes the map more explicit when the degree-0 part of the 
superconnection, A[0], has vector bundle kernel. In Subsection 4.4 we show that q is 
an isomorphism, thereby proving Theorem 1. Subsection 4.5 provides a multiplication 
on Ǩ0(M).

4.1. Definitions

Let M be a smooth manifold.
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Definition 4. A cocycle for Ǩ0(M) is a triple [H,A, ω] where

(1) H is a Z2-graded Hilbert bundle over M ,
(2) A is a superconnection on H and
(3) ω ∈ Ωodd(M)/ Im(d).

Definition 5. Two cocycles [H,A, ω] and [H′,A′, ω′] for Ǩ0(M) are isomorphic if there is 
a smooth isometric isomorphism i : H → H′ so that [H,A, ω] = [i∗H′, i∗A′, ω′].

Definition 6. The group Ǩ0(M) is the quotient of the free abelian group generated by the 
isomorphism classes of cocycles, by the subgroup generated by the following relations:

(1) If [H,A, ω] and [H′,A′, ω′] are cocycles then

[H,A, ω] + [H′,A′, ω′] = [H⊕H′,A⊕ A
′, ω + ω′] . (4.1)

(2) If A[0] is invertible then

[H,A, ω] = [0, 0, ω + η(A,∞)] . (4.2)

(3) Suppose that A0 and A1 are superconnections on H such that A0,[0] − A1,[0] ∈
Ω0(M ; op0). Then

[H,A0, ω] = [H,A1, ω + η(A0,A1)] . (4.3)

Example 6. In the setting of Example 5, given ω ∈ Ωodd(M)/ Im(d), the triple 
[H,ABismut, ω] gives an element of Ǩ0(M). Compare with the “geometric family” cocy-
cles of [12].

It follows from the relations that there is a map Ǩ0(M) → Ωeven(M) that sends a 
cocycle [H,A, ω] to Ch(A) + dω.

Lemma 13. Let [H,A, ω] be a cocycle for Ǩ0(M). Let E be a finite dimensional Hermitian 
vector bundle on M with compatible connection ∇E. Put Ẽ = E ⊕ E with Z2-grading (

1 0
0 −1

)
and connection ∇Ẽ = ∇E ⊕∇E. Then

[H,A, ω] =
[
H⊕ Ẽ,A⊕∇Ẽ , ω

]
. (4.4)

Proof. From relation (1) of Definition 6, it suffices to show that 
[
Ẽ,∇Ẽ , 0

]
vanishes 

in Ǩ0(M). Define a superconnection B on Ẽ by
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B =
(
∇E I
I ∇E

)
. (4.5)

From relations (2) and (3) of Definition 6, in Ǩ0(M) we have[
Ẽ,∇Ẽ , 0

]
=
[
Ẽ,B, 0

]
+ η

(
∇Ẽ ,B

)
(4.6)

=
[
0, 0, η

(
∇Ẽ ,B

)
+ η(B,∞)

]
.

For t ∈ [0, 1], put

A(t) = (1 − t)∇Ẽ + tB =
(
∇E tI
tI ∇E

)
. (4.7)

Then

A(t)2 =
(
t2 + (∇E)2 0

0 t2 + (∇E)2
)

(4.8)

and

Str
(
dA(t)
dt

e− A
2(t)

)
= (4.9)

Str
((

0 I
I 0

)(
e−t2−(∇E)2 0

0 e−t2−(∇E)2

))
= 0.

It follows from (3.10) that η
(
∇Ẽ ,B

)
= 0. By a similar argument, η(B, ∞) = 0. This 

proves the lemma. �
4.2. Map to the standard finite dimensional version

Define Ǩ0
stan(M) as in the previous subsection, except using finite dimensional vector 

bundles rather than Hilbert bundles, connections instead of superconnections, removing 
relation (2) and adding a stabilization relation

[H,∇, ω] =
[
H⊕ Ẽ,∇⊕∇Ẽ , ω

]
(4.10)

as in the conclusion of Lemma 13.
Then Ǩ0

stan(M) is isomorphic to the standard differential K-theory group as defined, 
for example, in [18].

Suppose now that M is compact. Given a cocycle c = [H,A, ω] for Ǩ0(M), we con-
struct an equivalent finite dimensional cocycle as follows.

As in [3, Section 9.5], one can find a finite dimensional vector bundle E on M (in 
fact, a trivial one) and a linear map s : E → H− so that A+ + s : H+ ⊕ E → H− is 
[0]
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surjective. Let ∇E be a connection on E. First, from Lemma 13, the cocycle [H,A, ω] is 
equivalent to 

[
H⊕ Ẽ,A⊕∇Ẽ , ω

]
. Next, define Δ+ : H+ ⊕ Ẽ+ → H− ⊕ Ẽ− by

Δ+ =
(

0 s
0 0

)
(4.11)

and define Δ− : H− ⊕ Ẽ− → H+ ⊕ Ẽ+ by

Δ− =
(

0 0
s∗ 0

)
. (4.12)

Put

Â = (A⊕∇Ẽ) +
(

0 Δ−

Δ+ 0

)
, (4.13)

a superconnection on Ĥ = H⊕ Ẽ. From relation (3) in Definition 6, the cocycle [H,A, ω]
is equivalent to 

[
Ĥ, Â, ω + η(A⊕∇Ẽ , Â)

]
. As a map from H+ ⊕ Ẽ+ to H− ⊕ Ẽ−, we 

have

Â
+
[0] =

(
A

+
[0] s

0 0

)
. (4.14)

Since A+
[0] + s is surjective, its kernel is a finite dimensional vector bundle; cf. [3, 

Section 9.5]. Then Ker(Â+
[0]) = Ker(A+

[0] + s) and Ker(Â−
[0]) ∼= Coker(Â+

[0]) = Ẽ−. This 
shows that Â[0] has (Z2-graded) vector bundle kernel.

Let P be orthogonal projection onto Ker(Â[0]). Put

Â
′ = (I − P )Â(I − P ) + P Â[1]P. (4.15)

Then in Ǩ0(M), [H,A, ω] equals[
H⊕ Ẽ,A⊕∇Ẽ , ω

]
= (4.16)[

Ĥ, Â, ω + η(A⊕∇Ẽ , Â)
]

=[
Ĥ, Â′, ω + η(A⊕∇Ẽ , Â) + η(Â, Â′)

]
=[

Ĥ, Â′, ω + η(A⊕∇Ẽ , Â′)
]

=[
(I − P )Ĥ, (I − P )Â(I − P ), 0

]
+[

Ker(Â[0]), P Â[1]P, ω + η(A⊕∇Ẽ , Â′)
]

=[
Ker(Â[0]), P Â[1]P,
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ω + η(A⊕∇Ẽ , Â′) + η((I − P )Â(I − P ),∞)
]
.

We define the last expression to be q(c).
Thus given a cocycle c for Ǩ0(M), we have constructed an equivalent cocycle q(c) for 

Ǩ0(M), and q(c) is also a cocycle for Ǩ0
stan(M).

Proposition 3. The class in Ǩ0
stan(M) represented by q(c) is independent of the choices 

of E, s and ∇E.

Proof. We first claim that given E and s, the class is independent of the choice of ∇E . 
Let ∇E be another choice of connection on E. Let Â and Â

′
be the corresponding super-

connections constructed using ∇E instead of ∇E . Note that Ker(Â[0]) = Ker(Â[0]), so the 

projection operator P doesn’t change. Then the change in the class of q(c) in Ǩ0
stan(M)

is [0, 0, δω], where

δω =η(P Â[1]P, P Â[1]P ) + η(A⊕∇Ẽ , Â
′
) + η((I − P )Â(I − P ),∞)− (4.17)

η(A⊕∇Ẽ , Â′) − η((I − P )Â(I − P ),∞).

Using Lemma 10 and (3.26), this equals

η(P Â[1]P, P Â[1]P ) + η(A⊕∇Ẽ , Â
′
)+ (4.18)

η((I − P )Â(I − P ), (I − P )Â(I − P )) − η(A⊕∇Ẽ , Â′) =

η(A⊕∇Ẽ , Â
′
) + η(Â

′
, Â′) − η(A⊕∇Ẽ , Â′) =

η(A⊕∇Ẽ ,A⊕∇Ẽ) = η(∇Ẽ ,∇Ẽ) = 0.

