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The index of a transverse Dirac-type operator:
the case of abelian Molino sheaf

By Alexander Gorokhovsky at Boulder and John Lott at Berkeley

Abstract. We give a local formula for the index of a transverse Dirac-type operator
on a compact manifold with a Riemannian foliation, under the assumption that the Molino
sheaf is a sheaf of abelian Lie algebras.

1. Introduction

An important test case for noncommutative geometry comes from index theory on
compact foliated manifolds, as pioneered by Connes and his collaborators. The most com-
monly considered case is that of a leafwise Dirac-type operator D. Its index Index (D) lies in
the K-theory of a stabilized version of the foliation groupoid algebra. The local index the-
orem gives an explicit formula for the pairing of Index(D) with cyclic cohomology classes
of the foliation groupoid algebra. For more information on this well-developed theory, we
refer to [15], [16], [22], [23].

This paper is concerned with a different index problem for compact foliated mani-
folds, namely that of a transverse Dirac-type operator. Such an operator differentiates in
directions normal to the leaves. In order to make sense of the operator, we must assume
that the foliation is Riemannian, i.e. the normal bundle to the leaves carries a holonomy-
invariant inner product. Then there is a notion of a “basic”’ Dirac-type operator D, a first-
order differential operator that acts on the holonomy-invariant sections of a normal
Clifford module. It was shown by El Kacimi [18] and Glazebrook—Kamber [21] that D is
Fredholm and hence has a well-defined index Index(D) € Z. (In fact, this is true for any
basic transversally elliptic operator [18].) The index problem, which has been open for
twenty years ([18], Probleme 2.8.9), is to give an explicit formula for Index(D), in terms
of the Riemannian foliation. A prototypical example is that of a compact manifold foliated
by points, in which case the index is given by the Atiyah—Singer formula.

From the noncommutative geometry viewpoint, a leafwise Dirac-type operator is a

family of Dirac-type operators parametrized by the “leaf space” of the foliation, where
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the ““leaf space” is defined in terms of algebras. In contrast, a transverse Dirac-type opera-
tor is a differential operator on such a “leaf space”. As will be seen, the transverse index
problem can be usefully formulated in terms of Riemannian groupoids. Such groupoids
also arose in work of Petrunin—Tuschmann on the collapsing theory of Riemannian mani-
folds [39] and work of the second author on Ricci flow [34], [35]. Our interest in the trans-
verse index problem comes from the more general program of doing analysis on Riemann-
ian groupoids.

To a Riemannian foliation % on a compact connected manifold M, one can canoni-
cally associate a locally constant sheaf of Lie algebras on M, called the Molino sheaf [37].
Let g denote the finite-dimensional Lie algebra which appears as the stalk of the Molino
sheaf. (A priori, it could be any finite-dimensional Lie algebra.) If g = 0, which happens if
and only if the leaves are compact, then the leaf space is an orbifold and the transverse in-
dex theorem reduces to Kawasaki’s orbifold index theorem [32], [33]. In this paper we give
the first local formula for Index(D) in a case when g = 0. The case that we consider is when
g is an abelian Lie algebra R*.

To state our index theorem, we recall some information about Riemannian foliations.
Although the leaf space of such a foliation may be pathological (for example non-
Hausdorff), the space W of leaf closures is a nice Hausdorff space which is stratified by
manifolds. A neighborhood of a point w € W is homeomorphic to V,,/K,,, where K,, is a
compact Lie group that is canonically associated to w, and V), is a representation space
of K,,.

Assumption 1. 1. The Molino Lie algebra is an abelian Lie algebra R*.

2. The Molino sheaf has trivial holonomy on M.

3. Forall we W, the group K,, is connected.

Here Assumptions 1.1 and 1.2 automatically hold if A is simply-connected.

If Assumption 1 holds then K,, is isomorphic to T/ for some j, € [0, k]. Put
Whax = {we W : K, = Tk}.

Then Wy is a smooth manifold which is the deepest stratum of . Note that W,,,x may
be the empty set.

Theorem 1. Let M be a compact connected manifold equipped with a Riemannian fo-
liation . Suppose that Assumption 1 holds. Let & be a holonomy-invariant normal Clifford
module on M, on which the Molino sheaf acts. Let D be the basic Dirac-type operator acting
on holonomy-invariant sections of &. Then

(1.1) Index(D) = [ A(TWmax) V. 0-
Wmax

Here A% o 1s a “renormalized” characteristic class which is computed from the nor-
mal data of W« along with the restriction of & to W,.x. More precisely, it arises by mul-



Gorokhovsky and Lott, The index of a transverse Dirac-type operator 127

tiplying the Atiyah—Singer normal characteristic class and an equivariant Chern class for
&ly., and performing an averaging process; see Definition 2. Because of the computabil-
ity of AV o, we can derive the following consequences.

Corollary 1. Under Assumption 1, the following hold:
1. The basic Euler characteristic of (M, ) equals the Euler characteristic of Wiax.-

2. If F is transversely oriented then the basic signature of (M, F ) equals the signature
of Whax-

3. Suppose that F has a transverse spin structure. Let D be the basic Dirac operator.

Then Index(D) = A(Wax) if k = 0, while Index(D) = 0 if k > 0.

The proof of Theorem 1 requires some new techniques. To motivate these, we start
with a special case. An especially tractable example of a Riemannian foliation comes from
a suspension construction, as described in Examples 1-8 and Section 4. In this case, the
transverse structure can be described by the following data:

(1) a discrete finitely presented group I,

(2) a compact Lie group G,

(3) an injection i : I' — G with dense image, and

(4) a closed Riemannian manifold Z on which G acts isometrically.

With this data, a transverse Dirac-type operator on the suspension foliation amounts
to a Dirac-type operator on Z which is ['-invariant or, equivalently, G-invariant. In this
case, the index problem amounts to computing the index of D, the restriction of the Dirac-
type operator to the G-invariant sections of the Clifford module. Such an index can easily
be computed as Index(D) = [ Index(g) dug(g), where Index(g) € R is the G-index and dug
is the Haar measure on G. ©

The Atiyah-Singer G-index theorem [5] tells us that Index(g) = [ #(g), where ZY is
Z4

the fixed-point set of g € G and ¥ (g) € Q*(ZY) is an explicit characteristic class. Suppose
that G is a torus group T*. After performing the integral over g € T*, only the submani-
folds with Z9 = ZT" will contribute, where ZT* denotes the fixed-point set of 7. Hence
we can write

(1.2) Index(D) = [ [ 2(g)dur(9).

Tk ZTk

In order to give a local expression for Index(D), we would like to exchange integrals
and write

(1.3) Index(D) = [ [ Z(g)dur:(g).

J
ZT/c Tk
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But there is a surprise: the integral [ £(g)duz«(g) € Q" (Z ") generally diverges!
Tk

The reason that (1.2) makes sense is that there are cancellations of singularities arising from
the various connected components of Z7". After identifying these singularities (which will
cancel in the end) one can subtract them by hand and thereby obtain a valid “‘renormal-
ized” local index formula

(1.4) Index(D) = [ A(TZ™").1.
7Tk

In general, the transverse structure of a Riemannian foliation does not admit a global
Lie group action like in the suspension case. This is a problem for seeing the cancellation
of singularities. Instead, if the Molino sheaf has trivial holonomy then there is a global Lie
algebra action, by g. Because of this, we use the Kirillov delocalized approach to equivar-
iant index theory [6], Chapter 8. If g is abelian then we can replace the nonexistent “inte-
gration over G by an averaging over g. In summary, our proof of Theorem 1 combines a
parametrix construction, using local models for the transverse structure, with Kirillov-type
equivariant index formulas and an averaging over g.

It is not clear to us whether our methods extend beyond the restrictions in Assump-
tion 1. If we remove Assumption 1.3 then the analog of W, is an orbifold and the right-
hand side of (1.1) makes sense. However, in this case it is not clear whether our proof ex-
tends if £ > 0.

