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The index of a transverse Dirac-type operator:
the case of abelian Molino sheaf

By Alexander Gorokhovsky at Boulder and John Lott at Berkeley

Abstract. We give a local formula for the index of a transverse Dirac-type operator
on a compact manifold with a Riemannian foliation, under the assumption that the Molino
sheaf is a sheaf of abelian Lie algebras.

1. Introduction

An important test case for noncommutative geometry comes from index theory on
compact foliated manifolds, as pioneered by Connes and his collaborators. The most com-
monly considered case is that of a leafwise Dirac-type operator D. Its index IndexðDÞ lies in
the K-theory of a stabilized version of the foliation groupoid algebra. The local index the-
orem gives an explicit formula for the pairing of IndexðDÞ with cyclic cohomology classes
of the foliation groupoid algebra. For more information on this well-developed theory, we
refer to [15], [16], [22], [23].

This paper is concerned with a di¤erent index problem for compact foliated mani-
folds, namely that of a transverse Dirac-type operator. Such an operator di¤erentiates in
directions normal to the leaves. In order to make sense of the operator, we must assume
that the foliation is Riemannian, i.e. the normal bundle to the leaves carries a holonomy-
invariant inner product. Then there is a notion of a ‘‘basic’’ Dirac-type operator D, a first-
order di¤erential operator that acts on the holonomy-invariant sections of a normal
Cli¤ord module. It was shown by El Kacimi [18] and Glazebrook–Kamber [21] that D is
Fredholm and hence has a well-defined index IndexðDÞ A Z. (In fact, this is true for any
basic transversally elliptic operator [18].) The index problem, which has been open for
twenty years ([18], Problème 2.8.9), is to give an explicit formula for IndexðDÞ, in terms
of the Riemannian foliation. A prototypical example is that of a compact manifold foliated
by points, in which case the index is given by the Atiyah–Singer formula.

From the noncommutative geometry viewpoint, a leafwise Dirac-type operator is a
family of Dirac-type operators parametrized by the ‘‘leaf space’’ of the foliation, where
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the ‘‘leaf space’’ is defined in terms of algebras. In contrast, a transverse Dirac-type opera-
tor is a di¤erential operator on such a ‘‘leaf space’’. As will be seen, the transverse index
problem can be usefully formulated in terms of Riemannian groupoids. Such groupoids
also arose in work of Petrunin–Tuschmann on the collapsing theory of Riemannian mani-
folds [39] and work of the second author on Ricci flow [34], [35]. Our interest in the trans-
verse index problem comes from the more general program of doing analysis on Riemann-
ian groupoids.

To a Riemannian foliation F on a compact connected manifold M, one can canoni-
cally associate a locally constant sheaf of Lie algebras on M, called the Molino sheaf [37].
Let g denote the finite-dimensional Lie algebra which appears as the stalk of the Molino
sheaf. (A priori, it could be any finite-dimensional Lie algebra.) If g ¼ 0, which happens if
and only if the leaves are compact, then the leaf space is an orbifold and the transverse in-
dex theorem reduces to Kawasaki’s orbifold index theorem [32], [33]. In this paper we give
the first local formula for IndexðDÞ in a case when g3 0. The case that we consider is when
g is an abelian Lie algebra Rk.

To state our index theorem, we recall some information about Riemannian foliations.
Although the leaf space of such a foliation may be pathological (for example non-
Hausdor¤), the space W of leaf closures is a nice Hausdor¤ space which is stratified by
manifolds. A neighborhood of a point w A W is homeomorphic to Vw=Kw, where Kw is a
compact Lie group that is canonically associated to w, and Vw is a representation space
of Kw.

Assumption 1. 1. The Molino Lie algebra is an abelian Lie algebra Rk.

2. The Molino sheaf has trivial holonomy on M.

3. For all w A W , the group Kw is connected.

Here Assumptions 1.1 and 1.2 automatically hold if M is simply-connected.

If Assumption 1 holds then Kw is isomorphic to T jw for some jw A ½0; k�. Put

Wmax ¼ fw A W : Kw GT kg:

Then Wmax is a smooth manifold which is the deepest stratum of W . Note that Wmax may
be the empty set.

Theorem 1. Let M be a compact connected manifold equipped with a Riemannian fo-

liation F. Suppose that Assumption 1 holds. Let E be a holonomy-invariant normal Cli¤ord

module on M, on which the Molino sheaf acts. Let D be the basic Dirac-type operator acting

on holonomy-invariant sections of E. Then

IndexðDÞ ¼
Ð

Wmax

ÂAðTWmaxÞNE;Q:ð1:1Þ

Here NE;Q is a ‘‘renormalized’’ characteristic class which is computed from the nor-
mal data of Wmax along with the restriction of E to Wmax. More precisely, it arises by mul-
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tiplying the Atiyah–Singer normal characteristic class and an equivariant Chern class for
EjWmax

, and performing an averaging process; see Definition 2. Because of the computabil-
ity of NE;Q, we can derive the following consequences.

Corollary 1. Under Assumption 1, the following hold:

1. The basic Euler characteristic of ðM;FÞ equals the Euler characteristic of Wmax.

2. If F is transversely oriented then the basic signature of ðM;FÞ equals the signature

of Wmax.

3. Suppose that F has a transverse spin structure. Let D be the basic Dirac operator.

Then IndexðDÞ ¼ ÂAðWmaxÞ if k ¼ 0, while IndexðDÞ ¼ 0 if k > 0.

The proof of Theorem 1 requires some new techniques. To motivate these, we start
with a special case. An especially tractable example of a Riemannian foliation comes from
a suspension construction, as described in Examples 1–8 and Section 4. In this case, the
transverse structure can be described by the following data:

(1) a discrete finitely presented group G,

(2) a compact Lie group G,

(3) an injection i : G ! G with dense image, and

(4) a closed Riemannian manifold Z on which G acts isometrically.

With this data, a transverse Dirac-type operator on the suspension foliation amounts
to a Dirac-type operator on Z which is G-invariant or, equivalently, G-invariant. In this
case, the index problem amounts to computing the index of D, the restriction of the Dirac-
type operator to the G-invariant sections of the Cli¤ord module. Such an index can easily
be computed as IndexðDÞ ¼

Ð
G

IndexðgÞ dmGðgÞ, where IndexðgÞ A R is the G-index and dmG

is the Haar measure on G.

The Atiyah–Singer G-index theorem [5] tells us that IndexðgÞ ¼
Ð

Z g

LðgÞ, where Zg is

the fixed-point set of g A G and LðgÞ A W�ðZgÞ is an explicit characteristic class. Suppose
that G is a torus group T k. After performing the integral over g A T k, only the submani-
folds with Zg ¼ ZT k

will contribute, where ZT k

denotes the fixed-point set of T k. Hence
we can write

IndexðDÞ ¼
Ð

T k

Ð
Z T k

LðgÞ dmT kðgÞ:ð1:2Þ

In order to give a local expression for IndexðDÞ, we would like to exchange integrals
and write

IndexðDÞ ¼?
Ð

Z T k

Ð
T k

LðgÞ dmT kðgÞ:ð1:3Þ
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But there is a surprise: the integral
Ð

T k

LðgÞ dmT kðgÞ A W�ðZT kÞ generally diverges!

The reason that (1.2) makes sense is that there are cancellations of singularities arising from
the various connected components of ZT k

. After identifying these singularities (which will
cancel in the end) one can subtract them by hand and thereby obtain a valid ‘‘renormal-
ized’’ local index formula

IndexðDÞ ¼
Ð

Z T k

ÂAðTZT kÞN:ð1:4Þ

In general, the transverse structure of a Riemannian foliation does not admit a global
Lie group action like in the suspension case. This is a problem for seeing the cancellation
of singularities. Instead, if the Molino sheaf has trivial holonomy then there is a global Lie

algebra action, by g. Because of this, we use the Kirillov delocalized approach to equivar-
iant index theory [6], Chapter 8. If g is abelian then we can replace the nonexistent ‘‘inte-
gration over G’’ by an averaging over g. In summary, our proof of Theorem 1 combines a
parametrix construction, using local models for the transverse structure, with Kirillov-type
equivariant index formulas and an averaging over g.

It is not clear to us whether our methods extend beyond the restrictions in Assump-
tion 1. If we remove Assumption 1.3 then the analog of Wmax is an orbifold and the right-
hand side of (1.1) makes sense. However, in this case it is not clear whether our proof ex-
tends if k > 0.

In this paper we focus on the transverse structure of the foliation, as opposed to the
leafwise structure. More precisely, we choose a complete transversal Z for the foliation and
work with the étale groupoid GT whose unit space is Z, as opposed to the foliation group-
oid whose unit space is M. Let us mention an attractive alternative approach to the trans-
verse index theorem. It consists of passing to the normal frame bundle FOðqÞM of M, where
one obtains an OðqÞ-transversally elliptic di¤erential operator. Atiyah showed that such an
operator has an index which is a distribution on OðqÞ; see [1]. The numerical index
IndexðDÞ is the result of pairing this distribution with the identity function. There is an in-
dex formula for G-transversally elliptic operators, due to Berline and Vergne [7], [38]. Un-
fortunately, this index formula is not explicit enough to yield a local formula for IndexðDÞ.
Consequently, we stick to the Riemannian groupoid GT, although we do use frame bundles
for some technical points.

Let us also mention that there is a transverse index theorem developed by Brüning–
Kamber–Richardson [11], [12], [13], based on doing analysis on the singular space W . In
this way they obtain an index formula involving integrals over desingularizations of strata
along with eta-invariants of normal spheres.

The structure of this paper is as follows. In Section 2 we review material about
Riemannian foliations and Riemannian groupoids. We discuss the groupoid closure and
construct a Haar system for it. In Section 3 we describe basic Dirac-type operators in the
setting of spectral triples. We prove an isomorphism between the image of a certain projec-
tion operator, acting on all smooth sections of the transverse Cli¤ord module, and the
space of holonomy-invariant smooth sections of the transverse Cli¤ord module. We use
this to define the invariant Dirac-type operator as a self-adjoint operator. In Section 4,
which can be read independently of the rest of the paper, we consider the special case of a
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Riemannian foliation which arises as the suspension of a group of isometries of a compact
manifold. In Section 5 we specialize to the case of abelian Molino sheaf. We construct a
parametrix and prove a delocalized index theorem. In Section 6 we localize this result and
prove Theorem 1. We also compute the indices in some geometric examples.

More detailed descriptions can be found at the beginnings of the sections.

Acknowledgement. We thank the referee for useful comments.

2. Riemannian groupoids and their closures

In this section we collect material, some of it well known and some of it not so well
known, about Riemannian foliations and Riemannian groupoids. For basic information
about foliations and groupoids, we refer to [36]. A survey on Riemannian foliations is in
[28].

In Subsection 2.1 we introduce some notation and basic ideas about Riemannian
groupoids.

It will be important for us to be able to take the closure of a Riemannian groupoid, in
an appropriate sense. This is because the closure is a proper Lie groupoid, which allows for
averaging. Hence in Subsection 2.2 we recall the construction of the groupoid closure. In
order to do averaging, we need a Haar system on the groupoid closure. Our construction
of the Haar system is based on passing to the frame bundle of a transversal, which is de-
scribed in Subsection 2.3. Subsection 2.4 contains the construction of the Haar system,
along with certain mean curvature one-forms.

In Subsection 2.5 we summarize Molino theory in terms of the Lie algebroid of the
groupoid closure. Subsection 2.6 recalls Haefliger’s local models for the transverse structure
of a Riemannian foliation. Finally, in Subsection 2.7, we recall Sergiescu’s dualizing sheaf
for a Riemannian groupoid and show how a square root of the dualizing sheaf allows one
to define a basic signature.

2.1. Riemannian groupoids. Suppose that G is a smooth e¤ective étale groupoid
([36], Chapter 5.5). The space of units is denoted Gð0Þ. We will denote the source and range
maps of G by s and r, respectively. Our conventions are that g1g2 is defined if and only
if sðg1Þ ¼ rðg2Þ. We write Gp for r�1ðpÞ, Gp for s�1ðpÞ and Gp

p for the isotropy group
s�1ðpÞX r�1ðpÞ. For simplicity of notation, we write g A G instead of g A Gð1Þ when refer-
ring to an element of the groupoid. We write dgsðgÞ : TsðgÞG

ð0Þ ! TrðgÞG
ð0Þ for the lineariza-

tion of g.