This proves the claim.
Now suppose that E1, s1, E2 and s2 are two different choices for E and s. Let q1(c)

and q2(c) be the ensuing cocycles for Ǩ0
stan(M). Put F = E1 ⊕ E2, with connection 

∇E1 ⊕∇E2 . Put S1 = s1 ⊕ 0 and S2 = 0 ⊕ s2, both being maps from F to H−. Let C1
and C2 be the ensuing cocycles for Ǩ0(M). Then q1(c) is equivalent to q(C1), and q2(c)
is equivalent to q(C2). For t ∈ [0, 1], put S(t) = tS2 + (1 − t)S1. Then for all t ∈ [0, 1], 
the map A+

[0] + S(t) is surjective from H+ ⊕ F to H−. Hence we can reduce to the case 
when E1 = E2, which we will again call E, but there are two maps s1, s2 : E → H−

that are joined by a 1-parameter family of maps s(t) : E → H−, so that A+
[0] + s(t) is 

surjective for all t ∈ [0, 1]. If q1(c) is the cocycle for Ǩ0
stan(M) constructed using s(0), 

and q2(c) is the cocycle for Ǩ0
stan(M) constructed using s(1), then we want to show that 

q1(c) = q2(c).
Define Â(t), P (t), and Â′(t) accordingly. The family of Hilbert bundles {Ĥ(t)}t∈[0,1]

forms a Hilbert bundle L over [0, 1] ×M . There are subbundles M and M′ of L formed by 
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{P (t)Ĥ(t)}t∈[0,1] and {(I−P (t))Ĥ(t)}t∈[0,1], respectively. The Hilbert bundle L acquires 
a superconnection

Ĉ
′ =(I − P (t))

(
dt ∧ ∂t + Â(t)

)
(I − P (t))+ (4.19)

P (t)
(
dt ∧ ∂t + Â[1](t)

)
P (t).

The finite dimensional bundle M acquires a connection

B = P (t)
(
dt ∧ ∂t + Â[1](t)

)
P (t). (4.20)

There is a superconnection on M′ given by

B̂
′ = (I − P (t))

(
dt ∧ ∂t + Â(t)

)
(I − P (t)). (4.21)

In Ǩ0
stan(M), we have[

Ker(Â[0](1)), P (1)Â[1](1)P (1), 0
]

= (4.22)

[
Ker(Â[0](0)), P (0)Â[1](0)P (0), 0

]
+

⎡⎣0, 0,
1∫

0

Ch(B)

⎤⎦ ,

as can be seen from trivializing M with respect to [0, 1] and then applying (3.13)
and (4.3).

From Lemma 10,

η(A⊕∇Ẽ , Â′(1)) − η(A⊕∇Ẽ , Â′(0)) =η(Â′(0), Â′(1)) (4.23)

= −
1∫

0

Ch(Ĉ′).

From Lemma 12,

η((I − P (1))Â(1)(I − P (1)),∞) = (4.24)

η((I − P (0))Â(0)(I − P (0)),∞) +
1∫

0

Ch(B′).

Now

1∫
0

Ch(Ĉ′) =
1∫

0

Ch(B) +
1∫

0

Ch(B′). (4.25)

Equations (4.22), (4.23), (4.24) and (4.25) imply that q1(c) = q2(c). �
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Proposition 4. q passes to a map from Ǩ0(M) to Ǩ0
stan(M).

Proof. We have to show that q vanishes on relations for Ǩ0(M). This is evident for 
relations (1) and (2) in Definition 6. For relation (3), suppose that A0 and A1 are two 
superconnections on H such that A0,[0] − A1,[0] ∈ Ω0(M ; op0). For t ∈ [0, 1], put A(t) =
tA1 +(1 − t)A0. From Corollary 1, we know that A(t) ∈ P. Let K be the product Hilbert 
bundle [0, 1] × H over [0, 1] ×M . We can find a finite dimensional vector bundle E on 
[0, 1] × M (in fact a trivial one) and a map s : E → K− such that for each t ∈ [0, 1], 
if E(t) → {t} × M is the restricted bundle and s(t) : E(t) → H− is the restricted 
map then A[0](t) + s(t) : H+ ⊕ E(t) → H− is surjective. Define Â(t), P (t), and Â′(t)
accordingly. The family of Hilbert bundles {Ĥ(t)}t∈[0,1] forms a Hilbert bundle L over 
[0, 1] × M . There are subbundles M and M′ of L formed by {P (t)Ĥ(t)}t∈[0,1] and 
{(I − P (t))Ĥ(t)}t∈[0,1], respectively. Define Ĉ′, B and B̂′ as in (4.19), (4.20) and (4.21). 
As in the proof of Proposition 3, we conclude that[

Ker(Â[0](1)), P (1)Â[1]P (1), 0
]
−
[
Ker(Â[0](0)), P (0)Â[1]P (0), 0

]
= (4.26)⎡⎣0, 0,

1∫
0

Ch(B)

⎤⎦ =

⎡⎣0, 0,
1∫

0

Ch(Ĉ′)

⎤⎦−

⎡⎣0, 0,
1∫

0

Ch(B′)

⎤⎦ =

[
0, 0,−η(A⊕∇Ẽ , Â′(1)) + η(A⊕∇Ẽ , Â′(0))

]
−[

0, 0, η((I − P (1))Â(1)(I − P (1)),∞)−

η((I − P (0))Â(0)(I − P (0)),∞)
]
.

The proposition follows. �
4.3. Vector bundle kernel

In this subsection we simplify the formula for q(c) in the special case when the fam-
ily Ker(A[0]) of vector spaces actually form a vector bundle on M .

Proposition 5. Suppose that Ker(A[0]) is a (Z2-graded) vector bundle. Let Q denote or-
thogonal projection onto Ker(A[0]). Put

B = (I −Q)A(I −Q) + QA[1]Q. (4.27)

If an element c ∈ Ǩ0(M) is represented by c = [H, A, ω] then q(c) ∈ Ǩ0(M)stan is 
represented by

[
Ker(A[0]), QA[1]Q,ω + η(A,B) + η((I −Q)A(I −Q),∞)

]
. (4.28)
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Proof. Put c = [H, A, ω]. Then c is equivalent to c′ = [H, B, ω + η(A, B)], so it suffices 
to look at q(c′). In the construction of q(c′), put E = Ker(A−

[0]), with connection ∇E =
QA

−
[1]Q. Let s : E → H− be inclusion. Define B̂ as in (4.13). In terms of the orthogonal 

decompositions

Ĥ+ = (I −Q)H+ ⊕ Ker(A+
[0]) ⊕ Ẽ+ (4.29)

and

Ĥ− = (I −Q)H− ⊕ Ker(A−
[0]) ⊕ Ẽ−, (4.30)

we can write

B̂
+
[0] =

⎛⎝(I −Q)A+
[0](I −Q) 0 0
0 0 I
0 0 0

⎞⎠ (4.31)

and

B̂
−
[0] =

⎛⎝(I −Q)A−
[0](I −Q) 0 0
0 0 0
0 I 0

⎞⎠ . (4.32)

Then

Ker(B̂+
[0]) ∼= 0 ⊕ Ker(A+

[0]) ⊕ 0 (4.33)

and

Ker(B̂−
[0]) ∼= 0 ⊕ 0 ⊕ Ẽ−. (4.34)

Let P be projection onto Ker(B̂[0]). Put

B̂
′ = (I − P )B̂(I − P ) + P B̂[1]P. (4.35)

Then the cocycle q(c′) is represented by[
Ker(B̂[0]), P B̂[1]P, (4.36)

ω + η(A,B) + η(B⊕∇Ẽ , B̂′) + η((I − P )B̂(I − P ),∞)
]
.

As P (Q ⊕ 0) = P , there is an orthogonal decomposition

Ĥ = ((I −Q) ⊕ 0)Ĥ ⊕ ((Q⊕ 0) − P )Ĥ ⊕ P Ĥ. (4.37)
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Put

H′′ = (((Q⊕ 0) − P )Ĥ = Ẽ+ ⊕ Ker(A−
[0]), (4.38)

with the Z2-grading operator 
(

1 0
0 −1

)
. Define a connection ∇H′′ by ∇H′′ =(

∇E 0
0 ∇E

)
and a superconnection E on H′′ by E =

(
∇E I
I ∇E

)
. Due to cancel-

lations, η(B ⊕∇Ẽ , ̂B′) = η
(
∇H′′

,E
)
.

Next,

η((I − P )B̂(I − P ),∞) = η((I −Q)A(I −Q),∞) + η(E,∞). (4.39)

As in the proof of Lemma 13,

η
(
∇H′′

,E
)

+ η(E,∞) = 0. (4.40)

The proposition follows. �
4.4. Proof of Theorem 1

We now give the proof of Theorem 1, in the following precise form.

Proposition 6. The map q : Ǩ0(M) → Ǩ0
stan(M) is an isomorphism.

Proof. Let e =
[
F,∇F , ω

]
be a cocycle for Ǩ0

stan(M), where F is a finite dimensional 
Z2-graded Hermitian vector bundle on M and ∇F is a compatible connection on F . We 
can also consider e to be a cocycle for Ǩ0(M). Let r(e) denote this cocycle for Ǩ0(M). 
Then r : Ǩ0

stan(M) → Ǩ0(M) is well defined, because of Definition 5 and Lemma 13.
Given a cocycle c = [H,A, ω] for Ǩ0(M), the cocycle r(q(c)) amounts to consider-

ing q(c) as a cocycle for Ǩ0(M). Equation (4.16) shows that r(q(c)) is equivalent to c
in Ǩ0(M).