In this paper we focus on the transverse structure of the foliation, as opposed to the
leafwise structure. More precisely, we choose a complete transversal Z for the foliation and
work with the étale groupoid 45 whose unit space is Z, as opposed to the foliation group-
oid whose unit space is M. Let us mention an attractive alternative approach to the trans-
verse index theorem. It consists of passing to the normal frame bundle Fp(,) M of M, where
one obtains an O(g)-transversally elliptic differential operator. Atiyah showed that such an
operator has an index which is a distribution on O(gq); see [1]. The numerical index
Index(D) is the result of pairing this distribution with the identity function. There is an in-
dex formula for G-transversally elliptic operators, due to Berline and Vergne [7], [38]. Un-
fortunately, this index formula is not explicit enough to yield a local formula for Index(D).
Consequently, we stick to the Riemannian groupoid %, although we do use frame bundles
for some technical points.

Let us also mention that there is a transverse index theorem developed by Briining—
Kamber—Richardson [11], [12], [13], based on doing analysis on the singular space W. In
this way they obtain an index formula involving integrals over desingularizations of strata
along with eta-invariants of normal spheres.

The structure of this paper is as follows. In Section 2 we review material about
Riemannian foliations and Riemannian groupoids. We discuss the groupoid closure and
construct a Haar system for it. In Section 3 we describe basic Dirac-type operators in the
setting of spectral triples. We prove an isomorphism between the image of a certain projec-
tion operator, acting on all smooth sections of the transverse Clifford module, and the
space of holonomy-invariant smooth sections of the transverse Clifford module. We use
this to define the invariant Dirac-type operator as a self-adjoint operator. In Section 4,
which can be read independently of the rest of the paper, we consider the special case of a
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Riemannian foliation which arises as the suspension of a group of isometries of a compact
manifold. In Section 5 we specialize to the case of abelian Molino sheaf. We construct a
parametrix and prove a delocalized index theorem. In Section 6 we localize this result and
prove Theorem 1. We also compute the indices in some geometric examples.

More detailed descriptions can be found at the beginnings of the sections.

Acknowledgement. We thank the referee for useful comments.

2. Riemannian groupoids and their closures

In this section we collect material, some of it well known and some of it not so well
known, about Riemannian foliations and Riemannian groupoids. For basic information
about foliations and groupoids, we refer to [36]. A survey on Riemannian foliations is in
[28].

In Subsection 2.1 we introduce some notation and basic ideas about Riemannian
groupoids.

It will be important for us to be able to take the closure of a Riemannian groupoid, in
an appropriate sense. This is because the closure is a proper Lie groupoid, which allows for
averaging. Hence in Subsection 2.2 we recall the construction of the groupoid closure. In
order to do averaging, we need a Haar system on the groupoid closure. Our construction
of the Haar system is based on passing to the frame bundle of a transversal, which is de-
scribed in Subsection 2.3. Subsection 2.4 contains the construction of the Haar system,
along with certain mean curvature one-forms.

In Subsection 2.5 we summarize Molino theory in terms of the Lie algebroid of the
groupoid closure. Subsection 2.6 recalls Haefliger’s local models for the transverse structure
of a Riemannian foliation. Finally, in Subsection 2.7, we recall Sergiescu’s dualizing sheaf
for a Riemannian groupoid and show how a square root of the dualizing sheaf allows one
to define a basic signature.

2.1. Riemannian groupoids. Suppose that ¥ is a smooth effective étale groupoid
([36], Chapter 5.5). The space of units is denoted %*). We will denote the source and range
maps of ¥ by s and r, respectively. Our conventions are that ¢g,g, is defined if and only
if s(g1) = r(g2). We write %7 for r~'(p), %, for s7!(p) and 4/ for the isotropy group
s~ (p) nr~1(p). For simplicity of notation, we write g € ¢ instead of g € ¥'") when refer-
ring to an element of the groupoid. We write dg,) : Tyy)% (N T,% ©) for the lineariza-
tion of g.

For us, an action of ¢ on a manifold Z is a right action. That is, one first has a sub-
mersion 7 : Z — %9 Putting

(2.1) Zx4y0%={(p,9g)eZx%:n(p)=r(9)},

we must also have a smooth map Z X 0 % — Z, denoted (p,g) — pg, such that
n(pg) = s(g) and (pg1)g> = p(g192) for all composable g;, g». There is an associated
cross-product groupoid Z < ¥ with s(p,g) = pg and r(p,g) = p.
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Our notion of equivalence for smooth effective étale groupoids is weak equivalence
([36], Chapter 5.4), which is sometimes called Morita equivalence. (This is distinct from
groupoid isomorphism.) A useful way to characterize weak equivalence (for étale group-
oids) is the following ([9], Exercise I11.4.2.8 (2)): two smooth étale groupoids % and %' are
weakly equivalent if there are open covers % and %' of their unit spaces so that the local-
izations ¥ and ¥, are isomorphic smooth groupoids.

A smooth étale groupoid ¥ is Riemannian if there is a Riemannian metric on %* so
that the groupoid elements act by local isometries. That is, for each g € %, the map dg,,)
is an isometric isomorphism. There is an evident notion of isomorphism for Riemannian
groupoids. Two Riemannian groupoids are equivalent if there are localizations %, and
4, which are isomorphic Riemannian groupoids.

A Riemannian groupoid is complete in the sense of [26], Definition 3.1.1, if for all
p1, pr € %9 there are neighborhoods U; of p; and U, of p so that any groupoid element
g with s(g) € U; and r(g) € U, has an extension to all of U;. That is, for any such g, there is
a smooth map 7 : U; — ¢ with 7(s(g)) = g and so 7 = Id.

2.2. Groupoid closures. Let M be a connected closed n-dimensional manifold with
a codimension-g foliation % . A Riemannian foliation structure on  is an inner product on
the normal bundle 7M /T which is holonomy-invariant. See [36], Chapter 2.2, for some
equivalent formulations. In what follows, we assume that # has a fixed Riemannian folia-
tion structure.

There is a partition of M by the leaf closures. The quotient space W is Hausdorff but
is generally not a manifold.

Let Fo(,)M denote the orthonormal normal frame bundle to #; see [36], Chapter
4.2.2. It has a lifted codimension-¢ foliation % . The leaf closures of & form the fibers of
a smooth fiber bundle Fo(, )M — W, which is O(g)-equivariant ([36], Theorem 4.26 (ii)).
Also, W = W/O(q). Let 1 : W — W denote the quotient map.

Let 7 be a complete transversal to #; see [36], Example 5.19. Because M is com-
pact, we can assume that 7 has a finite number of connected components, each being the
interior of a smooth manifold-with-boundary. Let 45 be the corresponding étale holonomy
groupoid ([36], Example 5.19). Its space of units is 7. Then % is a complete Riemannian
groupoid. Its weak equivalence class is independent of the choice of complete transver-
sal 7.

We write du, for the Riemannian density measure on J .

Example 1. Let ' be a finitely presented discrete group. Let G be a compact
Lie group which acts isometrically and effectively on a connected compact Riemannian
manifold Z. Suppose that i : ' — G is an injective homomorphism. Suppose that Y is a
connected compact manifold with 7;(Y, yo) =T. Let c¢: Y — Y be the universal cover.
Then M = (Y x Z)/T has a Riemannian foliation whose leaves are the images in M of
{Y x {z}}..,. It is an example of a suspension foliation. There is a complete transversal
(¢7'(»0) x Z)/T = Z. Then % is the cross-product groupoid Z > I,
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We will want to take the closure of 4 in a certain sense, following [26], [41], [42]. To
do so, let

(2.2) JNT) ={(p1,p2,A): p1,pre T,Aelsom(T), T, T, 7)}

2
be the groupoid of isometric 1-jet elements, with the 1-jet topology. It is a Lie groupoid in
the sense of [36], Chapter 5.1, but is not an étale groupoid unless dim(7") = 0.