For us, an action of G on a manifold Z is a right action. That is, one first has a sub-
mersion p : Z ! Gð0Þ. Putting

Z �Gð0Þ G ¼ fðp; gÞ A Z � G : pðpÞ ¼ rðgÞg;ð2:1Þ

we must also have a smooth map Z �Gð0Þ G ! Z, denoted ðp; gÞ ! pg, such that
pðpgÞ ¼ sðgÞ and ðpg1Þg2 ¼ pðg1g2Þ for all composable g1, g2. There is an associated
cross-product groupoid Z zG with sðp; gÞ ¼ pg and rðp; gÞ ¼ p.
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Our notion of equivalence for smooth e¤ective étale groupoids is weak equivalence

([36], Chapter 5.4), which is sometimes called Morita equivalence. (This is distinct from
groupoid isomorphism.) A useful way to characterize weak equivalence (for étale group-
oids) is the following ([9], Exercise III.G.2.8 (2)): two smooth étale groupoids G and G 0 are
weakly equivalent if there are open covers U and U 0 of their unit spaces so that the local-
izations GU and G 0

U 0 are isomorphic smooth groupoids.

A smooth étale groupoid G is Riemannian if there is a Riemannian metric on Gð0Þ so
that the groupoid elements act by local isometries. That is, for each g A G, the map dgsðgÞ
is an isometric isomorphism. There is an evident notion of isomorphism for Riemannian
groupoids. Two Riemannian groupoids are equivalent if there are localizations GU and
G 0
U 0 which are isomorphic Riemannian groupoids.

A Riemannian groupoid is complete in the sense of [26], Definition 3.1.1, if for all
p1; p2 A Gð0Þ, there are neighborhoods U1 of p1 and U2 of p2 so that any groupoid element
g with sðgÞ A U1 and rðgÞ A U2 has an extension to all of U1. That is, for any such g, there is
a smooth map t : U1 ! G with t

�
sðgÞ

�
¼ g and s � t ¼ Id.

2.2. Groupoid closures. Let M be a connected closed n-dimensional manifold with
a codimension-q foliation F. A Riemannian foliation structure on F is an inner product on
the normal bundle TM=TF which is holonomy-invariant. See [36], Chapter 2.2, for some
equivalent formulations. In what follows, we assume that F has a fixed Riemannian folia-
tion structure.

There is a partition of M by the leaf closures. The quotient space W is Hausdor¤ but
is generally not a manifold.

Let FOðqÞM denote the orthonormal normal frame bundle to F; see [36], Chapter
4.2.2. It has a lifted codimension-q foliation F̂F. The leaf closures of F̂F form the fibers of
a smooth fiber bundle FOðqÞM ! ŴW , which is OðqÞ-equivariant ([36], Theorem 4.26 (ii)).
Also, W ¼ ŴW=OðqÞ. Let i : ŴW ! W denote the quotient map.

Let T be a complete transversal to F; see [36], Example 5.19. Because M is com-
pact, we can assume that T has a finite number of connected components, each being the
interior of a smooth manifold-with-boundary. Let GT be the corresponding étale holonomy

groupoid ([36], Example 5.19). Its space of units is T. Then GT is a complete Riemannian
groupoid. Its weak equivalence class is independent of the choice of complete transver-
sal T.

We write dmT for the Riemannian density measure on T.

Example 1. Let G be a finitely presented discrete group. Let G be a compact
Lie group which acts isometrically and e¤ectively on a connected compact Riemannian
manifold Z. Suppose that i : G ! G is an injective homomorphism. Suppose that Y is a
connected compact manifold with p1ðY ; y0Þ ¼ G. Let c : ~YY ! Y be the universal cover.
Then M ¼ ð ~YY � ZÞ=G has a Riemannian foliation whose leaves are the images in M of
f ~YY � fzggz AZ. It is an example of a suspension foliation. There is a complete transversal�
c�1ðy0Þ � Z

�
=GGZ. Then GT is the cross-product groupoid Z zG.
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We will want to take the closure of GT in a certain sense, following [26], [41], [42]. To
do so, let

J 1ðTÞ ¼ fðp1; p2;AÞ : p1; p2 A T;A A IsomðTp1
T;Tp2

TÞgð2:2Þ

be the groupoid of isometric 1-jet elements, with the 1-jet topology. It is a Lie groupoid in
the sense of [36], Chapter 5.1, but is not an étale groupoid unless dimðTÞ ¼ 0.

Lemma 1. J 1ðTÞ is a proper Lie groupoid in the sense of [36], Chapter 5.6.

Proof. The map ðs; rÞ : J 1ðTÞ ! T�T sends ðp1; p2;AÞ to ðp1; p2Þ. It defines a
fiber bundle with fibers di¤eomorphic to the compact Lie group OðqÞ. Hence it is a proper
map. r

There is a homomorphism of GT into J 1ðTÞ that sends g A GT to�
sðgÞ; rðgÞ; dgsðgÞ

�
A J 1ðTÞ.

This homomorphism is injective, as follows from the fact that GT is e¤ective, along with
the fact that if I is an isometry of a Riemannian manifold such that IðpÞ ¼ p and
dIp ¼ Id then I is the identity in a neighborhood of p.

Let GT be the closure of GT in J 1ðTÞ. It is a subgroupoid of J 1ðTÞ, again with unit
space T. (Note that T is a smooth manifold in its own right. The fact that it is the interior
of a compact manifold-with-boundary will not enter until Subsection 3.3.) Now GT is a
smooth subgroupoid of J 1ðTÞ and so inherits a Lie groupoid structure; see [42], Section
2, and (2.6) below. Note that dgsðgÞ : TsðgÞT ! TrðgÞT can be defined for all g A GT.

Lemma 2. GT is a proper Lie groupoid.

Proof. This follows from Lemma 1, along with the fact that GT is a closed subset of
IðTÞ. r

The orbit space of GT is W , the space of leaf closures. Let s : T ! W denote the
quotient map.

Example 2. Continuing with Example 1, suppose that the homomorphism i : G ! G

has dense image. Then GT is the cross-product groupoid Z zG.

In addition to its subspace topology from J 1ðTÞ, the groupoid GT has an étale topol-
ogy, for which s and r are local homeomorphisms. In particular, each g A GT has a local
extension to an isometry between neighborhoods of sðgÞ and rðgÞ; this follows from the
fact that g is a limit of elements of GT that have this property in a uniform way. We will
call this the extendability property of g. The local extension of g is given explicitly by
exprðgÞ � dgsðgÞ � exp�1

sðgÞ. In what follows, when we refer to GT we will give it the subspace
topology, unless we say otherwise.

Example 3. Continuing with Example 2, when we convert from the (proper) Lie
groupoid topology on GT to the étale topology, the result is Z zGd, where Gd denotes
the discrete topology on G.
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2.3. Normal frame bundle. Let p : FOðqÞT ! T be the orthonormal frame bundle
of T. Then GT acts on FOðqÞT by saying that if g A GT and f is an orthonormal frame at
rðgÞ then f � g is the frame ðdgsðgÞÞ�1ð f Þ at sðgÞ.

Let cGTGT be the cross-product groupoid

FOðqÞTzGT ¼ fð f ; gÞ : g A GT; f an orthonormal frame at rðgÞg:ð2:3Þ

It has unit space FOðqÞT, with sð f ; gÞ ¼ f � g and rð f ; gÞ ¼ f , and orbit space ŴW , with the
quotient map ŝs : FOðqÞT ! ŴW being a smooth submersion ([41], Theorem 4.2). With abuse
of terminology, we may call the subsets ŝs�1ðŵwÞ fibers. There is a commutative diagram

FOðqÞT ���!ŝs ŴW

p

???y ???yi

T W

ð2:4Þ

�����!s

where ŝs is OðqÞ-equivariant, and p and i are the results of taking OðqÞ-quotients.

The groupoid cGTGT can be considered as a lift of GT to FOðqÞT. It has trivial isotropy
groups and comes from the equivalence relation on FOðqÞT given by saying that f @ f 0 if
and only if ŝsð f Þ ¼ ŝsð f 0Þ. There is an OðqÞ-equivariant isomorphism

cGTGT ¼ ðFOðqÞT�ŴW FOðqÞTÞ:ð2:5Þ

Hence

GT ¼ ðFOðqÞT�ŴW FOðqÞTÞ=OðqÞð2:6Þ

as Lie groupoids.

The groupoid cGTGT also has an étale structure, coming from that of GT. To see this
in terms of local di¤eomorphisms, given ĝg A cGTGT, write it as a pair ð f ; gÞ with g A GT and
f an orthonormal frame at rðgÞ. Let L : U ! V be an extension of g to an isometry,
where U is a neighborhood of sðgÞ A T and V is a neighborhood of rðgÞ A T. Then the
lift L̂L : FOðqÞU ! FOðqÞV is a di¤eomorphism from a neighborhood of sðĝgÞ A FOðqÞT to a
neighborhood of tðĝgÞ A FOðqÞT.

In particular,

dĝgsðĝgÞ : TsðĝgÞFOðqÞT ! TrðĝgÞFOðqÞTð2:7Þ

is well-defined.

There is a transverse Levi–Civita connection on FOðqÞT, by means of which one can
construct a canonical parallelism of FOðqÞT, i.e. vector fields fV ig that are pointwise line-
arly independent and span TFOðqÞT; see [36], Chapter 4.2.2. This parallel structure is cGTGT-
invariant in the sense that for all ĝg A cGTGT we have dĝgsðĝgÞðV i

sðĝgÞÞ ¼ V i
rðĝgÞ.
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There is also a canonical Riemannian metric on FOðqÞT, which comes from saying
that the vector fields fV ig are pointwise orthonormal. With respect to this Riemannian
metric, the vertical OðqÞ-directions are orthogonal to the horizontal directions (coming
from the transverse Levi–Civita connection), the OðqÞ-fibers are all isometric to the stan-
dard OðqÞ with the bi-invariant Riemannian metric of total volume one, and the horizontal
planes are isometric to their projections to T.

With this Riemannian metric on FOðqÞT, the submersion ŝs : FOðqÞT ! ŴW becomes a
Riemannian submersion.

Finally, we note that if F is transversely oriented then the above statements have
analogs in which OðqÞ is replaced by SOðqÞ. Similarly, if F has a transverse spin structure
then the statements have analogs in which OðqÞ is replaced by SpinðqÞ.

2.4. Haar system. For f A FOðqÞT, let dm f be the measure on cGTGT which is sup-
ported on cGTGT

f G ŝs�1
�
ŝsð f Þ

�
and is given there by the fiberwise Riemannian density.

To define the mean curvature form t̂t A W1ðFOðqÞTÞ of the fibers, choose f A FOðqÞT.

Given a vector X̂X f A Tf FOðqÞT, extend it to a vector field X̂X on cGTGT
f G ŝs�1

�
ŝsð f Þ

�
, the cGTGT-

orbit of f , so that for all ĝg A cGTGT
f we have dĝgsðĝgÞðX̂X sðĝgÞÞ ¼ X̂X f . We can find e > 0 and a

small neighborhood U of f in ŝs�1
�
ŝsð f Þ

�
so that the geodesic flow ftð f 0Þ ¼ expf 0 ðtX̂X f 0 Þ is

defined for all t A ð�e; eÞ and f 0 A U , and ft maps U di¤eomorphically to its image in a
fiber ŝs�1

�
gðtÞ
�
. Here g is the geodesic on ŴW starting from ŝsð f Þ, with initial vector dŝsf ðX̂X f Þ.

Define the Lie derivative

ðLX̂X dmÞ f ¼ d

dt

����
t¼0

f�
t dmftð f Þ:ð2:8Þ

Then

t̂tðX̂X f Þ ¼
ðLX̂X dmÞ f

dm f

����
f

:ð2:9Þ

Lemma 3. t̂t is a closed 1-form which is cGTGT-basic and OðqÞ-basic.