Given a cocycle e for Ǩ0
stan(M), applying Proposition 5 to r(e), with Q = Id, shows 

that q(r(e)) is equivalent to e in Ǩ0
stan(M). (Note that in this application, all of the 

vector bundles in the proof of Proposition 5 are finite dimensional.) This proves the 
proposition. �
Remark 2. The isomorphism in Proposition 6 is compatible with the structures in dif-
ferential cohomology theory.

4.5. Multiplicative structure

Let [H1,A1, ω1] and [H2,A2, ω2] be two cocyles for Ǩ0(M). Let γ1 be the Z2-grading 
operator for H1. Put



A. Gorokhovsky, J. Lott / Advances in Mathematics 328 (2018) 661–712 689
H =H1 ⊗H2, (4.41)

A =(A1 ⊗ I) + (γ1 ⊗A2),

ω =(Ch(A1) ∧ ω2) + (ω1 ∧ Ch(A2)) + (ω1 ∧ dω2).

Proposition 7. The map that sends [H1,A1, ω1] , [H2,A2, ω2] to [H,A, ω] passes to a map 
m : Ǩ0(M) × Ǩ0(M) → Ǩ0(M).

Proof. First, the isomorphism class of [H,A, ω] only depends on the isomorphism classes 
of [H1,A1, ω1] and [H2,A2, ω2]. We will check that the relations on the first factor 
[H1,A1, ω1] pass to relations on [H,A, ω]. The argument for the second factor is similar.

Relation (1) of Definition 6 is clearly compatible. For relation (2) of Definition 6, 
suppose that A1,[0] is invertible. Since

A
2
[0] = A

2
1,[0] + A

2
2,[0], (4.42)

it follows that A[0] is invertible. It suffices to show that

η(A,∞) + (Ch(A1) ∧ ω2) + (ω1 ∧ Ch(A2)) + (ω1 ∧ dω2) = (4.43)

(ω1 + η(A1,∞)) ∧ (Ch(A2) + dω2))

in Ωodd(M)/ Im(d) or, equivalently, that

η(A,∞) = η(A1,∞) ∧ Ch(A2) (4.44)

in Ωodd(M)/ Im(d). Put

Â(t) = ((A1)t ⊗ Id) + (γ1 ⊗ A2). (4.45)

Then

Str
(
dÂ(t)
dt

e−Â
2(t)

)
= Str

(
d(A1)t
dt

e−(A1)2t
)
∧ Ch(A2). (4.46)

For s ∈ [0, 1], put

B(s, t) = sAt + (1 − s)Â(t). (4.47)

Then

B(s, t)[0] = t(A1,[0] ⊗ Id) + (st + 1 − s)(γ1 ⊗ A2,[0]) (4.48)

and
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B(s, t)2[0] = (t2A2
1,[0] ⊗ Id) + (st + 1 − s)2(Id⊗A

2
2,[0]) ≥ t2A2

1,[0] ⊗ Id . (4.49)

Using the strict positivity of A2
1,[0], we can apply a homotopy argument as in the proof 

of Lemma 12. Since Â(1) = A, it follows that B(s, 1) = A for all s ∈ [0, 1]. Then the 
analog of the term 

∫ 1
0 Ch(E) in Lemma 12 vanishes, so

η(A,∞) =
∞∫
1

Trs

(
dÂ(t)
dt

e− Â
2(t)

)
dt = η(A1,∞) ∧ Ch(A2) (4.50)

in Ωodd(M)/ Im(d). This proves (4.44).
For relation (3) of Definition 6, suppose that A′

1 is another superconnection on H1
with A′

1,[0]−A1,[0] ∈ Ω0(M ; op0(H1)). The new product superconnection A′ on H satisfies

A
′ − A = (A′

1 − A1) ⊗ Id (4.51)

and hence

A
′
[0] − A[0] = (A′

1,[0] − A1,[0]) ⊗ Id ∈ op0(H). (4.52)

It suffices to show that

Ch(A1) ∧ ω2 = (Ch(A′
1) ∧ ω2) + (η(A1,A

′
1) ∧ Ch(A2))+ (4.53)

(η(A1,A
′
1) ∧ dω2) + η(A′,A)

in Ωodd(M)/ Im(d) or, equivalently,

η(A,A′) = η(A1,A
′
1) ∧ Ch(A2) (4.54)

in Ωodd(M)/ Im(d). For t ∈ [0, 1], put

A(t) = (1 − t)A + tA′ (4.55)

and

A1(t) = (1 − t)A1 + tA′
1. (4.56)

Then

A
2(t) = (A2

1(t) ⊗ Id) + (Id⊗A
2
2) (4.57)

and

dA(t)
dt

= dA1(t)
dt

⊗ Id, (4.58)

from which (4.54) follows. �
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Remark 3. It is straightforward to see that m is unital and associative. That it is com-
mutative can be shown using the graded isomorphism H2 ⊗H1 → H1 ⊗H2 that sends 
v2 ⊗ v1 to (−1)sign(v1) sign(v2)v1 ⊗ v2.

5. Pushforward

Given a fiber bundle π : M → B with even dimensional compact fibers and a Rie-
mannian structure, in this section we construct a pushforward π∗ : Ǩ0

fin(M) → Ǩ0(B). 
Here Ǩ0

fin(M) denotes the differential K-theory constructed using finite dimensional 
Hermitian vector bundles with compatible superconnections. As Ǩ0

fin(M) is isomorphic 

to Ǩ0(M), to define the pushforward on Ǩ0(M) it suffices to just define the pushforward 
on Ǩ0

fin(M).
In Subsection 5.1 we define the pushforward on cocycles. In Subsection 5.2 we show 

that it passes to a pushforward on the differential K-groups. Subsection 5.3 has the proof 
that π∗ coincides with the analytic index of [18].

One could consider defining the pushforward directly on cocycles for Ǩ0(M), instead 
of just on cocycles for Ǩ0

fin(M). This may be possible but there are some technical 
issues; see Remark 4.

5.1. Pushforward on cocycles

Let Ǩ0
fin(M) denote the group formed by only allowing finite dimensional Hilbert 

bundles in the generators and relations of Definition 6. The proof of Proposition 6, 
when restricted to finite dimensional Hilbert bundles, shows that Ǩ0

fin(M) is isomorphic 

to Ǩ0
stan(M). (The distinction between Ǩ0

fin(M) and Ǩ0
stan(M) is that cocycles for the 

former involve superconnections, whereas cocycles for the latter involve connections.) 
From (4.16), any cocycle for Ǩ0(M) is equivalent to a cocycle for Ǩ0

fin(M).
Let π : M → B be a fiber bundle with even dimensional compact fibers. We assume 

that π has a Riemannian structure in the sense of [18, Section 3.1]. This means that we 
are given an inner product gTV M on the vertical tangent bundle TV M = Ker(dπ) and a 
horizontal distribution THM on M . Let DV M denote the vertical density bundle on M . 
We assume that π is spinc-oriented in the sense that the vertical tangent bundle TV M

on M has a spinc-structure, with characteristic Hermitian line bundle LV M → M . We 
also assume that π has a differential spinc-structure in the sense of [18, Section 3.1], 
meaning that LV M is equipped with a unitary connection. Let SV M denote the vertical 
spinor bundle on M . The connections on TV M and LV M induce a connection ∇̂TV M

on SV M .
There is a degenerate Clifford module C0(M) generated by T ∗M , with a Clifford 

action m on π∗T ∗B ⊗ SV M [3, Section 10.2]. Note that we can identify C0(M) and 
Λ∗(T ∗M) as vector bundles on M . Let B denote the Bismut superconnection acting on 
C∞(M ; SV M ⊗ (DV M) 1

2 ).
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Let [E, A, ω] be a cocycle for Ǩ0
fin(M). We define the push-forward π∗[E, A, ω] to be 

the cocycle [H, π∗A, ω′] where the definition of the terms is as follows. First, H is the 
Hilbert bundle whose fiber over b ∈ B is

Hb = L2
(
π−1(b); (E ⊗ SV M ⊗ (DV M) 1

2 )
∣∣∣
π−1(b)

)
. (5.1)

The operator Db on Hb is the Dirac-type operator. Then

H∞
b = C∞

(
π−1(b); (E ⊗ SV M ⊗ (DV M) 1

2 )
∣∣∣
π−1(b)

)
(5.2)

and

C∞(B;H∞) = C∞(M ;E ⊗ SV M ⊗ (DV M) 1
2 ). (5.3)

We use the identification

C∞(M ;E ⊗ SV M ⊗ (DV M) 1
2 ) = (5.4)

C∞(M ;E) ⊗C∞(M) C
∞(M ;SV M ⊗ (DV M) 1

2 ).