Lemma 1. J'(9) is a proper Lie groupoid in the sense of [36], Chapter 5.6.

Proof. The map (s,r) : J'(T) — T x T sends (p1, p2, A) to (p1, p2). It defines a
fiber bundle with fibers diffeomorphic to the compact Lie group O(g). Hence it is a proper
map. []

There is a homomorphism of % into J'(7) that sends g € % to

(S(g)vr(g>7dg.9(g)) € Jl(g-)

This homomorphism is injective, as follows from the fact that % is effective, along with
the fact that if / is an isometry of a Riemannian manifold such that I(p) = p and
dl, = 1d then I is the identity in a neighborhood of p.

Let %7 be the closure of %7 in J!'(7). It is a subgroupoid of J!'(.7), again with unit
space 7 . (Note that 7 is a smooth manifold in its own right. The fact that it is the interior
of a compact manifold-with-boundary will not enter until Subsection 3.3.) Now %7 is a
smooth subgroupoid of J'(7) and so inherits a Lie groupoid structure; see [42], Section
2, and (2.6) below. Note that dgy) : Ty 7 — Ty4)7 can be defined for all g € 9.

Lemma 2. % is a proper Lie groupoid.

Proof. This follows from Lemma 1, along with the fact that % is a closed subset of
1(7). O

The orbit space of 4, is W, the space of leaf closures. Let ¢ : 7 — W denote the
quotient map.

Example 2. Continuing with Example 1, suppose that the homomorphismi: I' — G
has dense image. Then % is the cross-product groupoid Z > G.

In addition to its subspace topology from J!(.7), the groupoid % has an étale topol-
ogy, for which s and r are local homeomorphisms. In particular, each g € %, has a local
extension to an isometry between neighborhoods of s(g) and r(g); this follows from the
fact that ¢ is a limit of elements of %5 that have this property in a uniform way. We will
call this the extendability property of g. The local extension of g is given explicitly by
€XPy(g) © dYs(g) © exp;(;). In what follows, when we refer to 45 we will give it the subspace
topology, unless we say otherwise.

Example 3. Continuing with Example 2, when we convert from the (proper) Lie
groupoid topology on %5 to the étale topology, the result is Z > G5, where Gs denotes
the discrete topology on G.
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2.3. Normal frame bundle. Let 7 : Fp).7 — J be the orthonormal frame bundle

of 7. Then % acts on Fo7 by saylng that if g € 97 and f is an orthonormal frame at
r(g) then f - g is the frame (a’gJ ) Y(f) at s(g).

Let @ be the cross-product groupoid

(2.3) Fop 7 > ={(f,9) : g € 97, f an orthonormal frame at r(g)}.

It has unit space Fo(,) 7, with s(f,g) = f - g and r(f,g) = f, and orbit space W, with the
quotient map 6 : Fo(,7 — W being a smooth submersion ([41], Theorem 4.2). With abuse
of terminology, we may call the subsets 6! () fibers. There is a commutative diagram

T W

(2.4) l l
T

% W

where 6 is O(g)-equivariant, and 7 and 1 are the results of taking O(¢q)-quotients.

The groupoid @- can be considered as a lift of %, to Fo(y)7 . It has trivial isotropy
groups and comes from the equivalence relation on Fy(,)7 given by saying that /"~ f"if
and only if 6(f) = 6(f”). There is an O(q)-equivariant isomorphism

(2.5) Gr = (Foi7 %y Foi7)-
Hence
(2.6) Y7 = (Fog7 %5 Fog7)/0(q)

as Lie groupoids.

The groupoid %y also has an étale structure, coming from that of 47. To see this
in terms of local diffeomorphisms, given g € Gz, write it as a pair (f,g) with g € 47 and
f an orthonormal frame at r(g). Let L: U — V' be an extension of g to an isometry,
where U is a neighborhood of s(g) € 7 and V is a neighborhood of r(g) € 7. Then the
lift L : FoqU — FoV is a dlffeomorphlsm from a neighborhood of s(g) € Fo(,)7 to a
neighborhood of #(g ) € Fo 7

In particular,

(2.7) d4s) * Tog)Foig)? — TrgFoi 7
is well-defined.

There is a transverse Levi-Civita connection on Fo,)7 by means of which one can
construct a canonical parallelism of Fp(,) 7, i.e. vector fields {V '} that are pointwise line-

arly independent and span TFy,) 7 ; see [36], Chapter 4.2.2. This parallel structure is n -
invariant in the sense that for all § € 97 we have dgs@(V;( i) = Vi
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There is also a canonical Riemannian metric on Fyp(,).7 , which comes from saying
that the vector fields { ¥’} are pointwise orthonormal. With respect to this Riemannian
metric, the vertical O(q)-directions are orthogonal to the horizontal directions (coming
from the transverse Levi—Civita connection), the O(g)-fibers are all isometric to the stan-
dard O(g) with the bi-invariant Riemannian metric of total volume one, and the horizontal
planes are isometric to their projections to I~

With this Riemannian metric on Fy(,).7, the submersion 6 : Fo(,) 7 — W becomes a
Riemannian submersion.

Finally, we note that if % is transversely oriented then the above statements have
analogs in which O(gq) is replaced by SO(gq). Similarly, if # has a transverse spin structure
then the statements have analogs in which O(q) is replaced by Spin(g).

2.4. Haar system For f e Fo,)7, let du/ be the measure on @ which is sup-
ported on 7 7 >~ 6 (a( f )) and is glven there by the fiberwise Riemannian density.

To define the mean curvature form 7 € Q! (Fo(q)7") of the ﬁbers choose f € Fp(y
Given a vector X, € TyFo(y)7 , extend it to a vector field X on %,/ ~ ~67'(6(f)), the % -
orbit of f, so that for all § € %5/ we have dgyg)(Xsg) = X;. We can find ¢ > 0 and a
small neighborhood U of f in 67! (6(f)) so that the geodesic flow ¢,(f') = expf,(tX i /) is
defined for all ¢ € (—e¢, z—:) and f' € U, and ¢, maps U diffeomorphically to its image in a
fiber 67! (y(¢)). Here y is the geodesic on W starting from 6(f), with initial vector dé (X ).
Define the Lie derivative

3) (Zpdw’ =L| g apo
dt|,_,
Then
o (Zydw!
2. X)) = :
29) (i) = |

Lemma 3. 7 is a closed 1-form which is G5 -basic and O(q)-basic.

Proof. The form 17 is clearly 4, -invariant and O(g)-invariant. As %, and O(q) act
on Fo I 1sometr1cally, if X reT fFO( ) ~_is tangent to the gg' orbit of f, or the O(g)-
orbit of f, then (¥} du)’ = 0. Hence 7 is 4., -basic and O(q)-basic.

To see that 7 is closed, we will define a smooth positive function F in a neighborhood
N of f so that ¢ = dlog F there. (The neighborhood N will be taken small enough so that
the following construction makes sense.) For f'e N, we write 6(f’) = expy  V for a
unique V e Tsr W Let X be the horizontal lift of ¥ to ¢~ Y(&(f)). For f"ea'(a(f)),

put ¢,(f") = expf// X ;0. Put

d,uf/
(67) " du |y

This defines F on N so that # = dlog F on N. Hence 7 is closed. []

(2.10) F(f') =
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Corollary 2. Let t € Q'(T) be the unique 1-form such that © = n*t. Then t is closed
and b7 -basic.

Recall the notion of a Haar system for a Lie groupoid; see, for example, [45], Defini-
tion 1.1. Now {du/ }er F » 1s a Haar system for 4, In particular, du/ is a measure on

%, whose support is g and the family of measures {du/ Yrery, Foy , is 97-invariant in an
appropriate sense.