Proof. The form t̂t is clearly cGTGT-invariant and OðqÞ-invariant. As cGTGT and OðqÞ act
on FOðqÞT isometrically, if X̂X f A Tf FOðqÞT is tangent to the cGTGT-orbit of f , or the OðqÞ-
orbit of f , then ðLX̂X dmÞ f ¼ 0. Hence t̂t is cGTGT-basic and OðqÞ-basic.

To see that t̂t is closed, we will define a smooth positive function F̂F in a neighborhood
N of f so that t̂t ¼ d log F̂F there. (The neighborhood N will be taken small enough so that
the following construction makes sense.) For f 0 A N, we write ŝsð f 0Þ ¼ expŝsð f Þ V̂V for a
unique V̂V A Tŝsð f ÞŴW . Let X̂X be the horizontal lift of V̂V to ŝs�1

�
ŝsð f Þ

�
. For f 00 A ŝs�1

�
ŝsð f Þ

�
,

put f1ð f 00Þ ¼ expf 00 X̂X f 00 . Put

F̂Fð f 0Þ ¼ dm f 0

ðf�
1Þ

�1
dm f

����
f 0
:ð2:10Þ

This defines F̂F on N so that t̂t ¼ d log F̂F on N. Hence t̂t is closed. r
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Corollary 2. Let t A W1ðTÞ be the unique 1-form such that t̂t ¼ p�t. Then t is closed

and GT-basic.

Recall the notion of a Haar system for a Lie groupoid; see, for example, [45], Defini-
tion 1.1. Now fdm f gf AFOðqÞT

is a Haar system for cGTGT. In particular, dm f is a measure oncGTGT whose support is ĜG
f

T, and the family of measures fdm f gf AFOðqÞT
is cGTGT-invariant in an

appropriate sense.

Given p A T, choose f A FOðqÞT so that pð f Þ ¼ p. There is a di¤eomorphism
ip; f : GT

p ! cGTGT
f given by ip; f ðgÞ ¼ ð f ; gÞ. Let dmp be the measure on GT which is sup-

ported on GT
p and is given there by i�p; f dm f , where we think of dm f as a density on cGTGT

f .
Then dmp is independent of the choice of f , as follows from the fact that the family
fdm f gp AT is OðqÞ-equivariant. One can check that fdmpgp AT is a Haar system for GT.

Example 4. Continuing with Example 3, given p A Z, the measure dmp on GT
p GG

can be described as follows. Let feig be a basis for g such that the normalized Haar
measure on G is dmG ¼5i e�

i . Let fVig be the corresponding vector fields on Z. The
action of Vi on FOðqÞZ breaks up as V i l‘V i, with respect to the decomposition
TFOðqÞZ ¼ p�TZ lTOðqÞ of TFOðqÞZ into its horizontal and vertical subbundles. (Note
that because V i is Killing, ‘V i is a skew-symmetric 2-tensor.) Put

MijðpÞ ¼ hViðpÞ;VjðpÞiþ h‘ViðpÞ;‘VjðpÞi:ð2:11Þ

Note that the matrix MðpÞ is positive-definite. Then dmp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
MðpÞ

�q
dmG.

We now construct a cuto¤ function for GT.

Lemma 4. There is a nonnegative cuto¤ function f A Cy
c ðTÞ for GT, meaning that

for all p A T, Ð
GT p

f2
�
sðgÞ

�
dmpðgÞ ¼ 1:ð2:12Þ

Proof. The proof is similar to that of [44], Proposition 6.11. The di¤erence is that we
use f2 instead of f as in [44], Proposition 6.11. Choose any nonnegative c A Cy

c ðTÞ such
that

Ð
GT p

c2
�
sðgÞ

�
dmpðgÞ > 0 for all p A T. (Such a c exists because the orbit space of GT is

compact.) Then set

f ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
GT p

c2
�
sðgÞ

�
dmpðgÞ

r : rð2:13Þ

Example 5. Continuing with Example 4, we can take f2ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
MðpÞ

�q .

2.5. The Lie algebroid of the groupoid closure. Molino theory is phrased as a struc-
ture on the foliated manifold M in [36], Chapter 4, and [37], and as a structure on the trans-
versal T in [26], [41], [42]. The relationship between them is that the structure on M pulls
back from the structure on T; see [41], Section 3.4.
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Let gT be the Lie algebroid of GT, as defined in [36], Chapter 6. Then gT is a GT-
equivariant flat vector bundle over T whose fibers are copies of a fixed Lie algebra g. (The
flat connection on gT is related to the extendability of elements of GT.) The holonomy of
the flat connection on gT lies in AutðgÞ. If P : ðU � gÞ ! gT is a local parallelization of gT
and an : gT ! TT is the anchor map then an � P describes a Lie algebra of Killing vector
fields on U , isomorphic to g.

The pullback p�gT of gT to FOðqÞT is isomorphic to the vertical tangent bundle
T V FOðqÞT of the submersion ŝs : FOðqÞT ! ŴW .

If M is simply-connected then g is abelian and gT ¼ T� g; see, for example, [29].

Example 6. Continuing with Example 5, let g be the Lie algebra of G. Then gT is
the product bundle Z � g, whose flat connection has trivial holonomy. The corresponding
vector fields on T ¼ Z come from the G-action.

Example 7. Let G be a finite-dimensional connected Lie group. Let g be its Lie
algebra. Give G a right-invariant Riemannian metric. Let G be a finite-presented discrete
group. Let G ! G be an injective homomorphism with dense image. Let Y be a con-
nected compact manifold with p1ðY ; y0Þ ¼ G. Let ~YY be the universal cover. Suppose that
h : ~YY ! G is a G-equivariant fiber bundle, where G acts on the right on G.

Then Y has a Riemannian foliation F whose leaves are the images, in Y , of the con-
nected components of the fibers of h. The foliation has dense leaves and is transversally
parallelizable. Conversely, any Riemannian foliation on a connected compact manifold,
which has dense leaves and is transversally parallelizable, arises from this construction
([36], Theorem 4.24).

A transversal T to F can be formed by taking appropriate local sections Ui ! ~YY of
h. Then gT is the product bundle T� g, whose flat connection has trivial holonomy. The
corresponding vector fields on TG

‘
i

Ui are the restrictions of the left-invariant vector
fields on G.

Note that in this construction, g could be any finite-dimensional Lie algebra.

2.6. Local transverse structure of a Riemannian foliation. We describe the local
transverse structure of a Riemannian foliation, following [26], [27].

Fix p A T. Let K denote the isotropy group at p for GT. Let k denote the Lie algebra
of K. There is an injection i : k ! g. Also, there is a representation ad : K ! AutðgÞ so that

1. adjk is the adjoint representation of K on k;

2. d ade is the adjoint representation of k on g, as defined using i.

Let Op be the GT-orbit of p. Its tangent space TpOp at p is isomorphic to g=k. Put
V ¼ ðTpOpÞ? HTpT. A slice-type theorem gives a representation r : K ! AutðVÞ with
the property that adl r : K ! Aut

�
ðg=kÞlV

�
is injective.
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The quintuple ðg;K; i; ad; rÞ determines the weak equivalence class of the restriction
of GT (with the étale topology) to a small invariant neighborhood of the orbit Op.

Given such a quintuple, one can construct an explicit local model for the transverse
structure. We will restrict here to the case when g is solvable. Then there is a Lie group G

with Lie algebra g, containing K as a subgroup, such that the restriction of GT to a small
invariant neighborhood of the orbit Op is weakly equivalent to the cross-product groupoid�
BðVÞ �K G

�
zGd, where BðVÞ is a metric ball in V .

Finally, define a normal orbit type to be a quintuple ðg;K; i; ad; rÞ such that the
invariant subspace V K vanishes. Given a point p A T and its associated quintuple
ðg;K; i; ad; rÞ, one obtains its normal orbit type from replacing V by V=V K . There is a nat-
ural equivalence relation on the set of possible normal orbit types. Then there is a stratifi-
cation of T, where each stratum is associated to a given equivalence class of normal orbit
types ([26], Section 3.3).

2.7. The dualizing sheaf. Let OT be the orientation bundle of T. It is a flat real line
bundle on T. Put DT ¼ LmaxgTnOT. It is a GT-equivariant flat real line bundle on T.

The Haar system fdm f gf AFOðqÞT
gives a nowhere-zero OðqÞ-invariant section of the

pullback bundle p�LmaxgT GLmaxT V FOðqÞT on FOðqÞT. Tensoring with this section gives
an OðqÞ-equivariant isomorphism ÎI : W�ðFOðqÞT; p�OTÞ ! W�ðFOðqÞT; p�DTÞ. This iso-
morphism descends to an isomorphism I : W�ðT;OTÞ ! W�ðT;DTÞ.

Lemma 5. I�1 � d �I ¼ d � t5on W�ðT;OTÞ.

Proof. This follows from the local description of t̂t ¼ p�t as d log F̂F in the proof of
Lemma 3. r

Let H�
invðTÞ be the cohomology of the GT-invariant di¤erential forms on T, and

similarly for H�
invðT;DTÞ. Then H�

invðTÞ is isomorphic to the basic cohomology H�
basðMÞ

of the foliated manifold M, which is invariant under foliated homeomorphisms ([19]). Also,
H�

invðT;DTÞ is isomorphic to H�
basðM;DMÞ, where DM is the pullback of DT from T to

M. From [43], for all 0e ie dimðTÞ, there is a nondegenerate pairing

H i
invðTÞ � H

dimðTÞ�i

inv ðT;DTÞ ! R:ð2:14Þ

More generally, if E is a GT-equivariant flat real vector bundle on T then there is a non-
degenerate pairing

H i
invðT;EÞ � H

dimðTÞ�i

inv ðT;E � nDTÞ ! R:ð2:15Þ

The closed 1-form t itself defines a class ½t� A H1
invðTÞ.

If DT is topologically trivial, as a GT-equivariant real line bundle on T, then we can

take the (positive) square root of its holonomies to obtain D
1
2

T, a GT-equivariant flat real

line bundle. We obtain a nondegenerate bilinear form on H�
invðT;D

1
2

TÞ from (2.15). Hence

if dimðTÞ is divisible by four then the basic signature sðM;F;D
1
2

TÞ can be defined to be

the index of the quadratic form on H
dimðTÞ=2
inv ðT;D

1
2

TÞ. Note that H�
invðT;D

1
2

TÞ is isomor-
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phic to the cohomology of d � 1

2
t5 on W�ðTÞ. If in addition ½t� ¼ 0 then we can write

t ¼ dH for some H A Cy
invðTÞ, so d � 1

2
t5¼ eH=2 � d � e�H=2 is conjugate to d on W�ðTÞ.

Similarly, we can define a basic Euler characteristic wðM;F;D
1
2

TÞ.

3. Transverse Dirac-type operators

In this section we construct the basic Dirac-type operator. Subsection 3.1 relates
transverse di¤erentiation with groupoid integration. In Subsection 3.2 we define a map a

from holonomy-invariant sections of the transverse Cli¤ord module to non-invariant sec-
tions, and a map b which goes the other way. We show that b � a ¼ Id and b ¼ a�. A pro-
jection operator is then defined by P ¼ a � b. It comes from the action of an idempotent
in the groupoid algebra. The invariant Dirac-type operator Dinv is the compression of the
transverse Dirac-type operator DAPS by P. In Subsection 3.3, we write Dinv explicitly as a
di¤erential operator.

3.1. Transverse di¤erentiation. Let E be a GT-equivariant vector bundle on T.
Given g A GT and e A EsðgÞ, let e � g�1 A ErðgÞ denote the action of g�1 on e. Given a
compactly-supported element x A Cy

c ðT;EÞ, with a slight abuse of notation we writeÐ
GT p

xsðgÞ � g�1 dmpðgÞð3:1Þ

for the element of CyðT;EÞ whose value at p A T is given by (3.1).