Given ξ ∈ C∞(M ; E), write

Aξ =
∑
i

ξi ⊗ ωi ∈ C∞(M ;E ⊗ Λ∗(T ∗M)), (5.5)

a locally finite sum on M , where ξi ∈ C∞(M ; E) and ωi ∈ C∞(M ; Λ∗(T ∗M)). With 
s ∈ C∞(M ; SV M ⊗ (DV M) 1

2 ), let m(A ⊗ 1) denote the operator that sends ξ ⊗ s to∑
i

ξi ⊗m(ωi)s ∈ C∞(M ;E ⊗ SV M ⊗ (DV M) 1
2 ⊗ π∗T ∗B). (5.6)

Acting on C∞(M ; E ⊗ SV M ⊗ (DV M) 1
2 ) and using (5.4), we define

π∗A = m(A⊗ Id) + Id⊗B. (5.7)

This is well-defined since one can check, for example, that if ξ ∈ C∞(M ; E), s ∈
C∞(M ; SV M ⊗ (DV M) 1

2 ) and f ∈ C∞(M) then

(π∗A)(ξf ⊗ s) = (π∗A)(ξ ⊗ fs). (5.8)

Let Rt denote the rescaling operator on superconnections, i.e. RtA = At where the 
right-hand side is defined in (3.17). Put

(π∗A)u = Ru (m(Ru−1A⊗ Id) + Id⊗B) . (5.9)
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From [23, Theorem 5.41], the limit limu→0 η((π∗A)u, π∗A) ∈ Ωodd(B)/ Im(d) exists; see 
also [5, Appendix 1]. Denote the limit by η((π∗A)0, π∗A). With the characteristic form 

Todd
(
∇̂TV M

)
from [18, Section 2.1], we put

ω′ =
∫

M/B

Todd
(
∇̂TV M

)
∧ ω + η((π∗A)0, π∗A). (5.10)

Definition 7.

π∗ [E,A, ω] = [H, π∗A, ω
′] . (5.11)

5.2. Pushforward on differential K-theory

In this subsection we show that the pushforward π∗ is well defined on Ǩ0
fin(M). We 

begin with a lemma.

Lemma 14. Suppose that {A(s)}s∈[0,1] is a smooth 1-parameter family of finite dimen-
sional superconnections on E. Then

lim
u→0

η((π∗A(1))u, (π∗A(0))u) =
∫

M/B

Todd
(
∇̂TV M

)
∧ η(A(1),A(0)). (5.12)

Proof. Put E = ds ∧ ∂s + A(s) and π∗E = ds ∧ ∂s + π∗A(s). Then

lim
u→0

η((π∗A(1))u, (π∗A(0))u) = lim
u→0

1∫
0

Ch((π∗E)u) (5.13)

and ∫
M/B

Todd
(
∇̂TV M

)
∧ η(A(1),A(0)) = (5.14)

1∫
0

∫
M/B

Todd
(
∇̂TV M

)
∧ Ch(E).

From [23, Theorem 5.33],

lim
u→0

Ch((π∗E)u) =
∫

M/B

Todd
(
∇̂TV M

)
∧ Ch(E) (5.15)

uniformly on [0, 1] ×M ; see also [6, (2.127)] and [7, Proposition 11.7]. The lemma fol-
lows. �
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Proposition 8. The map π∗, as defined on cocycles for Ǩ0
fin(M), passes to a map π∗ :

Ǩ0
fin(M) → Ǩ0(B).

Proof. It is clear that relation (1), in Definition 6 for Ǩ0
fin(M), passes through π∗.

For relation (3), suppose that [E,A, ω] is a cocycle for Ǩ0
fin(M) with A[0] invertible. 

We must show that π∗ [E,A, ω] is equivalent to

π∗ [0, 0, ω + η(A,∞)] =

⎡⎢⎣0, 0,
∫

M/B

Todd
(
∇̂TV M

)
∧ (ω + η(A,∞))

⎤⎥⎦ . (5.16)

Equivalently, letting F (A) ∈ Ǩ0(B) be the class represented by the cocycle⎡⎢⎣H, π∗A, η((π∗A)0, π∗A) −
∫

M/B

Todd
(
∇̂TV M

)
∧ η(A,∞)

⎤⎥⎦ , (5.17)

we must show that F (A) vanishes.

Lemma 15. Suppose that {A(s)}s∈[0,1] is a smooth 1-parameter family of finite dimen-
sional superconnections on M , with A(0)[0] and A(1)[0] invertible. Then F (A(0)) =
F (A(1)).

Proof. Using Lemmas 10 and 12, one finds that

F (A(1)) − F (A(0)) =
[
0, 0, lim

u→0
η((π∗A(1))u, (π∗A(0))u)− (5.18)

∫
M/B

Todd
(
∇̂TV M

)
∧ η(A(1),A(0))

⎤⎥⎦ .

The lemma now follows from Lemma 14. �
Lemma 16. For v > 0, put A(v) = (v − 1)A[0] + A. Then for all b ∈ B, for sufficiently 
large v the operator (π∗A(v))[0] is invertible on Hb.

Proof. Without loss of generality, suppose that B is a point. Writing

A = A[0] + A[1] + X, (5.19)

with X ∈ C∞(M ; End(E) ⊗ Λ≥2(T ∗M)), we have

(π∗A(v))[0] = v(A[0] ⊗ Id) + DA[1] + m(X ⊗ Id), (5.20)
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where DA[1] denotes the Dirac operator on M coupled to the connection A[1] on E. Using 
the fact that A[0] anticommutes with γE , while DA[1] commutes with γE , it follows that

(π∗A(v))2[0] =v2(A2
[0] ⊗ Id) + vm([A[1],A[0]] ⊗ Id)+ (5.21)

vm([A[0], X] ⊗ Id) +
(
DA[1] + m(X ⊗ Id)

)2
.

Since A2
[0] is strictly positive, if v is sufficiently large then (π∗A(v))2[0] is strictly positive. 

This proves the lemma. �
By Lemmas 15 and 16, without loss of generality we can assume that (π∗A)[0] is 

invertible. Then the cocycle in (5.17) is equivalent to⎡⎢⎣0, 0, η((π∗A)0, π∗A) + η(π∗A,∞) −
∫

M/B

Todd
(
∇̂TV M

)
∧ η(A,∞)

⎤⎥⎦ . (5.22)

By adiabatic techniques for eta forms, (5.22) vanishes. The proof of this is similar to the 
proofs in [10, Theorem 5.10 and Section 6] and [26], which deal with adiabatic limits in 
the more difficult case of a double fibration, i.e. when E is itself the pushforward of a 
vector bundle with connection. We omit the details.

Finally, to show that relation (3) passes through π∗, suppose that A0 and A1 are two 
superconnections on E. Then

π∗ [E,A1, ω + η(A0,A1)] − π∗ [E,A0, ω] = (5.23)⎡⎢⎣H, π∗A1,

∫
M/B

Todd
(
∇̂TV M

)
∧ (ω + η(A0,A1)) + η((π∗A1)0, π∗A1)

⎤⎥⎦−

⎡⎢⎣H, π∗A0,

∫
M/B

Todd
(
∇̂TV M

)
∧ ω + η((π∗A0)0, π∗A0)

⎤⎥⎦ =

⎡⎢⎣0, 0,
∫

M/B

Todd
(
∇̂TV M

)
∧ η(A0,A1) − lim

u→0
η((π∗A0)u, (π∗A1)u)

⎤⎥⎦ .

This vanishes from Lemma 14. �
Remark 4. If we start with a cocycle [E, A, ω] for Ǩ0(M), i.e. an infinite dimensional 
cocycle, then we could consider defining its pushforward [H, π∗A, ω] as in Definition 7. 
The definition of H, as (5.1), still makes perfect sense. The formal definition of π∗A is 
the same as (5.7). However, there is the technical point that we want (π∗A)[0] to be 
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θ-summable for all θ > 0. To analyze this requirement, let us assume that B is a point. 
Then

π∗A = A[0] + DA[1] +
∑
i≥2

c(A[i]), (5.24)

where DA[1] is the Dirac-type operator on C∞
(
M ;E ⊗ SM ⊗ (DM) 1

2

)
as constructed 

using the connection A[1] on E, and c denotes the Clifford action on SM . As

(π∗A)2 =A
2
[0] + c

(
∇A[0]

)
+ D2

A[1]
+ (5.25)

∑
i≥2

c
(
[A[0],A[i]]

)
+
∑
i≥2

c
(
∇A[i]

)
+

⎛⎝∑
i≥2

c(A[i])

⎞⎠2

,

in order for π∗A to be θ-summable it is reasonable to assume that ∇A[0] is 1st-order, and if 
i ≥ 2 then A[i] and ∇A[i] are 0th-order. (That is, to require that ∇A[0] ∈ C∞(M ; T ∗M⊗
op1), and for i ≥ 2 that A[i] ∈ C∞(M ; Λi(T ∗M) ⊗ op0) and ∇A[i] ∈ C∞(M ; T ∗M ⊗
Λi(T ∗M) ⊗ op0).)

Returning to the case of general B, even with such additional assumptions on A, 
it remains to show that η((π∗A)0, π∗A) is well defined, i.e. that the analog of [23, 
Theorem 5.41] holds for infinite dimensional bundles. One can do all this for super-
connections A arising from geometric families in the sense of [12], which gives reason to 
believe that it can be done more generally.