Given pe J, choose f € Fp)7 so that n(f)= p. There is a diffeomorphism
ip.f: G7P — ng given by i, r(g) = (f,9g). Let du” be the measure on 47 which is sup—
ported on ¥z and is given there by i, , -du’, where we think of du/ as a density on G,/
Then du” is independent of the ch01ce of f as follows from the fact that the famlly
{du/ }pe 7 1 O(g)-equivariant. One can check that {du’} is a Haar system for 4.

peT

Example 4. Continuing with Example 3, given p € Z, the measure du” on 9,7 =~ G
can be described as follows. Let {e;} be a basis for g such that the normalized Haar
measure on G is dug = A;e;. Let {V;} be the corresponding vector fields on Z. The
action of V; on Fop,)Z breaks up as V'@ VV' with respect to the decomposition
TFoZ =n*TZ ® TO(q) of TFy)Z into its horizontal and vertical subbundles. (Note
that because V' is Killing, VV' is a skew—symmetric 2-tensor.) Put

(2.11) M(p) = <Vi(p), Vi(p)> + <VVi(p), VVi(p))-
Note that the matrix M (p) is positive-definite. Then du? = y/det(M(p)) dug.
We now construct a cutoff function for % .

Lemma 4. There is a nonnegative cutoff function ¢ € CX(T) for Gz, meaning that
forallpe T

(2.12) J #(s(9)) du”(g) = 1.

Proof The proof is similar to that of [44], Proposition 6.11. The difference is that we
use ¢> 1nstead of ¢ as in [44], Propos1t10n 6.11. Choose any nonnegative € C°(7") such
that | 2 (s(9)) du?(g) > Ofor all p e 7. (Such a y exists because the orbit space of ¥ is

({7 P
compact.) Then set

(2.13) b= v O

J"w( ) dur(g)

((/

|
det(M(p))

2.5. The Lie algebroid of the groupoid closure. Molino theory is phrased as a struc-
ture on the foliated manifold M in [36], Chapter 4, and [37], and as a structure on the trans-
versal 7 in [26], [41], [42]. The relationship between them is that the structure on M pulls
back from the structure on 7 ; see [41], Section 3.4.

Example 5. Continuing with Example 4, we can take ¢*(p) =



Gorokhovsky and Lott, The index of a transverse Dirac-type operator 135

Let g, be the Lie algebroid of %, as defined in [36], Chapter 6. Then g is a % -
equivariant flat vector bundle over 7~ whose fibers are copies of a fixed Lie algebra g. (The
flat connection on g is related to the extendability of elements of %5 .) The holonomy of
the flat connection on g lies in Aut(g). If P: (U x g) — g is a local parallelization of g
and an : g, — 7.7 is the anchor map then an o P describes a Lie algebra of Killing vector
fields on U, isomorphic to g.

The pullback n*g, of g, to Fo()7 is isomorphic to the vertical tangent bundle
TVFo)7 of the submersion 6 : Fo,) 7 — W.

If M is simply-connected then g is abelian and g, = 7 X g; see, for example, [29].

Example 6. Continuing with Example 5, let g be the Lie algebra of G. Then g, is
the product bundle Z x g, whose flat connection has trivial holonomy. The corresponding
vector fields on . = Z come from the G-action.

Example 7. Let G be a finite-dimensional connected Lie group. Let g be its Lie
algebra. Give G a right-invariant Riemannian metric. Let I" be a finite-presented discrete
group. Let I' — G be an injective homomorphism with dense image. Let Y be a con-
nected compact manifold with 7;(Y, yo) = I'. Let ¥ be the universal cover. Suppose that
h:Y — G is a T'-equivariant fiber bundle, where I acts on the right on G.

Then Y has a Riemannian foliation .# whose leaves are the images, in Y, of the con-
nected components of the fibers of /4. The foliation has dense leaves and is transversally
parallelizable. Conversely, any Riemannian foliation on a connected compact manifold,
which has dense leaves and is transversally parallelizable, arises from this construction
([36], Theorem 4.24).

A transversal 7 to # can be formed by taking appropriate local sections U; — Y of
h. Then g is the product bundle 7~ x g, whose flat connection has trivial holonomy. The

corresponding vector fields on 7 =~ [[ U; are the restrictions of the left-invariant vector
fields on G. i

Note that in this construction, g could be any finite-dimensional Lie algebra.

2.6. Local transverse structure of a Riemannian foliation. We describe the local
transverse structure of a Riemannian foliation, following [26], [27].

Fix p € 7. Let K denote the isotropy group at p for 4. Let f denote the Lie algebra
of K. There is an injection i : f — g. Also, there is a representation ad : K — Aut(g) so that

1. ad|; is the adjoint representation of K on f;
2. dad, is the adjoint representation of f on g, as defined using i.
Let O, be the %7-orbit of p. Its tangent space 7,0, at p is isomorphic to g/f. Put

V= (T, Op)l c T, . A slice-type theorem gives a representation p : K — Aut(V) with
the property that ad @ p : K — Aut((g/f) @ V) is injective.
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__The quintuple (g, K, i,ad, p) determines the weak equivalence class of the restriction
of 97 (with the étale topology) to a small invariant neighborhood of the orbit O,.

Given such a quintuple, one can construct an explicit local model for the transverse
structure. We will restrict here to the case when g is solvable. Then there is a Lie group G
with Lie algebra g, containing K as a subgroup, such that the restriction of % to a small
invariant neighborhood of the orbit O, is weakly equivalent to the cross-product groupoid
(B(V) xk G) ™ Gs, where B(V) is a metric ball in V.

Finally, define a normal orbit type to be a quintuple (g, K,i,ad,p) such that the
invariant subspace VX vanishes. Given a point pe.7 and its associated quintuple
(g,K,i,ad, p), one obtains its normal orbit type from replacing V by ¥/ V' X. There is a nat-
ural equivalence relation on the set of possible normal orbit types. Then there is a stratifi-
cation of 77, where each stratum is associated to a given equivalence class of normal orbit
types ([26], Section 3.3).

2.7. The dualizing sheaf. Let U7 be the orientation bundle of 7. It is a flat real line
bundle on . Put 7 = g, ® O7. It is a 9 -equivariant flat real line bundle on 7.

The Haar system {du/ bre Fou - gives a nowhere-zero O(g)-invariant section of the

pullback bundle 7*A™g,; =~ AmaxT VFO@,/ on FO 7 . Tensoring with this section gives

q
an O(q)-equivariant isomorphism .# : Q* (Fo 7 sn*07) — Q" (Foig) 7 ;7" % 7). This iso-

)7
morphism descends to an isomorphism .7 : Q*(J (9 ) — QYT @g‘).

)-

Proof. This follows from the local description of # = n*t as dlog F in the proof of
Lemma 3. []

Lemma5. 4 'odod=d—1tronQ"(T;0,

\1

Let H; (7)) be the cohomology of the ¥ -invariant differential forms on 77, and
similarly for H; (7 ; Z7). Then H; (") is isomorphic to the basic cohomology HbaS(M )
of the foliated manifold M, which is invariant under foliated homeomorphisms ([19]). Also,
H{ (7 27) is isomorphic to Hy, (M; Zy), where 2y, is the pullback of Z7 from 7 to

M. From [43], for all 0 </ < dim(.7"), there is a nondegenerate pairing

(2.14) H (7)x HI) (7. 9,) S R

mv mv

More generally, if E is a 9r-equivariant flat real vector bundle on .7 then there is a non-
degenerate pairing

(2.15) ' (THE) x HEM (7 E* @ 97) — R

ll’lV

The closed 1-form 7 itself defines a class [7] € H. (7).