Lemma 6. We have an identity in W1ðT;EÞ:

‘E
Ð

GT p

xsðgÞ � g�1 dmpðgÞ ¼
Ð

GT p

ð‘ExÞsðgÞ � g�1 dmpðgÞ þ tp

Ð
GT p

xsðgÞ � g�1 dmpðgÞ:ð3:2Þ

Proof. Put ‘̂‘E ¼ p�‘E and x̂x ¼ p�x. Choose f A FOðqÞT so that pð f Þ ¼ p. Given a
vector X̂X f A Tf FOðqÞT, extend it to a vector field X̂X on ŝs�1

�
ŝsð f Þ

�
, the cGTGT-orbit of f , so that

for all ĝg A cGTGT
f , we have dĝgsðĝgÞðX̂X sðĝgÞÞ ¼ X̂X f . By the cGTGT-invariance of ‘̂‘E ,

‘̂‘E
X̂X

Ð
bGT f

x̂xsðĝgÞ � ĝg�1 dm f ðĝgÞð3:3Þ

¼
Ð
bGT f

ð‘̂‘E
X̂X
x̂xÞsðĝgÞ � ĝg�1 dm f ðĝgÞ þ

Ð
bGT f

x̂xsðĝgÞ � ĝg�1LX̂X dm f ðĝgÞ

¼
Ð
bGT f

ð‘̂‘E
X̂X
x̂xÞsðĝgÞ � ĝg�1 dm f ðĝgÞ þ

Ð
bGT f

x̂xsðĝgÞ � ĝg�1t̂tðX̂X ÞsðĝgÞ dm f ðĝgÞ:

Since t̂tðX̂XÞsðgÞ ¼ t̂tðX̂X Þf , the lemma follows. r

Corollary 3. If o A W�
c ðTÞ then

d
Ð

GT p

osðgÞ � g�1 dmpðgÞ ¼
Ð

GT p

ðdoÞsðgÞ � g�1 dmpðgÞ þ tp5
Ð

GT p

osðgÞ � g�1 dmpðgÞ:ð3:4Þ
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Suppose now that E is a GT-equivariant Cli¤ord module on T. In particular, if
X A TpT then the Cli¤ord action of X is an operator cðX Þ A EndðEpÞ with cðXÞ2 ¼ �jX j2.
Let D be the Dirac-type operator on Cy

c ðT;EÞ. It is a symmetric operator.

Corollary 4. If x A Cy
c ðT;EÞ then

D
Ð

GT p

xsðgÞ � g�1 dmpðgÞ ¼
Ð

GT p

ðDxÞsðgÞ � g�1 dmpðgÞ þ cðtpÞ
Ð

GT p

xsðgÞ � g�1 dmpðgÞ;ð3:5Þ

where we have identified tp with its dual vector.

3.2. A projection operator. Recall the cuto¤ function f from Lemma 4. Let�
L2ðT;EÞ

�GT denote the GT-invariant elements of L2ðT;EÞ. Define maps

a :
�
L2ðT;EÞ

�GT ! L2ðT;EÞ and b : L2ðT;EÞ !
�
L2ðT;EÞ

�GT
by

aðxÞ ¼ fxð3:6Þ

and �
bðhÞ

�
p
¼

Ð
g AGT p

hsðgÞ � g�1fsðgÞ dmpðgÞ:ð3:7Þ

Lemma 7. We have b � a ¼ Id.

Proof. If x A
�
L2ðT;EÞ

�GT then�
b
�
aðxÞ

��
p
¼

Ð
g AGT p

xsðgÞ � g�1f2
sðgÞ dmpðgÞ:ð3:8Þ

Since x is GT-invariant, xsðgÞ � g�1 ¼ xp and soÐ
g AGT p

xsðgÞ � g�1f2
sðgÞ dmpðgÞ ¼ xp

Ð
g AGT p

f2
sðgÞ dmpðgÞ ¼ xp:ð3:9Þ

This proves the lemma. r

It follows that a is injective and induces an isomorphism between
�
L2ðT;EÞ

�GT and a

subspace of L2ðT;EÞ. We equip
�
L2ðT;EÞ

�GT with the inner product induced by this iso-

morphism. Explicitly, for x; z A
�
L2ðT;EÞ

�GT , we have

hx; zi ¼
Ð
T

ðxp; zpÞf2ðpÞ dmTðpÞ;ð3:10Þ

where dmT is the Riemannian density on T. Note that this generally di¤ers from the inner

product on
�
L2ðT;EÞ

�GT coming from its embedding in L2ðT;EÞ.
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We define a sheaf Sy on W by saying that if U is an open subset of W then

SyðUÞ ¼
�
Cy
�
s�1ðUÞ;E

��GT :
Similarly, we define a sheaf S2 on W by S2ðUÞ ¼

�
L2
�
s�1ðUÞ;E

��GT . The global sections

S2ðWÞ are the same as
�
L2ðT;EÞ

�GT .

Let dmŴW denote the Riemannian measure on ŴW . Put dmW ¼ i� dmŴW , a measure on W .

Given x; z A
�
L2ðT;EÞ

�GT , the pointwise inner product function ðx; zÞðpÞ pulls back
under i from a measurable function on W , which we denote by ðx; zÞðwÞ.

Proposition 1. We have

hx; zi ¼
Ð

W

ðx; zÞðwÞ dmW ðwÞ:ð3:11Þ

Proof. Put f̂f ¼ p�f. Let dmFOðqÞT=ŴW denote the Riemannian densities on the pre-
images of ŝs. ThenÐ

T

ðxp; zpÞf2
p dmTðpÞ ¼

Ð
FOðqÞT

�
ðp�xÞf ; ðp�zÞf

�
f̂f2

f dmFOðqÞT
ð f Þð3:12Þ

¼
Ð̂

WW

ðp�x; p�zÞðŵwÞ
� Ð

FOðqÞT=ŴW

f̂f2
f dmFOðqÞT=ŴW ð f Þ

�
dmŴW ðŵwÞ

¼
Ð̂

WW

ðp�x; p�zÞðŵwÞ dmŴW ðŵwÞ

¼
Ð

W

ðx; zÞðwÞ dmW ðwÞ:

This proves the proposition. r

Corollary 5. The inner product (3.10) on
�
L2ðT;EÞ

�GT is independent of the choice of

the cut-o¤ function f.

We will denote
�
L2ðT;EÞ

�GT , equipped with the inner product (3.10), by
L2ðS; dmW Þ.

Proposition 2. b ¼ a�.

Proof. Choose h A L2ðT;EÞ and x A
�
L2ðT;EÞ

�GT . Then

hbh; xi ¼
Ð

FOðqÞT

Ð
bGT f

f̂f2
f f̂fsðĝgÞ

�
ðp�hÞsðĝgÞ � ĝg�1; ðp�xÞf

�
dm f ðĝgÞ dmFOðqÞT

ð f Þ:ð3:13Þ

Using the GT-invariance of x,Ð
FOðqÞT

Ð
bGT f

f̂f2
f f̂fsðĝgÞ

�
ðp�hÞsðĝgÞ � ĝg�1; ðp�xÞf

�
dm f ðĝgÞ dmFOðqÞT

ð f Þð3:14Þ

¼
Ð
bGT f̂f2

rðĝgÞf̂fsðĝgÞ
�
ðp�hÞsðĝgÞ; ðp�xÞsðĝgÞ

�
dm bGTðĝgÞ;
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where dm bGT is the measure on cGTGT induced by the Haar system fdm f gf AFOðqÞT
and the

Riemannian measure dmFOðqÞT
. Since dm bGT is invariant under the involution ĝg 7! ĝg�1 oncGTGT, Ð

bGT f̂f2
rðĝgÞf̂fsðĝgÞ

�
ðp�hÞsðĝgÞ; ðp�xÞsðĝgÞ

�
dm bGTðĝgÞð3:15Þ

¼
Ð
bGT f̂f2

sðĝgÞf̂frðĝgÞ
�
ðp�hÞrðĝgÞ; ðp�xÞrðĝgÞ

�
dm bGTðĝgÞ

¼
Ð

FOðqÞT

Ð
bGT f

f̂f2
sðĝgÞf̂ff

�
ðp�hÞf ; ðp�xÞf

�
dm f ðĝgÞ dmFOðqÞT

ð f Þ

¼
Ð

FOðqÞT

f̂ff

�
ðp�hÞf ; ðp�xÞf

�
dmFOðqÞT

ð f Þ

¼
Ð
T

ff ðhp; xpÞ dmTðpÞ ¼ hh; axi:

This proves the proposition. r

Corollary 6. P ¼ a � b is an orthogonal projection on L2ðT;EÞ.

More explicitly,

ðPhÞp ¼ fp

Ð
g AGT p

hsðgÞ � g�1fsðgÞ dmpðgÞ:ð3:16Þ

This shows that P comes from the action of the idempotent g ! fsðgÞfrðgÞ in the groupoid
algebra Cy

c ðGTÞ, which we also denote by P.

The maps a and b establish an isomorphism between Im P and
�
L2ðT;EÞ

�GT .

3.3. Spectral triples and the invariant Dirac-type operator. Let D0 be the operator

on
�
L2ðT;EÞ

�GT which is the restriction of the Dirac-type operator on T to GT-invariant
spinor fields. Let DAPS denote the Dirac-type operator on L2ðT;EÞ with Atiyah–Patodi–
Singer (APS) boundary conditions on qT; see [4]. It is a self-adjoint extension of D. (We do
not require a product geometry near qT.) Note that ImðaÞHDomðDAPSÞ, since an element
of ImðaÞ has compact support in T, i.e. in the interior of T.

Remark 1. In what follows, the choice of APS boundary conditions is not essential.
Any boundary condition which gives a self-adjoint operator would work just as well. We
invoke APS boundary conditions for clarity.

Proposition 3.
�
Cy

c ðGTÞ;L2ðT;EÞ;DAPS

�
is a spectral triple of dimension q.

Proof. The action of A A Cy
c ðGTÞ on h A L2ðT;EÞ is given by

ðAhÞp ¼
Ð

g AGT p

AðgÞhsðgÞ � g�1 dmpðgÞ:ð3:17Þ
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As A is compactly supported, there is a compact subset K of T so that
suppðAÞH ðs; rÞ�1ðK � KÞ. It follows that the action of Cy

c ðGTÞ on L2ðT;EÞ preserves
DomðDAPSÞ.

Using (3.17), it follows that ½DAPS;A� is a bounded operator on L2ðT;EÞ. Thus�
Cy

c ðGTÞ;L2ðT;EÞ;DAPS

�
is a spectral triple. Finally, from [24], Section 9, the spectral

triple has dimension q in the sense of [15], Chapter 4.2. r

Proposition 4. We have

b � DAPS � a ¼ D0 �
1

2
cðtÞ:ð3:18Þ

Proof. Choose x A
�
L2ðT;EÞ

�GT . Then

DAPS

�
aðxÞ

�
¼ DAPSðfxÞ ¼ cðdfÞxþ fDAPSðxÞ:ð3:19Þ

Using the GT-invariance of the Dirac operator, we obtain�
b
�
DAPS

�
aðxÞ

���
p
¼

Ð
g AGT p

�
DAPS

�
aðxÞ

��
sðgÞ � g�1fsðgÞ dmpðgÞð3:20Þ

¼
Ð

g AGT p

�
cðdfÞx

�
sðgÞ � g�1fsðgÞ dmpðgÞ

þ
Ð

g AGT p

fsðgÞ
�
DAPSðxÞ

�
sðgÞ � g�1fsðgÞ dmpðgÞ

¼ c

� Ð
GT p

ðdfÞsðgÞ � g�1fsðgÞ dmpðgÞ
�
xp

þ
� Ð

GT p

f2
sðgÞ dmpðgÞ

�
ðD0xÞp:

Since Ð
GT p

f2
sðgÞ dmpðgÞ ¼ 1;ð3:21Þ

di¤erentiation gives

0 ¼ 2
Ð

GT p

ðdfÞsðgÞ � g�1fsðgÞ dmpðgÞ þ
Ð

GT p

f2
sðgÞtp dmpðgÞð3:22Þ

¼ 2
Ð

GT p

ðdfÞsðgÞ � g�1fsðgÞ dmpðgÞ þ tp:

The proposition follows. r

We define the invariant Dirac operator Dinv on
�
L2ðT;EÞ

�GT by

Dinv ¼ D0 �
1

2
cðtÞ:ð3:23Þ
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Corollary 7. Dinv is a self-adjoint Fredholm operator. For all y > 0, the operator

e�yD2
inv is trace-class.