5.3. Relation with the analytic index

Proposition 9. Under the isomorphisms Ǩ0 ∼= Ǩ0
fin

∼= Ǩ0
stan, the map π∗ : Ǩ0

fin(M) →
Ǩ0(B) coincides with the analytic index Indan : Ǩ0

stan(M) → Ǩ0
stan(B) of [18, Defini-

tion 3.12].

Proof. Suppose first that Ker((π∗A)[0]) is a (Z2-graded) vector bundle on B. Let Q be 
orthogonal projection onto Ker((π∗A)[0]). For T > 0, put

ET = (I −Q)(π∗A)T (I −Q) + Q(π∗A)[1]Q. (5.26)

By Proposition 5 and Definition 7,

π∗ [E,A, ω] =

⎡⎢⎣Ker(A[0]), Q(π∗A)[1]Q,

∫
M/B

Todd
(
∇̂TV M

)
∧ ω+ (5.27)

η((π∗A)0, π∗A) + η(π∗A,E1)+

η((I −Q)π∗A(I −Q),∞)]
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=

⎡⎢⎣Ker(A[0]), Q(π∗A)[1]Q,

∫
M/B

Todd
(
∇̂TV M

)
∧ ω+

η((π∗A)0, (π∗A)T )) + η((π∗A)T ,ET )+

η((I −Q)(π∗A)T (I −Q),∞)] .

From Lemma 8,

η((π∗A)0, (π∗A)T )) = lim
u→0

T∫
u

Str
(
d(π∗A)t

dt
e− (π∗A)2t

)
dt. (5.28)

From [3, Theorem 9.23], the limit limT→∞ η((π∗A)0, (π∗A)T )) exists; it is called η̃ in [18], 
after the Bismut–Cheeger eta form [5]. Using the estimates in [3, Section 9.3], we have 
limT→∞ η((π∗A)T , ET ) = 0 and limT→∞ η((I −Q)(π∗A)T (I −Q), ∞) = 0. Thus

π∗ [E,A, ω] =

⎡⎢⎣Ker(A[0]), Q(π∗A)[1]Q,

∫
M/B

Todd
(
∇̂TV M

)
∧ ω + η̃

⎤⎥⎦ , (5.29)

which is the same as [18, Definition 3.12]. If Ker((π∗A)[0]) is not a vector bundle then 
we can effectively deform to that case, as in Subsection 4.2 and [18, Section 7.12]. �
6. Odd differential K-groups

In this section we indicate how the results of the previous sections extend to the odd 
differential K-group Ǩ1(·). Some of the arguments are similar to those of the previous 
sections, so we do not write them out in detail. For this reason, we label the results of 
this section as “claims”.

We use the odd Chern characters of Quillen [32, Section 5]. Let M be a smooth 
manifold. Let H be a Hilbert bundle over M as in Subsection 3.1, except ungraded. 
A superconnection A on H is defined as in Definition 3, except removing the oddness con-
dition on A[0] and the parity condition on A[i]. Note that the only grading on Ω∗(M ; op∗)
is the one coming from Ω∗(M). Let σ be a new formal odd variable with σ2 = 1. Put

Aσ = σA[0] + A[1] + σA[2] + . . . , (6.1)

so that Aσ has odd total parity. Define Trσ(A + Bσ) = Tr(B) and

Ch(A) = Trσ
(
e−A

2
σ

)
∈ Ωodd(M). (6.2)

Define the eta forms similarly to (3.10) and (3.18), as elements of Ωeven(M)/ Im(d), 
using Trσ instead of Trs.



698 A. Gorokhovsky, J. Lott / Advances in Mathematics 328 (2018) 661–712
Definition 8. A cocycle for Ǩ1(M) is a triple [H,A, ω] where

(1) H is an ungraded Hilbert bundle over M ,
(2) A is a superconnection on H and
(3) ω ∈ Ωeven(M)/ Im(d).

Definition 9. The group Ǩ1(M) is the quotient of the free abelian group generated by the 
isomorphism classes of cocycles, by the subgroup generated by the following relations:

(1) If [H,A, ω] and [H′,A′, ω′] are cocycles then

[H,A, ω] + [H′,A′, ω′] = [H⊕H′,A⊕ A
′, ω + ω′] . (6.3)

(2) If A[0] is invertible then

[H,A, ω] = [0, 0, ω + η(A,∞)] . (6.4)

(3) Suppose that A0 and A1 are superconnections on H such that A0,[0] − A1,[0] ∈
Ω0(M ; op0). Then

[H,A0, ω] = [H,A1, ω + η(A0,A1)] . (6.5)

It follows from the definitions that there is a map Ǩ1(M) → Ωodd(M) that sends a 
cocycle [H, A, ω] to Ch(A) + dω.

Let π : M → B be a fiber bundle with odd dimensional compact fibers. As in Section 5, 
we assume that π has a Riemannian structure and a differential spinc-structure. Given 
a cocycle [E, A, ω] for Ǩ0

fin(M), we define the pushforward π∗[E, A, ω] = [H, π∗A, ω′] as 
in Definition 7, where H is now ungraded.

Claim 1. The map π∗ on cocycles passes to a map π∗ : Ǩ0
fin(M) → Ǩ1(B).

Proof. The proof is similar to that of Proposition 8. �
Let p1 : S1 × M → S1 and p : S1 × M → M be the projection maps. We define 

a suspension map p! on cocycles for Ǩ1(M) as follows. Consider the product bundle 
q : S1 × S1 → S1. Give it a product Riemannian structure with circle fibers of constant 
length. Let (V, ∇V ) be the Hermitian line bundle on S1×S1 with connection of constant 
curvature, whose restriction to q−1(eiθ) is the flat bundle on S1 with holonomy eiθ. 
The sections of V form a Hilbert bundle K over S1, on whose sections the Bismut 
superconnection acts. Trivializing V over (0, 2π) × S1 and giving coordinates (θ, φ) to 

the latter, we can write this Bismut superconnection on K
∣∣∣
(0,2π)

in the form (∂φ− i
2π θ) +

dθ ∧ ∂θ. Let [H, A, ω] be a cocycle for Ǩ1(M). Put
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H′ =p∗H⊗ (p∗1K ⊕ p∗1K) , (6.6)

γH′ =
(
I 0
0 −I

)
,

σ =
(

0 I
I 0

)
,

A
′ =

(
dθ ∧ ∂θ ∂φ − i

2π θ
−∂φ + i

2π θ dθ ∧ ∂θ

)
+ Aσ,

ω′ =p∗1(dθ) ∧ p∗ω.

Then p![H, A, ω] = [H′, A′, ω′], a cocycle for Ǩ0(S1 ×M).

Claim 2. The map p! on cocycles passes to a map p! : Ǩ1(M) → Ǩ0(S1 ×M).

Let K1(M) denote the group defined by similar generators and relations as our defini-
tion of Ǩ1(M), except leaving out the differential form components and the parts of the 
superconnection beyond A[0]. As in our constructions on differential K-groups, there are 
maps p∗ : K0(S1 ×M) → K1(M) and p! : K1(M) → K0(S1 ×M). As in Proposition 6, 
K0(·) ∼= K0

stan(·) and so

K0(S1 ×M) ∼= K0
stan(S1 ×M) ∼= K0

stan(M) ⊕K1
stan(M) ∼= (6.7)

K0(M) ⊕K1
stan(M).

Choosing a point � ∈ S1 and letting i : {�} ×M → S1 ×M be inclusion, it follows that 
the group K0(S1 ×M) is a direct sum of K0(M) and Ker(i∗ : K0(S1 ×M) → K0(M)).

Claim 3. The composite map p∗ ◦ p! is the identity on K1(M), and p! ◦ p∗ is projection 
from K0(S1 ×M) onto Ker(i∗ : K0(S1 ×M) → K0(M)).

Claim 4. The group K1(M) is isomorphic to the standard K-group K1
stan(M).

Proof. Using Claim 3,

K1(M) ∼= Ker(i∗ : K0(S1 ×M) → K0(M)) ∼= (6.8)

Ker(i∗ : K0
stan(S1 ×M) → K0

stan(M)) ∼= K1
stan(M).

The claim follows. �
Let Ωeven(M)K denote the union of affine subspaces of closed forms whose de Rham 

cohomology class lies in the image of Ch : K0(M) → Ωeven(M).
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Claim 5. With our definition of Ǩ1(M), there is a short exact sequence

0 → Ωeven(M)
Ωeven(M)K

→ Ǩ1(M) → K1(M) → 0. (6.9)

Claim 6. The differential K-group Ǩ1(M) is isomorphic to the standard differential 
K-group Ǩ1

stan(M) as defined in [18, Section 9] and [35].

Proof. There is a short exact sequence

0 → Ωeven(M)
Ωeven(M)K

→ Ǩ1
stan(M) → K1

stan(M) → 0. (6.10)

Also, using the desuspension map D : Ǩ0
stan(S1 × M) → Ǩ1

stan(M) from [18, (9.21)], 
there is a map

Ǩ1(M) p!