If 7 is topologically trivial, as a 4, -equivariant real lirlle bundle on .7, then we can
take the (positive) square root of its holonomies to obtain &7, a g?—equivariant flat real
line bundle. We obtain a nondegenerate bilinear form on H;, (7 ; Dy ) from (2.15). Hence
if dim(7") is divisible by four then the basic signature o(M, 7; @2 ) can be defined to be
the index of the quadratic form on HE™7)/2(7; 22 ). Note that H;:

mv

(7;9%) is isomor-
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. 1 . . :
phic to the cohomology of d — 77/ on Q*(7). If in addition [tr] = 0 then we can write

1
© = dH for some H € G (7), sod —57A = e? o d o e™"/? is conjugate to d on Q* (7).

).

QIN|~

Similarly, we can define a basic Euler characteristic y(M, % ;%

3. Transverse Dirac-type operators

In this section we construct the basic Dirac-type operator. Subsection 3.1 relates
transverse differentiation with groupoid integration. In Subsection 3.2 we define a map o
from holonomy-invariant sections of the transverse Clifford module to non-invariant sec-
tions, and a map f which goes the other way. We show that fo o = Id and f = o*. A pro-
jection operator is then defined by P = oo . It comes from the action of an idempotent
in the groupoid algebra. The invariant Dirac-type operator Dy, is the compression of the
transverse Dirac-type operator Daps by P. In Subsection 3.3, we write Dj,, explicitly as a
differential operator.

3.1. Transverse differentiation. Let E be a % -equivariant vector bundle on 7.
Given ge 97 and e€ Ey,), let e-g~' € E,;) denote the action of g~' on e. Given a
compactly-supported element £ € C°(7; E), with a slight abuse of notation we write

(3.1) J &9 di? (g)

for the element of C* (7 ; E) whose value at p € 7 is given by (3.1).
Lemma 6. We have an identity in Q' (7 ; E):

(32)  VF [ &g g dul(g) = [ (VE),, -9~ du’(g) +fp J"és g~ du”(g).

Gy G P

\2\

Proof.  Put VE = 7*VE and & = n*¢. Choose [ € Fo7 so that n(f) = p. Given a
vector X reT; fFO( 7 extend it to a vector field X’ ong - (“( 1)), the G -orbit of f, so that
for all § € 95/, we have dgy (X ) = X/. By the 4.7 -invariance of V£,

(3.3) V}? [ &g -7 du (g)
{2;./'

= [ (VEQy4 -0 " di @)+ | Sy - d' Ly dp! (g)
G/ G

= f (Vi) g -6 di/ (@) + [ &gy - 67 "2(X) 5 du’ (9)
G,/ 9,7

Since 'E(X’)S(g) = %(X’)f, the lemma follows. []
Corollary 3. If we Q. (7) then

(34) d oy g7 du(g) = J 9 dr’(9) + T, A Iw g~ du ().
Gy P GrP
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Suppose now that & is a %r-equivariant Clifford module on .7. In particular, if

X e T,.7 then the Clifford action of X is an operator ¢(X) € End(é),) with o(X)? = —|x|%
Let D be the Dirac-type operator on C*(7; &). It is a symmetric operator.

Corollary 4. IfEe CF (T ;&) then

(35) D f és(g) . 971 d:up(g) = _j (Dé)s(g) : gil d:up(g) + C(Tp) f és(g) . gil d:up(g)v

G0 G,r £784

where we have identified t, with its dual vector.

3.2. A projection operator. Recall the cutoff function ¢ from Lemma 4. Let
(L*(7; 5)) denote the %-invariant elements of L?(.7; &). Define maps

v (LAT:6)" — L2(736) and f:LX(7T:6) — (L(7:6)”
by
(36) (&) = ¢
and

Lemma 7. We have oo = 1d.
Proof. 1f & e (L*(T; g))@ then

(33) (B)), = | & 97 0 du(9)

ge Grr

Since ¢ is % -invariant, &, - g~ = &, and so

(3.9) | & 97 95y A’ (9) = I_ g du’(g) =
ge%yr €%y
This proves the lemma. []

K

It follows that « is injective and induces an isomorphism between (L?(7; &))" and a
subspace of L2(7; &). We equip (L*(7; (a@)) 7 with the inner product induced by this iso-

morphism. Explicitly, for &, € (L2( T, é@)) , we have

K

(3.10) E O = i(fp7Cp)¢2(p) duz(p),

where du - is the Riemannian density on 7. Note that this generally differs from the inner
product on (L*(7; @@))47 coming from its embedding in L?(7; &).
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We define a sheaf %, on W by saying that if U is an open subset of W then

7. (U) = (C* (a7 (V) 6)) 7.

Similarly, we define a sheaf .% on V;by S (U) = ( L2( o1 (U); @@))(9_ The global sections
S5 (W) are the same as (Lz(g‘; (g)))dﬁ;

Let du;, denote the Riemannian measure on W.Putduy, =1, du ji7» @ measure on W.

Given &,( e (L*(7; é’))@, the pointwise inner product function (&,{)(p) pulls back
under : from a measurable function on W, which we denote by (&, {)(w).

Proposition 1. We have

(3.11) &0 = Vi(é,é)(W) dugy (w).

Proof. Put ¢ =7n*¢. Let d,uF 0TI W denote the Riemannian densities on the pre-
images of 6. Then

(312) [ 5)4,drr(p)

| (@8 (x°0))8] gy, 7 (f)

(e, n ><w>( I Gt ) dug ()

O(q) f/W

J
w
= [(7"& ") (W) duy, (W)
|14
]

This proves the proposition. []

Corollary 5.  The inner product (3.10) on (L2(9' ; cg)))@7 is independent of the choice of
the cut-off function ¢.

2

We will denote (L*(7;&))”, equipped with the inner product (3.10), by

LA, duy).
Proposition 2. = o".

Proof. Choosene L*(7 ;&) and ¢ e (L*(7; (5”‘))(Z Then

B13) <& = | [ gm0 -7 @E),) du! (§) dug,, 7 (f)-

Fo7 4,1

Using the % -invariance of ¢,

a1 1 B (g 07 €)@y (1)

Sz

= P50 (1)) (7)) ding (9),
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where d,uA is the measure on %, induced by the Haar system {a’/,tf}fe Fou? and the
Rlemanman measure d,uF . Since d,u% is invariant under the involution g — §~! on
g./ >

(3.15) I?(g)ﬂ’;s(g)((”*n) (7)) ez (9)
=] by Bria) (1)) (7)) At (9)

= Af ¢2 ¢f((” )y, (n* f)f)dﬂ (g )dﬂFO(q).T(f)

This proves the proposition. []
Corollary 6. P = oo f8 is an orthogonal projection on L*(T ; &).
More explicitly,

(316) <P’7)p = ¢p j_ ns(g) 'gil¢s(g) dﬂp(g)

geYs?

This shows that P comes from the action of the idempotent g — ¢, ¢, in the groupoid
algebra C* (%7 ), which we also denote by P.

The maps « and f3 establish an isomorphism between Im P and (L?*(7; éa))%

3.3. Spectral triples and the invariant Dirac-type operator. Let D, be the operator
on (L*(7; @@))% which is the restriction of the Dirac-type operator on .7 to % -invariant
spinor fields. Let Daps denote the Dirac-type operator on L?(7; &) with Atiyah—Patodi—
Singer (APS) boundary conditions on 0.7 ; see [4]. It is a self-adjoint extension of D. (We do
not require a product geometry near 0.7 .) Note that Im(«) = Dom(Daps), since an element
of Im(«) has compact support in .7, i.e. in the interior of J~

Remark 1. In what follows, the choice of APS boundary conditions is not essential.
Any boundary condition which gives a self-adjoint operator would work just as well. We

invoke APS boundary conditions for clarity.

Proposition 3.  (C* (%), L*(T;6), DAPS) is a spectral triple of dimension q.