Proof. The operator Dinv is unitarily equivalent to P � DAPS � P. As P is an idempo-
tent in the groupoid algebra Cy

c ðGTÞ, it follows from Proposition 3 that Dinv is self-adjoint
and Fredholm.

It follows from [20], Theorem C, that e�y½ðPDAPSPÞ2þðð1�PÞDAPSð1�PÞÞ2� is trace-class for all
y > 0. Then e�yðPDAPSPÞ2

is also trace-class. r

Corollary 8. If dimðTÞ is even and D is the Gauss–Bonnet operator d þ d � then

IndðDinvÞ equals the basic Euler characteristic wðM;F;D
1
2

MÞ. If dimðTÞ is even and D is the

signature operator d þ d � then IndðDinvÞ equals the basic signature sðM;F;D
1
2

MÞ.

Proof. As e�yD2
inv is trace-class, we can apply standard Hodge theory. r

Remark 2. Let chJLOðDAPSÞ be the JLO cocycle (see [31]) for the spectral triple�
Cy

c ðGTÞ;L2ðT;EÞ;DAPS

�
from Proposition 3. Then for any t > 0,

IndexðDinvÞ ¼ hchJLOðtDAPSÞ; chðPÞi:ð3:24Þ

One may hope to prove a transverse index theorem by computing lim
t!0

hchJLOðtDAPSÞ; chðPÞi

as a local expression. As will become clear in the next section, there are problems with this
approach.

Given a positive function h A
�
CyðTÞ

�GT , we can write h ¼ s�hW for some

hW A CðW Þ. The operator D0 �
1

2
cðtÞ on L2ðS; dmW Þ is unitarily equivalent to the opera-

tor D0 �
1

2
cðt� d log hÞ on L2ðS; hW dmW Þ.

Corollary 9. If ½t� ¼ 0 in H1
invðTÞ then up to a multiplicative constant, there is a

unique positive h A
�
CyðTÞ

�GT so that t ¼ d log h. Hence in this case, the invariant Dirac

operator Dinv is unitarily equivalent to D0 on L2ðS; hW dmW Þ.

Example 8. Continuing with Example 6, suppose that Z is equipped with a
G-equivariant Cli¤ord module E. By (2.9), t̂t ¼ d log ŝs�V̂V, where V̂V A CyðŴWÞ is the func-
tion for which V̂VðŵwÞ ¼ vol

�
ŝs�1ðŵwÞ

�
. Then t ¼ d log s�V, where V A CðWÞ is defined by

V̂V ¼ i�V. In particular, ½t� ¼ 0 and Dinv is unitarily equivalent to D0 on L2ðS;V dmW Þ.
Now

V dmW ¼ i�ðV̂V dmŴW Þ ¼ i�ŝs� dmFOðqÞZ
¼ s�p� dmFOðqÞZ

¼ s� dmZ:ð3:25Þ

Hence Dinv is unitarily equivalent to D0 on L2ðS; s� dmZÞ, which is what one would
expect.

Remark 3. There are several approaches in the literature to the goal of constructing
a good self-adjoint basic Dirac-type operator.
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Given a foliated manifold ðM;FÞ with a bundle-like metric gM as in [36], Remark
2.7 (7), one can consider a normal Cli¤ord module on M and its holonomy-invariant sec-
tions. With this approach, the natural inner product on the holonomy-invariant sections
involves the volume form of gM . In order to obtain a self-adjoint basic Dirac-type operator
with this approach, one must assume that the mean curvature form k of the foliated man-
ifold ðM;FÞ is a basic one-form; see [21]. Note that the mean curvature form k, which lives
on M, is distinct from the mean curvature form t in this paper, which lives on T.

Still working on M, the problem of self-adjointness was resolved by means of a modi-
fied basic Dirac-type operator, involving the basic projection of k; see [25]. Given the trans-
verse metric, it was shown in [25] that the spectrum is independent of the particular choice
of bundle-like metric.

In the present paper we work directly with the transverse structure, so bundle-like
metrics do not enter. Presumably our operator Dinv is unitarily equivalent to the operator
considered in [25].

A di¤erent approach is to consider the operator Dþ mapping from the positive-
chirality holonomy-invariant sections to the negative-chirality holonomy-invariant sec-
tions. One then obtains a self-adjoint operator D ¼ Dþ þ D�

þ, albeit not an explicit one.
This is essentially the approach of [18]. Di¤erent choices of inner product will change the
definition of D�

þ but will not a¤ect IndexðDþÞ.

4. The case of a compact group action

In this section we analyze the index of a Dirac-type operator when it acts on the
T k-invariant sections of a T k-equivariant Cli¤ord module on a compact manifold Z. In
Subsection 4.1 we express the index in terms of the Atiyah–Singer G-indices. In Subsection
4.2 we discuss the problem in switching the order of integration over T k and integration
over the fixed-point set. This turns out to be an issue about the nonuniformity of an asymp-
totic expansion.

4.1. An index formula. Let

(1) G be a discrete group,

(2) G be a compact connected Lie group,

(3) i : G ! G be an injective homomorphism with dense image,

(4) dmG be normalized Haar measure on G,

(5) Z be an even-dimensional compact connected Riemannian manifold on which G

acts isometrically,

(6) E be a G-equivariant Cli¤ord module on Z, and

(7) Y be a compact connected manifold with p1ðY ; y0Þ ¼ G.
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Put M ¼ ð ~YY � ZÞ=G, where G acts diagonally on ~YY � Z. Then M has a Riemann-
ian foliation with complete transversal Z. Now

�
L2ðZ;EÞ

�G ¼
�
L2ðZ;EÞ

�G
. Let D be the

Dirac-type operator on L2ðZ;EÞ and let Dinv be its restriction to
�
L2ðZ;EÞ

�G
. Given g A G,

let IndexðgÞ A R denote its G-index, i.e. IndexðgÞ ¼ trs gjKerðDÞ, where trs denotes the super-
trace.

Lemma 8. IndexðDinvÞ ¼
Ð
G

IndexðgÞ dmGðgÞ.

Proof. The finite-dimensional Z2-graded vector space KerðDÞG has an orthogonal
decomposition

KerðDÞG¼ KerðDÞG
G l

�
KerðDÞG

G

�?
:ð4:1Þ

Then

IndexðDinvÞ ¼ dim
�
KerðDÞG

þ
�
� dim

�
KerðDÞG

�
�

ð4:2Þ

¼
Ð
G

trðgÞjKerðDÞþ dmGðgÞ �
Ð
G

trðgÞjKerðDÞ� dmGðgÞ

¼
Ð
G

trsðgÞjKerðDÞ dmGðgÞ ¼
Ð
G

IndexðgÞ dmGðgÞ:

This proves the lemma. r

Let LðgÞ A R be the Atiyah–Segal–Singer Lefschetz-type formula for IndexðgÞ; see [5]
and [6], Chapter 6. It is the integral of a certain characteristic form over the fixed-point set
Zg. Then

IndexðDinvÞ ¼
Ð
G

LðgÞ dmGðgÞ:ð4:3Þ

Let T k be a maximal torus for G. Since LðgÞ is conjugation-invariant, the Weyl inte-
gral formula gives

IndexðDinvÞ ¼
1

jWeylj
Ð

T k

LðgÞ det
�
Adðg�1Þ � I

�
jg=tk dmT kðgÞ:ð4:4Þ

4.2. Nonuniformity in the localized short-time expansion. We now specialize to the
case G ¼ T k.

For simplicity, suppose that Z has a T k-invariant spin structure with spinor bundle
S Z, and E ¼ S Z nW for some Z2-graded G-equivariant vector bundle W. Suppose fur-
ther that each connected component of Zg has a spin structure. Let SN denote the normal
spinor bundle. Put

chWðgÞ ¼ trsðge
ffiffiffiffi
�1

p

2p
F WÞ:

From [6], Chapter 6.4, we see that

LðgÞ ¼
Ð

Z g

ÂAðZgÞ chWðgÞ
chSN

ðgÞ :ð4:5Þ
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(In order to simplify notation, we have omitted some signs and powers of 2pi in the for-
mula from [6], Chapter 6.4.) From (4.3), it is clear that the only submanifolds of Z that
contribute to the integral are the connected components fZT k

i g of the fixed-point set ZT k

,
as the integrals over the other submanifolds will be of measure zero in G. Then

IndexðDinvÞ ¼
Ð

T k

P
i

Ð
Z T k

i

ÂAðZT k

i Þ chWðgÞ
chSN

ðgÞ dmT kðgÞ:ð4:6Þ

Example 9. Suppose that Z is an oriented manifold whose dimension is divisible by
four. Suppose that Z has an S1-action with isolated fixed points fzkg. Let the S1-action on
Tzk

ðZÞ be decomposable as

eiy !
LdimðZÞ=2

l¼1

cosðnk; lyÞ �sinðnk; lyÞ
sinðnk; lyÞ cosðnk; lyÞ

� �
:ð4:7Þ

Let Dinv be the signature operator acting on S1-invariant forms. Then

IndexðDinvÞ ¼ ð�1Þ
dimðZÞ

4
Ð

S1

P
k

QdimðZÞ=2

l¼1

cotðnk; ly=2Þ dy

2p
;ð4:8Þ

compare with [2], Theorem 6.27.

Note that in (4.8), the sum over k and the integral over S1 generally cannot be inter-
changed. For example, suppose that dimðZÞ ¼ 4, k ¼ 1 and n1;1 ¼ n1;2 ¼ 1. Then the con-
tribution from the fixed point z1 is

�
Ð

S1

cot2ðy=2Þ dy

2p
¼ �y:ð4:9Þ

What happens is that there are cancellations among the various fixed points. This cancella-
tion is ensured by the fact that LðgÞ is uniformly bounded in g A S1. So the integral (4.8)
makes sense but one cannot switch the order of integration and summation. This is a prob-
lem if one wants a local formula for IndexðDinvÞ.

To elaborate on this phenomenon, for any t > 0 we can use Lemma 8 to write

IndexðDinvÞ ¼
Ð

S 1

Trsðg � e�tD2Þ dmS1ðgÞð4:10Þ

¼
Ð

S 1

Ð
Z

trs e�tD2ðz; zgÞ dmZðzÞ dmS1ðgÞ:

If fi is an S1-invariant bump function with support near the fixed point zi then

IndexðDinvÞ ¼
P

i

lim
t!0

Ð
S1

Ð
Z

trs e�tD2ðz; zgÞfiðzÞ dmZðzÞ dmS 1ðgÞ:ð4:11Þ
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By general arguments (cf. [10]), there is an asymptotic expansion

Ð
S1

Ð
Z

trs e�tD2ðz; zgÞfiðzÞ dmZðzÞ dmS1ðgÞ@ t�dimðZÞ=2 Py
j;k¼0

ai; j;kt j=2ðlog tÞk;ð4:12Þ

and so

IndexðDinvÞ ¼
P

i

ai;dimðZÞ=2;0:ð4:13Þ

On the other hand, for a fixed g A S1 there is a computable limit

lim
t!0

Ð
Z

trs e�tD2ðz; zgÞfiðzÞ dmZðzÞ;ð4:14Þ

which becomes an integral over Zg. If one could commute the lim
t!0

with the integration over
g A S1 on Ð

Z

trs e�tD2ðz; zgÞfiðzÞ dmZðzÞð4:15Þ

then one would conclude that the asymptotic expansion in (4.12) starts at the t0-term, and
that the coe‰cient of the t0-term isÐ

S 1

lim
t!0

Ð
Z

trs e�tD2ðz; zgÞfiðzÞ dmZðzÞ dmS1ðgÞ:ð4:16Þ

One finds in examples that neither of these are true. Related phenomena for local traces (as
opposed to supertraces) of basic heat kernels were noted in [40].

The underlying reason for the lack of uniformity, in the expansions with respect to t

and g, is that the fixed-point set Zg can vary wildly in g. For example, if the S1-action is
e¤ective then Ze ¼ Z, while Zg has codimension at least one for any g3 e, no matter how
close g may be to e.

5. The case of abelian Molino sheaf: a delocalized index theorem

In this section we prove a delocalized index theorem for Dinv under the assumption
that the Molino sheaf is a holonomy-free sheaf of abelian Lie algebras, and an additional
connectedness assumption on the isotropy groups. The index formula will be localized in
Section 6.