→ Ǩ0(S1 ×M) ∼= Ǩ0
stan(S1 ×M) D→ Ǩ1

stan(M). (6.11)

The claim follows from applying the 5-lemma to the diagram

0 → Ωeven(M)
Ωeven(M)K → Ǩ1(M) → K1(M) → 0

↓ ↓ ↓
0 → Ωeven(M)

Ωeven(M)K → Ǩ1
stan(M) → K1

stan(M) → 0,
(6.12)

where the rows are exact and the outer vertical arrows are isomorphisms. �
Remark 5. One can define multiplications Ǩ0(M) × Ǩ1(M) → Ǩ1(M) and Ǩ1(M) ×
Ǩ1(M) → Ǩ0(M) in analogy to the multiplication map of Section 4.5.

Remark 6. Definition 9.15 of [18] is missing a homotopy relation; we thank Scott Wilson 
for pointing this out. Relation (2) on [18, p. 955] should be replaced by a statement that 
two homotopy equivalent unitary automorphisms are equivalent. Then the corresponding 
relation on [18, p. 957] will involve the transgressing form CS of [18, p. 956] when applied 
to homotopy equivalent automorphisms; cf. [35, Appendix A].

7. Twisted differential K-theory

In this section we give the basic definitions for a Hilbert bundle model of twisted dif-
ferential K-theory, i.e. when differential K-theory is twisted by an element of H3(M ; Z). 
Subsection 7.1 has a review of abelian gerbes. Subsection 7.2 discusses connective struc-
tures on gerbes. Subsection 7.3 recalls twisted de Rham cohomology. In Subsection 7.4 we 
define superconnections on projective Hilbert bundles. Finally, Subsection 7.5 contains 
the definition of twisted differential K-theory.



A. Gorokhovsky, J. Lott / Advances in Mathematics 328 (2018) 661–712 701
7.1. Gerbes

We first give a summary of facts about abelian gerbes, referring the reader [9, Chapters 
4 and 5], [20] and [29] for more details. We will describe abelian gerbes in terms of their 
descent data.

Let M be a smooth manifold. Let {Uα}α∈Λ be an open cover of M . Put Uαβ = Uα∩Uβ , 
Uαβγ = Uα ∩ Uβ ∩ Uγ , etc. Any statement about Uαβ will only refer to the case when 
Uαβ �= ∅, and similarly for Uαβγ and Uαβγδ.

A unitary gerbe L on M is described by the following data:

• A Hermitian line bundle Lαβ over each Uαβ and
• An isometric isomorphism μαβγ : Lαβ

∣∣∣
Uαβγ

⊗ Lβγ

∣∣∣
Uαβγ

→ Lαγ

∣∣∣
Uαβγ

over each Uαβγ

such that
• Over each Uαβγδ, the following diagram commutes:

Lαβ ⊗ Lβγ ⊗ Lγδ
μαβγ⊗id−−−−−−→ Lαγ ⊗ Lγδ

id ⊗μβγδ

⏐⏐# ⏐⏐#μαγδ

Lαβ ⊗ Lβδ
μαβδ−−−−−−→ Lαδ.

(7.1)

If the cover {Uα}α∈Λ is good then the bundles Lαβ are trivializable. After choices of 
trivializations, the collection (μαβγ) can be viewed as a Čech 2-cocycle with coefficients
in the sheaf T of smooth functions with values in T = {z ∈ C | |z| = 1}. This defines a 
cohomology class [μ] ∈ H2(M ; T) ∼= H3(M, Z).

Given the open cover, there is an evident notion of two gerbes being isomorphic. There 
is also an evident notion of the tensor product of two gerbes. A trivial unitary gerbe has 
defining line bundle Lαβ on Uαβ given by L̂α⊗L̂−1

β , where L̂α is a Hermitian line bundle 
on Uα. Stable isomorphism of unitary gerbes is the equivalence relation generated by 
isomorphism along with saying that if L is a unitary gerbe, and L′ is a trivial unitary 
gerbe, then L is equivalent to L ⊗ L′. The class [μ] determines the stable isomorphism 
class of the gerbe.

7.2. Connective structures on gerbes

Definition 10. A connective structure on L is given by a collection (∇αβ) of Hermitian 
connections on (Lαβ) such that on Uαβγ , we have

μ∗
αβγ∇αγ = ∇αβ ⊗ id + id⊗∇βγ . (7.2)

Fact 1. A connective structure exists on any gerbe.

Let ∇ = (∇αβ) be a connective structure on L. Put καβ = ∇2
αβ , the curvature of the 

connection ∇αβ.
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Definition 11. A curving of ∇ is given by a collection K of 2-forms κα ∈ Ω2(Uα) such 
that on Uαβ , we have

καβ = κα − κβ . (7.3)

Fact 2. Given a gerbe with connective structure ∇, there is a curving of ∇.

Given τ ∈ Ω2(M) and a curving K = {κα} on a gerbe L with connective structure ∇, 
we can define a new curving K + τ = {κα + τ}. This defines a free transitive action 
of Ω2(M) on the set of all curvings (on a given connective structure).

There is a closed form c(K) ∈ Ω3(M) such that c(K)|Uα
= dκα. Note that c(K+τ) =

c(K) + dτ .
If L is a trivial unitary gerbe with Lαβ = L̂α⊗L̂−1

β , and ∇̂α is a Hermitian connection 

on L̂α, then there is a connective structure ∇ on L given by ∇αβ = ∇̂α ⊗ ∇̂−1
β . There is 

a curving K of ∇ coming from κα = ∇2
α. It has c(K) = 0.

7.3. Twisted cohomology

Let H ∈ Ω3(M) be a closed 3-form. The periodic twisted de Rham complex is the 
Z2-graded complex (Ω∗(M), dH)

. . .
dH−→ Ωeven(M) dH−→ Ωodd(M) dH−→ Ωeven(M) dH−→ . . . (7.4)

with the differential dH = d +H ∧ ·. Its cohomology is called the twisted de Rham coho-
mology. If H ′ = H + dτ then there is an isomorphism of complexes Iτ : (Ω∗(M), dH) →
(Ω∗(M), dH′) where

Iτ (ξ) = e−τ ∧ ξ. (7.5)

7.4. Projective Hilbert bundles

Definition 12. An L-projective Hilbert bundle H is given by

• A Hilbert bundle (in the sense of Subsection 3.1) Hα over each Uα, and
• A collection of Hilbert bundle isomorphisms ϕαβ : Hα ⊗ Lαβ

∼= Hβ such that
• On Uαβγ , the following diagram commutes:

Hα ⊗ Lαβ ⊗ Lβγ
id ⊗μαβγ−−−−−−→ Hα ⊗ Lαγ

ϕαβ⊗id
⏐⏐# ⏐⏐#ϕαγ

Hβ ⊗ Lβγ
ϕβγ−−−−−→ Hγ .

(7.6)
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Example 7. To a unitary gerbe L on M , one can associate a projective space bundle 
on M [9, Section 4.1]. Using this bundle, there is a natural L-projective Hilbert bundle 
on M formed by fermionic Fock spaces; cf. [27].

Note that there is a canonical vector bundle isomorphism over Uαβ:

opk(Hα ⊗ Lαβ) ∼= opk(Hα). (7.7)

Then the bundle isomorphism ϕαβ induces an isomorphism of algebra bundles over Uαβ:

ϕ∗
αβ : opk(Hβ) → opk(Hα). (7.8)

Over Uαβγ , we have

ϕ∗
αβ ◦ ϕ∗

βγ = ϕ∗
αγ . (7.9)

Hence the collection {opk(Hα)}α∈Λ defines a bundle of algebras over M , which we denote 
by opk(H). Similarly, there is a bundle L1(H) of trace ideals. For every α ∈ Λ, we can 
apply the fiberwise trace to smooth sections of L1(Hα), to obtain a map

Trα : C∞(Uα;L1(Hα)) → C∞(Uα). (7.10)

For b ∈ C∞(Uβ ; L1(Hβ)), we have Trα(ϕ∗
αβ(b)) = Trβ(b) on Uαβ . Hence we can define 

Tr: C∞(M ; L1(H)) → C∞(M) by saying that

Tr(a)
∣∣∣
Uα

= Trα
(
a
∣∣∣
Uα

)
. (7.11)

If the bundle H is Z2-graded then there is a supertrace

Str : C∞(M ;L1(H)) → C∞(M). (7.12)

Assume now that the gerbe L is equipped with a connective structure ∇. A super-
connection on H is a choice of superconnection Aα on each Hα so that on Uαβ , we 
have

ϕ∗
αβAβ = Aα ⊗ id + id⊗∇αβ . (7.13)

Let K be a curving of ∇. Put H = c(K).

Lemma 17. There is a θA,K ∈ Ω∗(M, op∗(H)) such that for all α ∈ Λ, we have

(θA,K)
∣∣∣
Uα

= A
2
α + κα. (7.14)
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Proof. Equation (7.13) implies that on Uαβ , we have

ϕ∗
αβA

2
β = A

2
α + καβ . (7.15)

Hence the collection {A2
α + κα}α∈Λ satisfies the relations

ϕ∗
αβ(A2

β + κβ) = A
2
α + κα. (7.16)

The lemma follows. �
For ξ ∈ Ω∗(M, op∗(H)) we can define [A, ξ] ∈ Ω∗(M, op∗(H)) by

[A, ξ]
∣∣∣
Uα

=
[
Aα, ξ

∣∣∣
Uα

]
. (7.17)

One can check that this is well defined.