Proof. The action of 4 € C*(%7) onne L*(7 ;&) is given by

(3.17) (dn), = [ A(g)ny, -9~ du’(g).

gegrp



Gorokhovsky and Lott, The index of a transverse Dirac-type operator 141

As A is compactly supported, there is a compact subset K of 7 so that
supp(4) < (s,r)” (K x K). It follows that the action of C*(%) on L2(7 ;&) preserves
DOl‘n(DAps).

Using (3.17), it follows that [Daps, 4] is a bounded operator on L*(7;¢). Thus
(Cf(@y),L%?’ ;co‘"),DAps) is a spectral triple. Finally, from [24], Section 9, the spectral
triple has dimension ¢ in the sense of [15], Chapter 4.2. []

Proposition 4. We have

(318) ﬂODApsoaIDQ—%C(T).
Proof.  Choose ¢ € (L*(7; g))@ Then
(3.19) Daps (2(E)) = Daps(4E) = c(d)E + ¢pDaps(&).

Using the % -invariance of the Dirac operator, we obtain

3:20)  (BOars())), = (Dars(x(&))),g 9™y (9

= | (c(dp)d),, 97 by du"(9)

G,
Since
(3.21) J By di(e) = 1,
differentiation gives "
(3.22) 0=2w_J (d)yg) 9 byg) du” g)+_J" 0% A’ (9)

The proposition follows. []

We define the invariant Dirac operator Dy, on (L*(7; (a@))% by

1
(3.23) Diny = Do — EC(T)'
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Corollary 7. Dy, is a self-adjoint Fredholm operator. For all 0 > 0, the operator

_ 2 .,
e i is trace-class.

Proof. The operator Dj,y is unitarily equivalent to P o Daps o P. As P is an idempo-
tent in the groupoid algebra C° (%), it follows from Proposition 3 that D;,, is self-adjoint
and Fredholm.

It follows from [20], Theorem C, that e~0I(PParsP)’+((1=P)Dars(1=P))’] i trace-class for all

2

0 > 0. Then e ?PParsP)” ig also trace-class. []

Corollary 8. If dim(7") is even and D is the Gauss—Bonnet operator d+d* then
Ind(Diny) equals the basic Euler characteristic y(M, 7 ; 2%,). If dim(7) is even and D is the
signature operator d + d* then Ind(Dyyy) equals the basic signature (M, F ; Z3,).

Proof. As e~0Pu, is trace-class, we can apply standard Hodge theory. [

Remark 2. Let chjLo(Daps) be the JLO cocycle (see [31]) for the spectral triple
(CX(%7),L*(7; ), Daps) from Proposition 3. Then for any ¢ > 0,

(324) Index(DinV) = <ChJLo(lDAps) , Ch(P) >.

One may hope to prove a transverse index theorem by computing ling {chyLo(tDaps),ch(P))
11—

as a local expression. As will become clear in the next section, there are problems with this
approach.

Given a positive function he (C*(7 ))%, we can write i1 = c*hy for some
1 . .
hw € C(W). The operator Dy — EC(T) on L*(¥,duy,) is unitarily equivalent to the opera-
1
tor Dy — EC(T —dlogh) on L*(S, hy duy).

Corollary 9. If [t] =0 in H. (7)) then up to a multiplicative constant, there is a
unique positive h € (C*(ﬂ'))% so that T = dlogh. Hence in this case, the invariant Dirac

operator Dy, is unitarily equivalent to Dy on L*(, hy duy,).

Example 8. Continuing with Example 6, suppose that Z is equipped with a
G-equivariant Clifford module &. By (2.9), ¢ = dlogé*¥", where ¥~ € C* (W) is the func-
tion for which ¥ (W) = vol(¢~!(#)). Then = = dloga*¥", where ¥" € C(W) is defined by
¥" =1*v". In particular, [t] = 0 and Dy, is unitarily equivalent to Dy on L>(%, ¥ duy).
Now

(3.25) V duy = 1.V duy,) = 1.6, dpg,,z = 0xTdpip, 7 = 0. duy.

Hence Dj,, is unitarily equivalent to Dy on Lz(y ,o.du,), which is what one would
expect.

Remark 3. There are several approaches in the literature to the goal of constructing
a good self-adjoint basic Dirac-type operator.
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Given a foliated manifold (M, %) with a bundle-like metric gy, as in [36], Remark
2.7(7), one can consider a normal Clifford module on M and its holonomy-invariant sec-
tions. With this approach, the natural inner product on the holonomy-invariant sections
involves the volume form of g,,. In order to obtain a self-adjoint basic Dirac-type operator
with this approach, one must assume that the mean curvature form x of the foliated man-
ifold (M, ) is a basic one-form; see [21]. Note that the mean curvature form x, which lives
on M, is distinct from the mean curvature form 7 in this paper, which lives on 7.

Still working on M, the problem of self-adjointness was resolved by means of a modi-
fied basic Dirac-type operator, involving the basic projection of «; see [25]. Given the trans-
verse metric, it was shown in [25] that the spectrum is independent of the particular choice
of bundle-like metric.

In the present paper we work directly with the transverse structure, so bundle-like
metrics do not enter. Presumably our operator Dy, is unitarily equivalent to the operator
considered in [25].

A different approach is to consider the operator D, mapping from the positive-

chirality holonomy-invariant sections to the negative-chirality holonomy-invariant sec-

tions. One then obtains a self-adjoint operator D = D, + D7, albeit not an explicit one.

This is essentially the approach of [18]. Different choices of inner product will change the
definition of D* but will not affect Index(D.).
4. The case of a compact group action

In this section we analyze the index of a Dirac-type operator when it acts on the
T*-invariant sections of a T*-equivariant Clifford module on a compact manifold Z. In
Subsection 4.1 we express the index in terms of the Atiyah—Singer G-indices. In Subsection
4.2 we discuss the problem in switching the order of integration over 7% and integration
over the fixed-point set. This turns out to be an issue about the nonuniformity of an asymp-
totic expansion.

4.1. An index formula. Let

(1) T be a discrete group,

(2) G be a compact connected Lie group,

(3) i: ' — G be an injective homomorphism with dense image,

(4) dug be normalized Haar measure on G,

(5) Z be an even-dimensional compact connected Riemannian manifold on which G
acts isometrically,

(6) & be a G-equivariant Clifford module on Z, and

(7) Y be a compact connected manifold with 7; (Y, yo) =T.
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Put M = (Y x Z)/T, where I acts diagonally on Y x Z. Then M has a Riemann-
ian foliation with complete transversal Z. Now (L*(Z; (o@))r (L*(Z;¢6 )) Let D be the
Dirac-type operator on L?(Z; &) and let Dy, be its restriction to (L*(Z; &)) G. Given g € G,
let Index(g) € R denote its G-index, i.e. Index(g) = trs g|g,(p), Where trs denotes the super-
trace.

Lemma 8. Index(Djyy) = [ Index(g) dug(g).
G

Proof.  The finite-dimensional Z,-graded vector space Ker(D), has an orthogonal
decomposition

(4.1) Ker(D), = Ker(D)? @ (Ker(D)?)".

Then
(4.2) Index(Diny) = dim(Ker(D)?) — dim(Ker(D)f)

- jtl‘ |Ker d:uG Jtr ’Ker (D)_ d:uG(g)

= [15(6) ke do(a) = [ Index) dilo).

This proves the lemma. []

Let L(g) € R be the Atiyah—Segal-Singer Lefschetz-type formula for Index(g); see [5]
and [6], Chapter 6. It is the integral of a certain characteristic form over the fixed-point set
Z9. Then

(4.3) Index(Djny) = gL(g) dug(g).

Let T* be a maximal torus for G. Since L(g) is conjugation-invariant, the Weyl inte-
gral formula gives

(4.4) Index(Diny) = ]Weyl\ JL det(Ad(g_l) — I)|g/t/< dure(g).