In Subsection 5.1 we use local models for the transverse structure of a Riemannian
foliation to write a formula for IndexðDinvÞ in terms of a parametrix. As indicated in the
preceding section, there are problems in directly computing the t ! 0 limit of this index
formula, as a local expression. Hence we use a delocalized approach. In Subsection 5.2 we
rewrite the index formula in terms of the averaging of a certain almost-periodic function
Ft; e that is defined on the abelian Lie algebra. The number Ft; eðX Þ is defined by a Kirillov-
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type formula. We show that it is independent of t and e. In Subsection 5.3 we compute the
t ! 0 limit of Ft; e.

5.1. Parametrix. Hereafter we assume that the Lie algebra g of the Molino sheaf
is the abelian Lie algebra Rk. We also assume that the Lie algebroid gT is a trivial flat
Rk-bundle, i.e. has trivial holonomy.

Recall the sheaf S2 on W from Subsection 3.2. The invariant operator Dinv is a self-
adjoint operator on the global sections S2ðW Þ. We will compute the index of Dinv by con-
structing a parametrix for Dinv. The parametrix will be formed using a suitable open cover
of W , along with a partition of unity.

Corollary 9 gives a measure hW dmW which is canonical up to a multiplicative con-
stant.

Given p A T, let K be the isotropy group of GT at p. We assume that K is connected,
so K ¼ T l for some 0e l e k. From Subsection 2.6, there is an invariant neighborhood U

of the orbit Op so that the restriction of GT to U is weakly equivalent, as an étale groupoid,
to the cross-product groupoid

�
BðVÞ �K G

�
zGd. Here G is a k-dimensional connected

abelian Lie group containing K , V is a representation space of K and BðVÞ is a metric
ball in V . The manifold BðVÞ �K G acquires a G-invariant Riemannian metric from the
Riemannian foliation.

If l < k then we can quotient out by a lattice in G=K , so in any case we can assume
that G ¼ T k. Note that there is some freedom in exactly which lattice is chosen.

There is an embedding BðVÞ=K ! W and a quotient map s :
�
BðVÞ �K G

�
! W .

From Example 8, s� dmBðVÞ�K G is a constant times ðhW dmW ÞjBðVÞ=K . We will want to fix a
normalization for the measure hW dmW . The normalization that we use will depend on
whether or not there are any points in T with maximal isotropy group.

Recall from Example 8 that in the local model, the relevant measure is V dmW . Here
V satisfies V̂V ¼ i�V, where V̂V A CyðŴWÞ is the function for which V̂VðŵwÞ ¼ vol

�
ŝs�1ðŵwÞ

�
.

If the isotropy group at a point p A T is T k then ŝs�1ðŵwÞ is a (free) T k-orbit in the frame
FOðqÞTp. As its volume is canonical, i.e. independent of the choice of local model, we can
consistently normalize hW dmW in a local model with K ¼ T l to be V dmW .

Using the connectedness of W , this determines hW dmW globally. Having now nor-
malized hW dmW , there may be local models with l < k. For these local models, we use
the freedom in the choice of lattice in G=K to ensure that

s� dmBðVÞ�K G ¼ ðhW dmW ÞjBðVÞ=K :

If there are no points in T with isotropy T k then we normalize hW dmW by requiring
that

Ð
W

hW dmW ¼ 1. We can then use the freedom in the choice of the lattice in G=K to

ensure that in each local model,

s� dmBðVÞ�K G ¼ ðhW dmW ÞjBðVÞ=K :
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We can find

1. finite open coverings fUag and fU 0
ag of W , where Ua has compact closure in

U 0
a, so that the restriction of GT, to the preimage of U 0

a in T, is equivalent to�
BðVaÞ �Ka

Ga

�
zGa; d (here Ga is isomorphic to T k),

2. a subordinate partition of unity fhag to fUag so that each i�ha is smooth on ŴW ,

3. functions frag with support in U 0
a so that each i�ra is smooth on ŴW , and

raha ¼ ha, i.e. rajsuppðhaÞ ¼ 1.

For each a, we choose a closed Riemannian manifold Ya with an isometric Ga-action
so that there is an isometric Ga-equivariant embedding BðVaÞ �Ka

Ga HYa. This can be
done, for example, by taking a slight extension of BðVaÞ to a larger ball B 0

a HVa, taking
the double of B 0

a �Ka
Ga and smoothing the metric. (Alternatively, we could work directly

with APS boundary conditions on BðVaÞ �Ka
Ga, at the price of having to deal with

manifolds-with-boundary.) We can also assume that the restriction of E to BðVaÞ �Ka
Ga

extends to Ea on Ya.

Let Da denote the Dirac-type operator on Ya. Let Dinv;a be the restriction of Da to�
L2ðYa;EYa

Þ
�Ga .

Given t > 0, put

Qa ¼
1 � e�tD2

a

D2
a

Da ¼
Ðt
0

e�sD2
a Da dsð5:1Þ

and

Qinv;a ¼
1 � e�tD2

inv; a

D2
inv;a

Dinv;a ¼
Ðt
0

e�sD2
inv; aDinv;a ds:ð5:2Þ

We let ~hha be the extension by zero of s�ha to Ya, and similarly for ~rra.

Proposition 5.
P
a

raQ
H
inv;aha is a parametrix for DG

inv. Also, for all t > 0, formally

IndðDinvÞ ¼
P
a

Trsðe�tD2
inv; ahaÞ þ

1

2

P
a

TrsðQinv;a½Dinv;a; ha�Þ;ð5:3Þ

or more precisely,

IndðDinvÞ ¼
P
a

Trsðe�tD2
inv; ahaÞ þ

1

2

P
a;b

Trs

�
raðQinv;a � Qinv;bÞhb½Dinv;a; ha�

�
:ð5:4Þ

Proof. First, we have

D�
a ~rraQ

þ
a ~hha ¼ ½D�

a ; ~rra�Qþ
a ~hha þ ~rraD

�
a Qþ

a ~hhað5:5Þ

¼ ½D�
a ; ~rra�Qþ

a ~hha þ ~rrað1 � e�tD�
a Dþ

a Þ~hha

¼ ~hha þ ½D�
a ; ~rra�Qþ

a ~hha � ~rrae
�tD�

a Dþ
a ~hha:
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The Schwartz kernel of ½D�
a ; ~rra�Qþ

a ~hha is

c�
�
d ~rraðpÞ

�
Qþ

a ðp; p 0Þ~hhaðp 0Þ:ð5:6Þ

As Qþ
a is a pseudodi¤erential operator, and d ~rraðpÞ~hhaðp 0Þ vanishes in a neighborhood of the

diagonal p ¼ p 0, it follows that ~hha � D�
a ð~rraQþ

a ~hhaÞ is a smoothing operator on L2ðYa;E
þ

Ya
Þ.

In particular, ~hha � D�
a ð~rraQþ

a ~hhaÞ is trace-class on L2ðYa;E
þ

Ya
Þ and so its restriction to�

L2ðYa;E
þ

Ya
Þ
�Ga is also trace-class. Hence the operator

I � D�
inv

P
a

raQ
þ
inv;aha ¼

P
a

ðha � D�
inv;araQ

þ
inv;ahaÞð5:7Þ

¼
P
a

ðrae
�tD�

inv; a
Dþ

inv; aha � ½D�
inv;a; ra�Qþ

inv;ahaÞ

is also trace-class. This shows that
P
a

raQ
þ
inv;aha is a right parametrix for D�

inv. Hence it is
also a left parametrix.

Similarly,

~rraQ
þ
a ~hhaD

�
a ¼ ~rraQ

þ
a D�

a ~hha � ~rraQ
þ
a ½D�

a ; ~hha�ð5:8Þ

¼ ~rrað1 � e�tDþ
a D�

a Þ~hha � ~rraQ
þ
a ½D�

a ; ~hha�

¼ ~hha � ~rrae
�tDþ

a D�
a ~hha � ~rraQ

þ
a ½D�

a ; ~hha�:

Then

I �
�P

a

raQ
þ
inv;aha

�
D�

inv ¼
P
a

ðrae
�tDþ

inv; a
D�

inv; aha þ raQ
þ
inv;a½D�

inv;a; ha�Þ:ð5:9Þ

Changing signs in (5.7) and (5.9) gives

I � Dþ
inv

P
a

raQ
�
inv;aha ¼

P
a

ðrae
�tDþ

inv; a
D�

inv; aha � ½Dþ
inv;a; ra�Q�

inv;ahaÞ;ð5:10Þ

I �
�P

a

raQ
�
inv;aha

�
Dþ

inv ¼
P
a

ðrae
�tD�

inv; a
Dþ

inv; aha þ raQ
�
inv;a½Dþ

inv;a; ha�Þ:ð5:11Þ

Now

IndexðDinvÞ ¼ Tr

 
I �

�P
a

raQ
�
inv;aha

�
Dþ

inv

!
� Tr

�
I � Dþ

inv

P
a

raQ
�
inv;aha

�
;ð5:12Þ

�IndexðDinvÞ ¼ Tr

 
I �

�P
a

raQ
þ
inv;aha

�
D�

inv

!
� Tr

�
I � D�

inv

P
a

raQ
þ
inv;aha

�
:ð5:13Þ

Hence

IndexðDinvÞ ¼
1

2
Trs

 
I �

�P
a

raQinv;aha

�
Dinv

!
ð5:14Þ

þ 1

2
Trs

�
I � Dinv

P
a

raQinv;aha

�
:
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Equations (5.7)–(5.11) now give

IndexðDinvÞ ¼
P
a

Trsðrae�tD2
inv; ahaÞ þ

1

2

P
a

TrsðraQinv;a½Dinv;a; ha�Þð5:15Þ

� 1

2

P
a

Trsð½Dinv;a; ra�Qinv;ahaÞ:

By formal manipulations,

IndexðDinvÞ ¼
P
a

Trsðe�tD2
inv; aharaÞ þ

1

2

P
a

TrsðQinv;a½Dinv;a; ha�raÞð5:16Þ

þ 1

2

P
a

TrsðQinv;aha½Dinv;a; ra�Þ

¼
P
a

Trsðe�tD2
inv; aharaÞ þ

1

2

P
a

TrsðQinv;a½Dinv;a; hara�Þ

¼
P
a

Trsðe�tD2
inv; ahaÞ þ

1

2

P
a

TrsðQinv;a½Dinv;a; ha�Þ:

The last term in (5.16) actually makes sense because
P
a

dha ¼ 0, so the computation of

P
a

TrsðQinv;a½Dinv;a; ha�Þ ¼
P
a

Trs

�
Qinv;acðdhaÞ

�
ð5:17Þ

happens away from the diagonal. To see this more clearly, we can writeP
a

TrsðQinv;a½Dinv;a; ha�Þ ¼
P
a;b

TrsðQinv;ahb½Dinv;a; ha�Þð5:18Þ

¼
P
a;b

Trs

�
ðQinv;a � Qinv;bÞhb½Dinv;a; ha�

�
¼
P
a;b

Trs

�
ðQinv;a � Qinv;bÞhb½Dinv;a; ha�ra

�
¼
P
a;b

Trs

�
raðQinv;a � Qinv;bÞhb½Dinv;a; ha�

�
:

The latter expression is clearly well-defined. This proves the proposition. r

In what follows we will use the equation (5.3) when, to justify things more formally,
one could use (5.4) instead.

5.2. Averaging over the Lie algebra. Fix a Haar measure dmg on g ¼ Rk. If
F A CyðRkÞ is a finite sum of periodic functions, put

AVX FðX Þ ¼ lim
R!y

Ð
Bð0;RÞ

FðX Þ dmgðX ÞÐ
Bð0;RÞ

1 dmgðX Þ :ð5:19Þ
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Equivalently, if fLjg is a finite collection of lattices in Rk and

FðXÞ ¼
P

j

P
v ALj

cj; ve
2p
ffiffiffiffiffi
�1

p
v�Xð5:20Þ

is a representation of F as a finite sum of periodic functions then AVX FðXÞ ¼
P

j

cj;0, the
sum of the coe‰cients of 1.