Lemma 18. We have [A, θA,K ] = H.

Proof. On Uα, we know that [Aα, A2
α + κα] = dκα = H

∣∣∣
Uα

. The lemma follows. �
Definition 13. The Chern character of A is given by

Ch(A,K) = Str e− θA,K ∈ Ωeven(M). (7.18)

Lemma 19.

(1) We have dH Ch(A, K) = 0.
(2) Let K ′ = K + τ be another curving. Put H ′ = c(K ′) = H + dτ . Then

Iτ (Ch(A,K)) = Ch(A,K ′). (7.19)

Proof. (1). We have

d Str e− θA,K = Str[A, e− θA,K ] = − Str[A, θA,K ]e− θA,K (7.20)

= − StrHe− θA,K = −H Str e− θA,K .

Hence dH Ch(A, K) = 0.
(2). As θA,K′ = θA,K + τ , the lemma follows. �

The proofs of the next four lemmas are similar to those in Subsection 3.2.
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Lemma 20. Let {A(t)}t∈[0,1] and {Â(t)}t∈[0,1] be two smooth 1-parameter families of 
superconnections on H with A(0) = Â(0) and A(1) = Â(1). Suppose that the two 
1-parameter families are homotopic relative to the endpoints, in sense that there is a 
smooth 2-parameter family of superconnections {Ã(s, t)}s,t∈[0,1] on H with Ã(0, t) = A(t), 
Ã(1, t) = Â(t), Ã(s, 0) = A(0) = Â(0) and Ã(s, 1) = A(1) = Â(1).

Then

1∫
0

Str
(
dA(t)
dt

e− θA(t),K

)
dt =

1∫
0

Str
(
dÂ(t)
dt

e− θ
Â(t),K

)
dt (7.21)

in Ωodd(M)/ Im(dH).

Let A0 and A1 be two superconnections on H such that A0,[0]−A1,[0] ∈ Ω0(M ; op0(H)). 
For t ∈ [0, 1], put A(t) = (1 − t)A0 + tA1. Define η(A0, A1) ∈ Ωodd(M)/ Im(dH) by

η(A0,A1) =
1∫

0

Str
(
dA(t)
dt

e− θA(t),K

)
dt. (7.22)

Lemma 21.

Ch(A1) − Ch(A0) = −dHη(A0,A1). (7.23)

Lemma 22. Let A0, A1 and A2 be three superconnections on H such that A0,[0] −A1,[0] ∈
Ω0(M ; op0(H)) and A1,[0] − A2,[0] ∈ Ω0(M ; op0(H)). Then

η(A0,A1) + η(A1,A2) = η(A0,A2). (7.24)

Lemma 23. Suppose that there is some c > 0 so that A2
[0] ≥ c2 Id fiberwise on H. Put

η(A,∞) =
∞∫
1

Str
(
dAt

dt
e− θAt,K

)
dt. (7.25)

Then

Ch(A) = dHη(A,∞) (7.26)

7.5. Definition of twisted differential K-theory

Let M be a smooth manifold. Let L be a gerbe on M with a connective structure ∇.
Let K be a curving of ∇. Put H = c(K).

Definition 14. A cocycle for Ǩ0
L(M) is a triple [H,A, ω] where
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(1) H is a Z2-graded L-projective Hilbert bundle over M ,
(2) A is a superconnection on H and
(3) ω ∈ Ωodd(M)/ Im(dH).

Definition 15. The twisted differential K-theory group Ǩ0
L(M) is the quotient of the 

free abelian group generated by the isomorphism classes of cocycles, by the subgroup 
generated by the following relations:

(1) If [H,A, ω] and [H′,A′, ω′] are cocycles then

[H,A, ω] + [H′,A′, ω′] = [H⊕H′,A⊕ A
′, ω + ω′] . (7.27)

(2) If A[0] is invertible then

[H,A, ω] = [0, 0, ω + η(A,∞)] . (7.28)

(3) Suppose that A0 and A1 are superconnections on H such that A0,[0] − A1,[0] ∈
Ω0(M ; op0). Then

[H,A0, ω] = [H,A1, ω + η(A0,A1)] . (7.29)

The map [H,A, ω] → Ch(A) + dHω passes to a map Ǩ0
L(M) → Ωeven(M) whose 

image is dH -closed.

Proposition 10. Up to isomorphism, Ǩ0
L(M) only depends on L through its stable iso-

morphism class; it is independent of the choices of connective structure and curving.

Proof. Fixing the connective structure ∇ on the gerbe L, if K ′ = K + τ is another 
curving of ∇ then the map [H,A, ω] → [H,A, e−τω] induces an isomorphism of the 
corresponding Ǩ0

L(M)-groups.
To see what happens when the connective structure on L varies, suppose that ∇′ =

(∇′
αβ) is another connective structure. One can find a collection φα ∈ Ω1(Uα) such 

that ∇′
αβ − ∇αβ = φα − φβ . If K = (κα) is a curving of ∇ then we obtain a curving 

K ′ = (κ′
α) of ∇′ by putting κ′

α = κα + dφα. The corresponding 3-form H ′ = dκ′
α is the 

same as H = dκα. Suppose now that A is a superconnection on an L-projective Hilbert 
bundle, as defined using the connective structure ∇. Put A′

α = Aα − φα. This defines 
a superconnection A′ on H that is compatible with ∇′. Note that θA′,K′ = θA,K . It 
follows that the map [H,A, ω] → [H,A′, ω] induces an isomorphism of the corresponding 
Ǩ0

L(M)-groups. This isomorphism depends on the choice of the φα’s.
To check what happens under stable isomorphism of the gerbe, suppose that L′ is 

given by L′
αβ = L̂α ⊗ Lαβ ⊗ L̂−1

β . Choose Hermitian connections ∇̂α on the Lα’s. Put 
∇′

αβ = ∇̂α ⊗ ∇αβ ⊗ ∇̂−1
β . Given a cocycle [H,A, ω] for Ǩ0

L(M), we obtain a cocycle 
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[H′,A′, ω′] for Ǩ0
L′(M) by H′

α = Hα ⊗ L̂−1
α , A′

α = Aα ⊗ ∇̂−1
α and ω′ = ω. This gives an 

isomorphism between Ǩ0
L(M) and Ǩ0

L′(M). It depends on the choice of the ∇̂α’s. �
Appendix A. Chern character in relative cohomology

In [32], Quillen stated without proof that if A is a superconnection on a finite di-
mensional vector bundle E over M , and the degree-0 component A[0] is invertible on 
an open subset U ⊂ M , then the pair (Ch(A), η(A, ∞)) represents the Chern character 
of E in relative cohomology. In this appendix we provide a proof of the statement in the 
more general setting of superconnections on Hilbert bundles. We give an application to 
a difference formula for eta forms.

Remark 7. As mentioned by Paradan and Vergne [30], in the finite dimensional case one 
can also prove Quillen’s claim by showing that the pair satisfies Schneiders’ axiomatic 
characterization of the relative Chern character [33, Proposition 4.5.2].

Let A be a superconnection, in the sense of Definition 3, on a Z2-graded Hilbert 
bundle H over a manifold M . Let U ⊂ M be an open set such that A2

[0] ≥ c2 Id > 0
on U , for some c > 0. Then η(A, ∞) is defined on U .

Recall that H∗(M, U ; R) is the cohomology of the complex

Ω∗(M,U ;R) = Ω∗(M) ⊕ Ω∗−1(U) (A.1)

with differential

d(ω, σ) = (dω, i∗ω − dσ), (A.2)

where i : U → M is the inclusion map.

Lemma 24. The pair (Ch(A), η(A,∞)) defines a class in H∗(M, U ; R).

Proof. This follows from Lemmas 7 and 11. �
Lemma 25. Let A and A′ be two superconnections as above such that A[0] − A

′
[0] ∈

Ω0(M ; op0(H)) and A[0] = A
′
[0] on U . Then

[(Ch(A), η(A,∞))] = [(Ch(A′), η(A′,∞))] ∈ H∗(M,U ;R). (A.3)

Proof. On the product space [0, 1] ×M , consider the superconnection

B = dt ∧ ∂t + tA + (1 − t)A′. (A.4)

Note that B2
[0] ≥ c2 Id on [0, 1] × U . Since d Ch(B) = 0 in Ω∗([0, 1] ×M), one finds that 

in Ω∗(M, U ; R), we have
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d

⎛⎝ 1∫
0

Ch(B),
1∫

0

η(B,∞)

⎞⎠ = (A.5)

(Ch(A), η(A,∞)) − (Ch(A′), η(A′,∞)) .