4.2. Nonuniformity in the localized short-time expansion. We now specialize to the
case G = Tk,

For simplicity, suppose that Z has a T*-invariant spin structure with spinor bundle
S%, and & = S ® W for some Z,-graded G-equivariant vector bundle %". Suppose fur-
ther that each connected component of Z¢ has a spin structure. Let Sy denote the normal
spinor bundle. Put
Velpw
chy-(g) = try(ge="").

From [6], Chapter 6.4, we see that

(4.5) L(g) = ZM(Z-‘/)—“’
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(In order to simplify notation, we have omitted some signs and powers of 27 in the for-
mula from [6], Chapter 6.4.) From (4.3), it is clear that the only submanifolds of Z that
contribute to the integral are the connected components {Zl-Tk} of the fixed-point set Z Tt
as the integrals over the other submanifolds will be of measure zero in G. Then

(4.6) Index(Diny) = J;Z j zT" Ch””(z) duri(g).

Example 9. Suppose that Z is an oriented manifold whose dimension is divisible by
four. Suppose that Z has an S!-action with isolated fixed points {z;}. Let the S'-action on
T.,(Z) be decomposable as

(4.7) Jio_, S (cos(n 10) - —sin(n 10)
. =1 sin(ny, ;0)  cos(ny,,0) '

Let D;,, be the signature operator acting on S'-invariant forms. Then

dim(Z2) dim(Z)/2 do
(4.8) Index(Diny) = (=1)"+ [ > T cot(m0/2)=;
St k1=l 2n

compare with [2], Theorem 6.27.

Note that in (4.8), the sum over k and the integral over S! generally cannot be inter-
changed. For example, suppose that dim(Z) =4, k = 1 and n; ; = n; 2 = 1. Then the con-
tribution from the fixed point z; is

(4.9) — [cot?(0/2) o _ — 0.
g 2n

What happens is that there are cancellations among the various fixed points. This cancella-
tion is ensured by the fact that L(g) is uniformly bounded in g € S'. So the integral (4.8)
makes sense but one cannot switch the order of integration and summation. This is a prob-
lem if one wants a local formula for Index(Djyy).

To elaborate on this phenomenon, for any ¢# > 0 we can use Lemma 8§ to write

(4.10) Index(Diny) = [ Try(g - e™™") dugi (g)
Sl

= | Jtrse™ (2,20 diiz ) dis o)

If ¢, is an S'-invariant bump function with support near the fixed point z; then

(4.11) Index(Djpy) = > hm | [trge (2, 2g).(2) dpiy (2) dpigi (g).
i Sl z
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By general arguments (cf. [10]), there is an asymptotic expansion

412) [ [tre ™ (z,29)0(2) duy(2) dpsi (g) ~ A2 S a0 (log 1),
K4 J, k=0

and so

(4.13) Index(Diny) = >_ i dim(z)/2,0-

On the other hand, for a fixed g € S! there is a computable limit
(4.14) lim | try e P (z,29)$,(2) duuy(2),
=0z

which becomes an integral over ZY. If one could commute the lin(} with the integration over
1 t—
ge S’ on

(4.15) Ju e (2, 29)¢,(2) dpz (2)

then one would conclude that the asymptotic expansion in (4.12) starts at the t°-term, and
that the coefficient of the °-term is

(4.16) Sfl lim g trye " (z,29)4,(2) dp (2) dp (9).-

One finds in examples that neither of these are true. Related phenomena for local traces (as
opposed to supertraces) of basic heat kernels were noted in [40].

The underlying reason for the lack of uniformity, in the expansions with respect to ¢
and g, is that the fixed-point set Z¢ can vary wildly in g. For example, if the S'-action is
effective then Z¢ = Z, while ZY has codimension at least one for any g + e, no matter how
close g may be to e.

5. The case of abelian Molino sheaf: a delocalized index theorem

In this section we prove a delocalized index theorem for Dj,, under the assumption
that the Molino sheaf is a holonomy-free sheaf of abelian Lie algebras, and an additional
connectedness assumption on the isotropy groups. The index formula will be localized in
Section 6.

In Subsection 5.1 we use local models for the transverse structure of a Riemannian
foliation to write a formula for Index(Dj,y) in terms of a parametrix. As indicated in the
preceding section, there are problems in directly computing the  — 0 limit of this index
formula, as a local expression. Hence we use a delocalized approach. In Subsection 5.2 we
rewrite the index formula in terms of the averaging of a certain almost-periodic function
F, . that is defined on the abelian Lie algebra. The number F; .(X) is defined by a Kirillov-
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type formula. We show that it is independent of ¢ and ¢. In Subsection 5.3 we compute the
t — 0 limit of F; ,.

5.1. Parametrix. Hereafter we assume that the Lie algebra g of the Molino sheaf
is the abelian Lie algebra R*. We also assume that the Lie algebroid g is a trivial flat
R*-bundle, i.e. has trivial holonomy.

Recall the sheaf %, on W from Subsection 3.2. The invariant operator Dj,, is a self-
adjoint operator on the global sections % (W). We will compute the index of Dj,, by con-
structing a parametrix for Dj,,. The parametrix will be formed using a suitable open cover
of W, along with a partition of unity.

Corollary 9 gives a measure sy duy, which is canonical up to a multiplicative con-
stant.

Given p € 7, let K be the isotropy group of % at p. We assume that K is connected,
so K = T for some 0 < / < k. From Subsection 2.6, there is an invariant neighborhood U
of the orbit (), so that the restriction of % to U is weakly equivalent, as an étale groupoid,
to the cross-product groupoid (B( V) xk G) > Gy. Here G is a k-dimensional connected
abelian Lie group containing K, V" is a representation space of K and B(V) is a metric
ball in V. The manifold B(V) xx G acquires a G-invariant Riemannian metric from the
Riemannian foliation.

If / < k then we can quotient out by a lattice in G/K, so in any case we can assume
that G = T*. Note that there is some freedom in exactly which lattice is chosen.

There is an embedding B(V)/K — W and a quotient map o : (B(V) xx G) — W.
From Example 8, 0. dupy, ¢ 1s a constant times (hw duy )|y k- We will want to fix a
normalization for the measure /sy duy,. The normalization that we use will depend on
whether or not there are any points in . with maximal isotropy group.

Recall from Example 8 that in the local model, the relevant measure is ¥~ duy;,. Here
¥ satisfies ¥" = 1*7", where ¥~ € C* (W) is the function for which ¥ () = vol (6~ (iW)).
If the isotropy group at a point p € 7 is T* then 6! (W) is a (free) T*-orbit in the frame
Fo(y)7p. As its volume is canonical, i.e. independent of the choice of local model, we can
consistently normalize &y duy, in a local model with K = T to be ¥ duy,.

Using the connectedness of W, this determines Ay dyy, globally. Having now nor-

malized hy duy,, there may be local models with / < k. For these local models, we use
the freedom in the choice of lattice in G/K to ensure that

o digyyxee = (hw diy) gy k-

If there are no points in .7 with isotropy T* then we normalize Ay duy, by requiring
that [ hw duy = 1. We can then use the freedom in the choice of the lattice in G/K to
W

ensure that in each local model,

o dugyyx e = (hw duy) g k-
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We can find

1. finite open coverings {U,} and {U)} of W, where U, has compact closure in
U,, so that the restriction of %7, to the preimage of U, in 7, is equivalent to
(B(V;) xk, Gy) X Gys (here G, is isomorphic to T*),

2. a subordinate partition of unity {#,} to {U,} so that each 1*5, is smooth on W,

3. functions {p,} with support in U! so that each i*p, is smooth on W, and
Pally = My 1.€. pac|supp(;7a) =1

For each o, we choose a closed Riemannian manifold Y, with an isometric G,-action
so that there is an isometric G,-equivariant embedding B(V,) xk, G, < Y,. This can be
done, for example, by taking a slight extension of B(V,) to a larger ball B, = V;, taking
the double of B! xk, G, and smoothing the metric. (Alternatively, we could work directly
with APS boundary conditions on B(V,) xg, G,, at the price of having to deal with
manifolds-with-boundary.) We can also assume that the restriction of & to B(V,) xk, G,
extends to &, on Y,,.