Given X A Rk, we also let X denote the corresponding vector field on Ya. Let X � de-
note the dual 1-form and let LX denote Lie di¤erentiation with respect to X . The moment
mðX Þ of X A Rk is defined by mðXÞ ¼ LX � ‘X . It is a skew-adjoint endomorphism of TYa.

Proposition 6. We haveP
a

Trsðe�tD2
inv; ahaÞ ¼ AVX

P
a

Trsðe�ðtD2
aþLX Þ~hhaÞð5:21Þ

and

P
a

TrsðQinv;a½Dinv;a; ha�Þ ¼ AVX

P
a

Ðt
0

Trsðe�ðsD2
aþLX ÞDa½Da; ~hha�Þ ds:ð5:22Þ

Proof. First, Ð
Ya

trsðe�tD2
a ~hhaÞðp; pe�X Þ dmYa

ðpÞð5:23Þ

is a periodic function in X . From (5.19),P
a

Trsðe�tD2
inv; ahaÞ ¼ AVX

P
a

Ð
Ya

trsðe�tD2
a ~hhaÞðp; pe�X Þ dmYa

ðpÞð5:24Þ

¼ AVX

P
a

Ð
Ya

trsðe�ðtD2
aþLX Þ~hhaÞðp; pÞ dmYa

ðpÞ

¼ AVX

P
a

Trsðe�ðtD2
aþLX Þ~hhaÞ:

Similarly, P
a

TrsðQinv;a½Dinv;a; ha�Þð5:25Þ

¼ AVX

P
a

Ðt
0

Ð
Ya

trsðe�sD2
a Da½Da; ~hha�Þðp; pe�X Þ dmYa

ðpÞ ds

¼ AVX

P
a

Ðt
0

Ð
Ya

trsðe�ðsD2
aþLX ÞDa½Da; ~hha�Þðp; pÞ dmYa

ðpÞ ds

¼ AVX

P
a

Ðt
0

Trsðe�ðsD2
aþLX ÞDa½Da; ~hha�Þ ds:

This proves the proposition. r
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Note that LX is a skew-adjoint operator. For t > 0 and e A C, put

Da; t; e ¼ Da þ e
cðXÞ

4t
:ð5:26Þ

As cðX Þ is skew-adjoint, if e is imaginary then Da; t; e is self-adjoint. Put

Ft; eðXÞ ¼
P
a

Trsðe�ðtD2
a; t; eþLX Þ~hhaÞð5:27Þ

þ 1

2

P
a

Ðt
0

Trsðe�ðsD2
a; t; eþLX ÞDa; t; e½Da; t; e; ~hha�Þ ds:

From Propositions 5 and 6, we deduce

IndðDinvÞ ¼ AVX Ft;0ðX Þ:ð5:28Þ

Proposition 7. Ft;0ðXÞ is independent of t.

Proof. We have

Ft;0ðXÞ ¼
P
a

Trsðe�ðtD2
aþLX Þ~hhaÞð5:29Þ

þ 1

2

P
a

Ðt
0

Trsðe�ðsD2
aþLX ÞDa½Da; ~hha�Þ ds:

Then

d

dt
Ft;0ðX Þ ¼

P
a

�TrsðD2
ae�ðtD2

aþLX Þ~hhaÞð5:30Þ

þ 1

2

P
a

Trsðe�ðtD2
aþLX ÞDa½Da; ~hha�Þ ¼ 0:

The proposition follows. r

Proposition 8. Ft; eðXÞ is independent of e.

Proof. Let ½� ; ��þ denote the anticommutator of two operators. We have an identity
of operators on L2ðYa;EYa

Þ:

e�ðtD2
a; t; eþLX Þ~hha þ

1

2

Ðt
0

e�ðsD2
a; t; eþLX ÞDa; t; e½Da; t; e; ~hha� dsð5:31Þ

¼ e�ðtD2
a; t; eþLX Þ~hha þ

Ðt
0

e�ðsD2
a; t; eþLX ÞD2

a; t; e~hha ds

� 1

2

Ðt
0

½Da; t; e; e�ðsD2
a; t; eþLX ÞDa; t; e~hha�þ ds
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¼ e�ðtD2
a; t; eþLX Þ~hha �

Ðt
0

d

ds
e�ðsD2

a; t; eþLX Þ~hha ds

� 1

2

Ðt
0

½Da; t; e; e
�ðsD2

a; t; eþLX ÞDa; t; e~hha�þ ds

¼ e�LX ~hha �
1

2

Ðt
0

½Da; t; e; e
�ðsD2

a; t; eþLX ÞDa; t; e~hha�þ ds:

Then

Ft; eðXÞ ¼
P
a

Trs

�
e�LX ~hha �

1

2

Ðt
0

½Da; t; e; e
�ðsD2

a; t; eþLX ÞDa; t; e~hha�þ ds

�
:ð5:32Þ

In particular,

d

de
Ft; eðXÞ ¼ � 1

2

P
a

Trs

�
d

de
Da; t; e;

Ðt
0

e�ðsD2
a; t; eþLX ÞDa; t; e~hha ds

	
þ

ð5:33Þ

� 1

2

P
a

Trs Da; t; e;
d

de

�Ðt
0

e�ðsD2
a; t; eþLX ÞDa; t; e~hha ds

�" #
þ

¼ 0:

The proposition follows. r

Corollary 10. Ft; eðXÞ is independent of t and e.

Proof. This follows from Propositions 7 and 8. r

Proposition 9. Ft;2ðXÞ has a holomorphic extension to X A Ck.

Proof. One finds

tD2
a; t;2 þLX ¼ tD2

a þ mðX Þ þ 1

2
cðdX �Þ � X 2

4t
:ð5:34Þ

Writing

Ft;2ðXÞ ¼
P
a

Trsðe�ðtD2
a; t; 2

þLX Þ~hhaÞð5:35Þ

þ 1

2

P
a

Ðt
0

Trsðe�ðsD2
a; t; 2

þLX ÞDa; t;2½Da; t;2; ~hha�Þ ds;

and using (5.34), we expand the right-hand side of (5.35) by means of a Duhamel expan-
sion. The estimates of [20], Lemma 2.1, show that the ensuing series defines a holomorphic
function of X A Ck. r
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As a consequence of Corollary 10 and Proposition 9, for any t > 0 and e A C, the
function Ft; eðX Þ has a holomorphic extension to X A Ck.

5.3. Short-time delocalized limit. Let ÂAðX ;YaÞ chðX ;Ea=SÞ A W�ðYaÞ be the equi-
variant characteristic form defined in [6], Chapter 8.1. Notationally,

ÂAðX ;YaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

RgðXÞ=2

sinh
�
RgðXÞ=2

� !vuut ;ð5:36Þ

with RgðXÞ ¼ R þ mðXÞ, and

chðX ;Ea=SÞ ¼ trEa=Sðe�F
Ea=S
g ðX ÞÞ:ð5:37Þ

Note that ÂAðX ;YaÞ chðX ;Ea=SÞ has an analytic extension to Ck which is regular in a neigh-
borhood of 0, and on the complement of Rk.

Proposition 10. If X A Rk then

lim
t!0

Ft;1ðiXÞ ¼
P
a

Ð
Ya

ÂAðiX ;YaÞ chðiX ;Ea=SÞ~hha:ð5:38Þ

Proof. We can write

Ft;1ðiX Þ ¼
P
a

Trsðe�ðtD2
a; t; iþiLX Þ~hhaÞð5:39Þ

þ 1

2

P
a

Ðt
0

Trsðe�ðsD2
a; t; iþiLX ÞDa; t; i½Da; t; i; ~hha�Þ ds:

Note that tD2
a; t; i þ iLX is a self-adjoint operator. Now

Trsðe�ðtD2
a; t; iþiLX Þ~hhaÞ ¼

Ð
Ya

trsðe�ðtD2
a; t; iþiLX ÞÞðp; pÞ~hhaðpÞ dmYa

ðpÞ:ð5:40Þ

From [8], Section 2,

lim
t!0

ðe�ðtD2
a; t; iþiLX ÞÞðp; pÞ ¼

�
ÂAðiX ;YaÞ chðiX ;Ea=SÞ

�
ðpÞ:ð5:41Þ

Thus

lim
t!0

P
a

Trsðe�ðtD2
a; t; iþiLX Þ~hhaÞ ¼

P
a

Ð
Ya

ÂAðiX ;YaÞ chðiX ;Ea=SÞ~hha:ð5:42Þ

Next, we want to show that

lim
t!0

1

2

P
a

Ðt
0

Trsðe�ðsD2
a; t; iþiLX ÞDa; t; i½Da; t; i; ~hha�Þ ds ¼ 0:ð5:43Þ

For this, we have to show certain cancellations between the terms for various a.
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Define a measure nt on W by

nt ¼
P
a

ðpaÞ�
�

1

2

Ðt
0

trsðe�ðsD2
a; t; iþiLX ÞDa; t; i½Da; t; i; ~hha�Þðp; pÞ dmYa

ðpÞ ds

�
:ð5:44Þ

We want to show that the integral of nt vanishes as t ! 0.

Given w A W , choose a point ~pp A T that projects to w. Let ~KK be the isotropy group
of GT at ~pp. For each a with w A Ua, choose pa A Ya projecting to w. By the slice theorem,
there is a neighborhood of w in W homeomorphic to Bð ~VVÞ= ~KK, where ~VV is a representation
space of ~KK and Bð ~VVÞ is a ball in ~VV . There is a neighborhood of ~pp which, for each a, is iso-
metric to a neighborhood of pa. We will use this to identify each pa with ~pp.

Using Example 8,

ntðwÞ ¼
�P

a

1

2

Ðt
0

trsðe�ðsD2
a; t; iþiLX ÞDa; t; i½Da; t; i; ~hha�Þð~pp; ~ppÞ ds

�
hW ðwÞ dmW ðwÞð5:45Þ

¼
P
a;b

1

2

Ðt
0

½trsðe�ðsD2
a; t; iþiLX ÞDa; t; i½Da; t; i; ~hha�Þð~pp; ~ppÞ

� trsðe�ðsD2
b; t; i

þiLX ÞDb; t; i½Da; t; i; ~hha�Þð~pp; ~ppÞ�hbðwÞ ds hW ðwÞ dmW ðwÞ:

As Da; t; i coincides with Db; t; i in a neighborhood of ~pp, under our identifications, it follows
from finite propagation speed estimates (see [14]) that

ntðwÞ
hW ðwÞ dmW ðwÞ

decays as t ! 0 faster than any power of t. These estimates can clearly be made uniform in
w. The proposition follows. r

We now prove a delocalized index theorem.

Corollary 11.

IndðDinvÞ ¼ AVX

P
a

Ð
Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha:ð5:46Þ

Proof. As in (5.28), IndðDinvÞ ¼ AVX Ft;0ðXÞ. By Corollary 10 and Proposition 9,
Ft;0ðX Þ has a holomorphic extension to Ck. By Corollary 10 and Proposition 10, if X A iRk

then

Ft;0ðXÞ ¼
P
a

Ð
Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha:ð5:47Þ

By analytic continuation, (5.47) holds for X A Ck. The corollary follows. r
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Remark 4. Although
Ð

Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha may have singularities in X for in-

dividual a, the proof of Corollary 11 shows that the sum over a is holomorphic in X .

6. Local index formula and applications

In this section we prove the main theorem of the paper. In Subsection 6.1 we localize
the index theorem of the previous section to the fixed-point sets. In Subsection 6.2 we prove
the index theorem stated in the introduction of the paper. In Subsection 6.3 we describe
how to compute the terms appearing in the local index formula. We carry out the compu-
tation when D is the pure Dirac operator, the signature operator and the Euler operator.

6.1. Localization to the fixed-point set. Let TT k

be the subset of T consisting of
points with isotropy group isomorphic to T k. Let fZT k

i g be the connected components of
sðTT kÞHW . From our assumptions, each ZT k

i is a smooth manifold. Furthermore, the
Cli¤ord module E on T descends to a T k-equivariant Cli¤ord module Ei on ZT k

i . There
is a natural vector bundle Ni on ZT k

i so that for w A ZT k

i , if we choose p A s�1ðwÞ A T then
the fiber ðNiÞw is isomorphic to the normal bundle of TT k

in T at p. The bundle Ni inher-
its an orthogonal connection. Let RNi

denote its curvature 2-form.