The lemma follows. �
Since A[0] is invertible on U , we can define a class Ind(A±

[0]) ∈ K0(M, U) as follows.
Let γ denote the Z2-grading operator on H. Put H̃ = H ⊕ H with the Z2-grading 

operator γ̃ =
[
γ 0
0 −γ

]
. Let f ∈ C∞(R) be a real-valued odd function such that xf(x) =

1 −ξ(x), with ξ(0) = 1 and supp ξ(x) ⊂ [−c, c]. Put Q = f(A[0]). Then Q is a parametrix 
for A[0] which is odd with respect to γ, self-adjoint and is the inverse of A[0] over U .

Put S0 = 1 − QA[0] and S1 = 1 − A[0]Q. Note that S0 and S1 vanish over U . Put 

L =
[
S0 −(1 + S0)Q
A[0] S1

]
, with L−1 =

[
S0 (1 + S0)Q

−A[0] S1

]
. These are operators on H̃

that are even with respect to γ̃.

Put P = L−1
[
1 0
0 0

]
L and P0 =

[
0 0
0 1

]
. They are both even projection operators. 

Then

P − P0 =
(

S2
0 −S0(1 + S0)Q

−A[0]S0 −S2
1

)
(A.6)

is a smooth family of finite rank operators, i.e. P −P0 ∈ Ω0(M ; Lfr(H)); the smoothness 
can be seen by repeated differentiation. Also, P − P0 vanishes on U .

Put P± = P |H̃± and P±
0 = P0|H̃± .

Definition 16. The index Ind
(
A

±
[0]

)
∈ K0(M, U) is represented by the virtual projection 

[P± − P±
0 ].

Remark 8. As in [15, Chapter II.9.α], [P±−P±
0 ] is the index class in K0(M). As P±−P±

0
vanishes on U , we can consider [P± − P±

0 ] to give a class in K0(M, U). To justify 
this statement, suppose that there is a closed subset A ⊂ M which is a strong de-
formation retract of U (as is often the case). Then there are canonical isomorphisms 
K0(M, U) ∼= K0(M, A) ∼= K̃0(M/A). The virtual projection [P± − P±

0 ] descends to a 
reduced K-theory class of M/A.

Note that Ind
(
A

−
[0]

)
= − Ind

(
A

+
[0]

)
.

The real-valued Chern character Ch
(
Ind

(
A

+
[0]

))
in Heven(M, U ; R) can be repre-

sented as follows. Put Ã = A ⊕ A, a superconnection on H̃. Then Ã[1] is a connection 
on H̃.
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Definition 17. The Chern character of Ind
(
A

+
[0]

)
in H̃

even
(M/A; R) is represented by

Ch
(
Ind

(
A

+
[0]

))
= (A.7)[(

1
2 Trs

(
Pe−(P◦Ã[1]◦P )2P − P0e

−(P0◦Ã[1]◦P0)2P0

)
, 0
)]

.

Remark 9. To justify this definition, we first note that the closed form

1
2 Trs

(
Pe−(P◦Ã[1]◦P )2P − P0e

−(P0◦Ã[1]◦P0)2P0

)
(A.8)

represents the Chern character of the index in Heven(M ; R). It has support in M \ U

and so, in the setting of Remark 8, extends to a compactly supported form in (M/A) −
(A/A). Under the isomorphisms Heven

c ((M/A) − (A/A); R) ∼= Heven(M/A, A/A; R) ∼=
Heven(M, A; R) ∼= Heven(M, U ; R), the form gets mapped to (A.7).

Proposition 11.

Ch
(
Ind

(
A

+
[0]

))
= [(Ch(A), η(A,∞))]. (A.9)

Proof. We claim that[(
Trs

(
Pe−(P◦Ã[1]◦P )2P − P0e

−(P0◦Ã[1]◦P0)2P0

)
, 0
)]

= (A.10)[(
Trs

(
Pe−(P◦Ã◦P )2P − P0e

−(P0◦Ã◦P0)2P0

)
, 0
)]

in Heven(M, U ; R). To see this, for t ∈ [0, 1] put Ã(t) = tÃ+(1 −t)Ã[1], a superconnection 
on H̃. Now

Pe−(P◦Ã(t)◦P )2P − P0e
−(P0◦Ã(t)◦P0)2P0 (A.11)

is a (2 × 2)-matrix with entries in Ω∗(M ; Lfr(H)), that are smooth in t. Using the finite 
rank property, it is easy to justify that

d

dt
Trs

(
Pe−(P◦Ã(t)◦P )2P − P0e

−(P0◦Ã(t)◦P0)2P0

)
= (A.12)

dTrs

(
P
dÃ(t)
dt

Pe−(P◦Ã(t)◦P )2P − P0
dÃ(t)
dt

P0e
−(P0◦Ã(t)◦P0)2P0

)
,

so

Trs
(
Pe−(P◦Ã[1]◦P )2P − P0e

−(P0◦Ã[1]◦P0)2P0

)
= (A.13)

Trs
(
Pe−(P◦Ã◦P )2P − P0e

−(P0◦Ã◦P0)2P0

)
+
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d

1∫
0

Trs

(
P
dÃ(t)
dt

Pe−(P◦Ã(t)◦P )2P − P0
dÃ(t)
dt

P0e
−(P0◦Ã(t)◦P0)2P0

)
dt.

This proves (A.10).
Considering P ◦ Ã ◦ P to be a superconnection on Im(P ), and P0 ◦ Ã ◦ P0 to be a 

superconnection on Im(P0), Lemma 24 implies that(
Trs

(
e−(P◦Ã◦P )2

)
, η(P ◦ Ã ◦ P,∞)

)
(A.14)

and (
Trs

(
e−(P0◦Ã◦P0)2

)
, η(P0 ◦ Ã ◦ P0,∞)

)
(A.15)

are closed elements of Ωeven(M, U). Since P = P0 on U , we have[(
Trs

(
Pe−(P◦Ã◦P )2P − P0e

−(P0◦Ã◦P0)2P0

)
, 0
)]

= (A.16)[(
Trs

(
e−(P◦Ã◦P )2

)
, η(P ◦ Ã ◦ P,∞)

)]
−[(

Trs
(
e−(P0◦Ã◦P0)2

)
, η(P0 ◦ Ã ◦ P0,∞)

)]
.

Next, since P0 =
[
0 0
0 1

]
and the Z2-grading operator γ̃ is −γ on Im(P0), we have

(
Trs e−(P0◦Ã◦P0)2 , η(P0 ◦ Ã ◦ P0,∞)

)
= (−Ch(A),−η(A,∞)). (A.17)

Finally, put P1 =
[
1 0
0 0

]
. Then

P ◦ Ã ◦ P = L−1P1L ◦ Ã ◦ L−1P1L. (A.18)

Hence

(Ch(P ◦ Ã ◦ P ), η(P ◦ Ã ◦ P,∞)) = (A.19)

(Ch(P1L ◦ Ã ◦ L−1P1), η(P1L ◦ Ã ◦ L−1P1,∞)).

The superconnections A and P1L ◦ Ã ◦ L−1P1 on Im(P1) = H satisfy the conditions of 
Lemma 25. Hence

[(Ch(P1L ◦ Ã ◦ L−1P1), η(P1L ◦ Ã ◦ L−1P1,∞))] = (A.20)

[(Ch(A), η(A,∞))].
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The proposition now follows from combining (A.7), (A.10), (A.16), (A.17), (A.19)
and (A.20). �
Corollary 2. Suppose that {E(t)}t∈[0,1] is a smooth 1-parameter family of superconnec-
tions on H. Put A = E(0) and A′ = E(1). If A[0] and A′

[0] are invertible then

η(A,A′) − η(A,∞) + η(A′,∞) ∈ Im(Ch : K1(M) → Hodd(M ;R)). (A.21)

If E[0](t) is invertible for all t ∈ [0, 1] then the expression in (A.21) vanishes in 
Ωodd(M)/ Im(d).

Proof. Let V be a codimension-zero submanifold of M with compact closure. (If M is 
compact then we just take V = M .) Put M ′ = V ×R and U = V × ((−∞, 0) ∪ (1, ∞)). 
There are isomorphisms iK : K0(M ′, U) → K1(V ) and iH : Heven(M ′, U) → Hodd(V ), 
where iH is represented by

iH(ω, η) =

⎛⎝ 1∫
0

ω

⎞⎠− η(1) + η(0). (A.22)

The maps iK and iH are consistent in the sense that

Ch ◦iK = iH ◦ Ch . (A.23)

Extend E(t) to be constant on (−∞, 0) and constant on (1, ∞). By reparametrizing R
if necessary, we can assume that E is smooth in t. Put B = dt ∧∂t+E(t), a superconnection 
on M ′. The family B+

[0] of operators defines an element [B+
[0]] ∈ K0(M ′, U), since the 

operators are invertible on U .
Equations (3.10) and (A.22) along with Proposition 11, when applied to B, M ′ and U , 

give

Ch(iK([B+
[0]])) = −η(A,A′) − η(A′,∞) + η(A,∞). (A.24)

After exhausting M by such V ’s, this proves the first part of the corollary. If each E(t)
is invertible then [B+

[0]] vanishes in K0(M ′, U), which implies the second part of the 
corollary. �
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