For simplicity, we assume that T has a GT-invariant spin structure, with spinor
bundle ST, and that E ¼ STnW for some Z2-graded GT-equivariant vector bundle W.
Suppose further that each ZT k

i is spin. We can define the normal spinor bundle SN on ZT k

i .

Let e�X A T k denote the exponential of �X A g.

Proposition 11.

AVX

P
a

Ð
Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha ¼ AVX

P
i

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�X Þ
chSN

ðe�X Þ :ð6:1Þ

Proof. Let ZðX Þ denote the zero-set of X on
‘
a

Ya. As in [6], Chapter 7.2, away
from ZðXÞ we can write

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha ¼ dX

X �5ÂAðX ;YaÞ chðX ;Ea=SÞ~hha
dX X �

 !
ð6:2Þ

þ X �5ÂAðX ;YaÞ chðX ;Ea=SÞ
dX X � 5dX ~hha:

This formula extends analytically to X lying in a suitable neighborhood of the origin in Ck.
Then because

P
a

~hha ¼ 1, the localization argument in the proof of [6], Theorem 7.13, ap-
plies to give P

a

Ð
Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha ¼
P
a

Ð
ZðX Þ

ÂA
�
TZðXÞ

� chWðe�X Þ
chSN

ðe�X Þ ~hha:ð6:3Þ

Because the left-hand side of (6.3) has a holomorphic extension to Ck, the same is true for
the right-hand side. So the formula makes sense for X A RK .
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When we average over X A Rk, the integral over a component of ZðX Þ will not con-
tribute unless the component lies in

T
X 0 ARk

ZðX 0Þ. Hence

AVX

P
a

Ð
Ya

ÂAðX ;YaÞ chðX ;Ea=SÞ~hha ¼ AVX

P
a

Ð
T
X 0

ZðX 0Þ
ÂA
�
TZðXÞ

� chWðe�X Þ
chSN

ðe�X Þ ~hha:ð6:4Þ

We can identify the image of
T
X 0

ZðX 0Þ, under the projection map
‘
a

�
BðVaÞ �Ka

Ga

�
! W ,

with
S
i

ZT k

i . After making this identification, the proposition follows. r

Remark 5. It follows from the proof of Proposition 11 that

P
i

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�X Þ
chSN

ðe�X Þ

is holomorphic in X A Ck. Each term

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�X Þ
chSN

ðe�X Þ

is meromorphic in X A Ck.

Corollary 12. For any Q A Ck,

IndexðDinvÞ ¼ AVX

P
i

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�XþQÞ
chSN

ðe�XþQÞ :ð6:5Þ

Proof. The integral

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�X Þ
chSN

ðe�X Þ

is a meromorphic function in X A Ck which is invariant with respect to a lattice Li HRk.
As the sum over i is holomorphic, it follows that we can write

P
i

Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�X Þ
chSN

ðe�X Þ

as a finite sum
P

j

HjðX Þ, where each Hj is a holomorphic function of X A Ck that is in-

variant with respect to a lattice Lj HRk. Now AVX HjðX Þ can be computed by means of
a product of contour integrals in Ck. Computing instead AVX HjðX � QÞ amounts to de-
forming the contours. Hence

AVX HjðX � QÞ ¼ AVX HjðXÞ;

from which the corollary follows. r
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6.2. Local index formula. We will need the explicit formula for
�
chSN

ðe�XþQÞ
��1

.
Given z3 1 and a complex r-dimensional vector bundle L, put

FDiracðL; zÞ ¼
Qr
j¼1

ðz�
1
2e

xj

2 � z
1
2e�

xj

2 Þ�1;ð6:6Þ

where the xj’s are the formal roots of the total Chern class of L. As usual, the expression
(6.6) is meant to be expanded in the xj’s, which have formal degree two.

Let ZT k

i and Ni be as before. Suppose that with respect to the Rk-action, Ni is iso-
morphic to the underlying real bundle of a direct sum of complex line bundles

L
q

Nq; i,
where e�X acts on Nq; i by e�

ffiffiffiffiffi
�1

p
nq; i�X for some nq; i A Rk. Then

1

chSN
ðe�XþQÞ ¼G

Q
q

FDiracðNq; i; e
�
ffiffiffiffiffi
�1

p
nq; i�ðX�QÞÞ:ð6:7Þ

See [3] for a discussion of the sign issue.

The individual term Ð
Z T k

i

ÂAðTZT k

i Þ chWðe�XþQÞ
chSN

ðe�XþQÞ

is smooth in X provided that ImðQÞ B
S
q

n?q; i.

Let Wmax denote the image of
S
i

ZT k

i under the projection map

‘
a

�
BðVaÞ �Ka

Ga

�
! W :

It is a smooth manifold and is the deepest stratum in W , with respect to the partial ordering
described in [26], Section 3.3. Note that Wmax could be the empty set.

Suppose that E ¼ ST nW and that Wmax is spin.

Definition 1. If ImðQÞ B
S
i

S
q

n?q; i, define NE;Q A W�Wmax by

NE;Q ¼ AVX

chWðe�XþQÞ
chSN

ðe�XþQÞ :ð6:8Þ

Theorem 2.

IndexðDinvÞ ¼
Ð

Wmax

ÂAðTWmaxÞNE;Q:ð6:9Þ

Proof. This follows from Corollary 12. r

We now remove the assumptions that E ¼ STnW and Wmax is spin. We use the
notation of [6], Chapter 6.4.
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Definition 2. If ImðQÞ B
S
i

S
q

n?q; i, define NE;Q A W�Wmax by

NE;Q ¼ AVX

chE=SN
ðe�XþQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð1 � e�XþQ � e�RN Þ
p :ð6:10Þ

Theorem 3.

IndexðDinvÞ ¼
Ð

Wmax

ÂAðTWmaxÞNE;Q:ð6:11Þ

Proof. If E ¼ ST nW and Wmax is spin then from [6], Chapter 6.4, we deduce

chE=SN
ðe�XþQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð1 � e�XþQ � e�RN Þ
p ¼ chWðe�XþQÞ

chSN
ðe�XþQÞ :ð6:12Þ

Hence in this case, the theorem reduces to Theorem 2. The general case can be proved by
means similar to the proof of Theorem 2, carrying along the more general assumptions
throughout. r

Theorem 3 implies Theorem 1, because of our assumption in Theorem 1 that the
Molino sheaf acts on the Cli¤ord module E (which lives on M). More precisely, we are
assuming that the restriction ET of E to T carries a representation of the Lie algebroid
gT in the sense of [17], Section 1.4. Then ET is a GT-equivariant vector bundle on T and
Theorem 3 applies.

Remark 6. If M is a simply-connected manifold with a Riemannian foliation then
its space W of leaf closures is the quotient of an orbifold Y by a T N -action; see [30]. One
might hope to reduce the computation of the index of a basic Dirac-type operator on M to
the computation of the T N-invariant index of a Dirac-type operator on Y . Unfortunately,
the étale groupoid Y zT N

d is generally not weak equivalent to GT with its étale topology.
In general dimðYÞ > dimðTÞ, so there is no associated Dirac-type operator on Y .

6.3. Computing the index. For simplicity, we assume again that E ¼ ST nW
(which is always the case locally) and that Wmax is spin, so that we have the simpler for-
mula (6.8) for NE;Q.

The action of fe�Xg on SN and W, over a connected component ZT k

i of Wmax,
factors through an action of T k. Because of this T k-action, we can compute AVX by
performing the contour integral over ðS1Þk HCk of a certain rational function times

dz1

2p
ffiffiffiffiffiffiffi
�1

p
z1

� � � dzk

2p
ffiffiffiffiffiffiffi
�1

p
zk

. The result depends a priori on Q (recall that ImðQÞ B
S
i

S
q

n?q; i)

although of course the final answer for the index is independent of Q.

Changing Q amounts to deforming the contour of integration in Ck. Hence the local
formula for IndexðDinvÞ depends on Q through the chamber of

T
i

T
q

ðRk � n?q; iÞ to which

ImðQÞ belongs. Passing from one chamber to another one, the local formula could a priori
change. This is not surprising, in view of the cancellations of singularities that occur; one
could add various local contributions to the index formula, which will cancel out in the
end.
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We now apply Theorem 1 to some geometric Dirac-type operators, in which case the
action of the Molino sheaf on E is automatic.

6.3.1. Pure Dirac operator.

Proposition 12. Suppose that D is the pure Dirac operator. Then IndexðDinvÞ vanishes

if k > 0, while

IndexðDinvÞ ¼ ÂAðWÞð6:13Þ

if k ¼ 0.

Proof. From Corollary 12,

IndexðDinvÞ ¼ AVX

P
i

Ð
Z T k

i

ÂAðTZT k

i Þ 1

chSN
ðe�XþQÞ :ð6:14Þ

Take Q so that ImðQÞ A
T
i

T
q

ðRk � n?q; iÞ. Consider the e¤ect of multiplying Q by l > 0.

Each factor in (6.6) has a term of either z�
1
2 or z

1
2, appearing in the denominator. It fol-

lows that as l ! y, the right-hand side of (6.7) decreases exponentially fast in l. Thus if
k > 0 then IndexðDinvÞ ¼ 0. If k ¼ 0 then the foliated manifold M is the total space of a
fiber bundle over W ¼ Wmax and Dinv is conjugate to the pure Dirac operator on W , so
IndexðDinvÞ ¼ ÂAðWÞ. r

6.3.2. Signature operator.

Proposition 13. Suppose that F is transversely oriented and dimðTÞ is divisible by

four. Recall the notion of the basic signature sðM;F;D
1
2

MÞ from Subsection 2.7. We have

sðM;F;D
1
2

MÞ ¼ sðWmaxÞ:ð6:15Þ

Proof. From Corollary 8, sðM;F;D
1
2

MÞ equals the index of Dinv when D is the
operator d þ d � and the Z2-grading comes from the Hodge duality operator. A compo-
nent ZT k

i of Wmax acquires a natural orientation. Given z3 1 and a complex r-dimensional
vector bundle L, put

FsignðL; zÞ ¼
Qr
j¼1

z�
1
2e

xj

2 þ z
1
2e�

xj

2

z�
1
2e

xj

2 � z
1
2e�

xj

2

:ð6:16Þ

Then

IndexðDinvÞ ¼ AVX

P
i

Ð
Z T k

i

LðTZT k

i ÞFðe�XþQÞ;ð6:17Þ

where

Fðe�XþQÞ ¼G
Q
q

FsignðNq; i; e�
ffiffiffiffiffi
�1

p
nq; i�ðX�QÞÞ:ð6:18Þ

Take Q so that ImðQÞ A
T
i

T
q

ðRk � n?q; iÞ. Consider the e¤ect of multiplying Q by

l > 0. From the structure of (6.16), and taking the signs into account, the limit as l ! y
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of Fðe�XþlQÞ is 1. Thus IndexðDinvÞ ¼
P

i

Ð
Z T k

i

LðTZT k

i Þ, which equals the signature of
Wmax. r

6.3.3. Euler operator.

Proposition 14. Suppose that dimðTÞ is even. Recall the notion of the basic Euler

characteristic wðM;F;D
1
2

MÞ from Subsection 2.7. We have

wðM;F;D
1
2

MÞ ¼ wðWmaxÞ:ð6:19Þ

Proof. From Corollary 8, wðM;F;D
1
2

MÞ equals the index of Dinv when D is the
operator d þ d � and the Z2-grading comes from the form degree. Then

IndexðDinvÞ ¼ AVX

P
i

Ð
Z T k

i

eðTZT k

i Þ;ð6:20Þ

where e denotes the Euler form. Thus IndexðDinvÞ ¼
P

i

wðZT k

i Þ, which equals the Euler
characteristic of Wmax. r
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[10] J. Brüning and E. Heintze, The asymptotic expansion of Minakshisundaram-Pleijel in the equivariant case,

Duke Math. J. 51 (1984), 959–980.
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[38] P.-E. Paradan and M. Vergne, Index of transversally elliptic operators, Astérisque 328 (2009), 297–338.
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