Let D, denote the Dirac-type operator on Y,. Let Dj,, , be the restriction of D, to
2 Gs '
(L*(Y,, 6Yy,))

Given ¢ > 0, put

1 — e 02 !
(51) Qa:fDa:fe =Dy ds
Da 0
and
1 — o P t
(52) Qinv,oc =73 Diny, o Ie D aDan 2 ds.
Dmv o 0

We let 7, be the extension by zero of ¥y, to Y,, and similarly for p,.

Proposition 5. > paQifw’ . Is a parametrix for DE . Also, for all t > 0, formally

mv*

D2 1
(53) Ind(DinV) = ZTI’S(E tDm\"X”oc) + EZTrS(Qinv,M[DinV,OH7701])7

or more precisely,
D2 1
(54) Il’ld 1nv> Z TI'S D i“V'“Wa> + 5 Z[} Trs (p“(Qinv,oz - Qinv,ﬁ)’]ﬂ[Dinv,ow 7]9{])

Proof.  First, we have
(5.5) D, p, 0511, = D, p,10 1, + p, Dy O 1,
=D, 3]0 71, + P, (1 — e PP ),

=17, + [D; . p,)0 71, — ye PP i,
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The Schwartz kernel of [D,, p,]0,7, is

(5.6) ¢ (dp,(p)) 0, (p. P(P")-

As Q; is a pseudodifferential operator, and dp,(p )ﬁc,( p’) vanishes in a neighborhood of the
diagonal p = p’, it follows that 7, — D; (5, 0. 7,) is a smoothing operator on L(Y,; @‘”‘*)
In particular, 7, — D, (p,0,7%,) is trace-class on L*(Y,;6y) and so its restriction to
(LAY 65)) ™ is also trace-class. Hence the operator

(57) T = Dipy 32 Qi oM = 201 = Diny P2 Qi o115)
o o
D _
- Z(pzr Din. Lo, "Ny [Dinv,m’pa]Q:r;v,a”d)

is also trace-class. This shows that Z 2,0
also a left parametrix.

v o/, 18 @ right parametrix for Dy . Hence it is

Similarly,
(58> ﬁmQjﬁaD; :ﬁzQ:D;ﬁa_ﬁaQ:[D;vﬁa]
=p,(1 —e PPy, — 5,07 (D, ,7,)
=i, — b P01, — 5,05 (D, 71,)-
Then
—tDF —
(59) <Z p“anv 05;7“) nv — Z(pace Pin. Lo ”7 +pthmv (x[Dinv,w ’M)-
o

Changing signs in (5.7) and (5.9) gives

(510) I— D;;V Zpoch;vyxna = Z(paeill)mv'%l)gv’arlaz - [D$v7a7pa]Q;1v7ana)7

o

— —tD
(511) I <ZpaQinv,a77°<)D$v = Z(pae Pins<Pim, 3(’7 Jrprmv A[Ditv,oc?noc])'
o

o

Now

(512) IndeX(DinV) = TI'( <Z poc inv oz'hc) D ) Tr <I D$v Zpa Qinv,oc”ot) ’

(5.13) —Index(Diyy) = Tr( <Z PO ml> Dinv> —Tr <I — D, > p, Qitm(;ya) )

Hence

1
(5.14) IIldCX(DinV) = 5 TI‘S (1 — (Z paQinv,ﬂla) Dinv)

1
+ 5 Trs (1 - Dinvz P Qinv,a”/a> .
o
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Equations (5.7)—(5.11) now give
D2 1
(5'15) IndeX(DinV) = Z Trs(poce [Din“’?ac) + 5 Z TrS<pzzQinv,o<[Dinv,o<a 77¢D
o o

1
— 5 Z Trs([Dinv,cu px] Qinv, ma) .

By formal manipulations,

oy 1

(5.16)  Index(Diny) = 3. Try(e Py, p,) + 5 2 T15(Qinv.a[Dinv, 0 1:P2)
1
+ E Z TrS(Qinv, ally [Dinv,av pa])

e 1

= Z Trg (e tDi"V'“%py) + E Z Trs(Qinv,oc [Dinv,aa %Pw])
o o

_n2 1
= Z Trg (e ’Di“"v“ﬂa) + E Z Trs(Qinv,oc[Dinv,m ’79(])
o o«

The last term in (5.16) actually makes sense because > dn, = 0, so the computation of

(517) ; Trs(Qinv,oc[Dinv,m 7]0{]) = ; Trs (Qinv,ac(d”oc))

happens away from the diagonal. To see this more clearly, we can write

(518) Z Trs(Qinv7ot[DinV,aa 7]@]) = Zﬁ Trs(Qinv,oc’?/j [Dinv,cu 7]9(])
= ZﬂTI‘S((Qian - Qinv,ﬂ)”ﬁ{Diana 771])
= %Trs((va,a - Qinv,ﬁ)rlﬁ[DinV,dv ﬂu]pa)

= ZﬂTrs (poc(Qinv,a - Qinv,ﬂ)”/[)’[Dinv,ow ’71})

The latter expression is clearly well-defined. This proves the proposition. []

In what follows we will use the equation (5.3) when, to justify things more formally,
one could use (5.4) instead.

5.2. Averaging over the Lie algebra. Fix a Haar measure du, on g= R*. If
F e C*(R¥) is a finite sum of periodic functions, put

] F(X)duy(X)

. B(O,R)
5.19 AVyF(X) =1
(519) V0 = fim g )
B(0.R)
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Equivalently, if {Z;} is a finite collection of lattices in R* and

(5.20) FX)=2 % cj,ueZanlv-X

j UEL/'

is a representation of F as a finite sum of periodic functions then AVxF(X)
sum of the coefficients of 1.

151

= Z G0, the
J

Given X € R¥, we also let X denote the corresponding vector field on Y,. Let X* de-
note the dual 1-form and let %y denote Lie differentiation with respect to X. The moment
w(X) of X € R¥is defined by u(X) = %y — Vy. It is a skew-adjoint endomorphism of T'Y,.

Proposition 6. We have
_ 2
(5.21) ZTI’S(e tDinv‘z’jﬂ) AVX ZTrS( lD +yX)’7a)

and

(5.22) S Trg( Qiny. o [Dinv. oy 1)) = AV S J"Tr ~6DL) D D, 7,]) ds.

%0
Proof.  First,

(5.23) thrs(e_m’zﬁa)(p,pe‘x)d/m (p)

is a periodic function in X. From (5.19),

2 D2~ _
(524) X Tr(e Pivan,) = AVy Y [tri(e”P7,)(p, pe™) duy,(p)

“ Y,

_ 21 ) ~
= AVy Y [try(e P 5,) (p, p) dpy, (p)
o Yx

= AV S Tr(e” (tDi+%) 5 ),
Similarly,

(525) ZTrs(QinV,oc[DinV,ocv 7]0(])

[trs(e™*PiD,[D,, 71,]) (p, pe ) duy, (p) ds
Y.

=AVy S

C—

*

AVy Y [ [trg(e P D, (D, 71,))(p, p) duy, (p) ds

Se—
Ne—

Tr(e P-4 D,[D,.7,]) ds.

AV S

C—

This proves the proposition. []
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Note that %y is a skew-adjoint operator. For ¢ > 0 and ¢ € C, put

c(X
(5.26) D,,,=Dy+ au.
4¢
As ¢(X) is skew-adjoint, if ¢ is imaginary then D, , . is self-adjoint. Put

(527) F[’g( ) ZTI‘ (e [D4t5+gjx ’71>
| QR —(sD2, +%) 7
+§ZJ‘ ate X D%[,S[Da,f,m”zx])ds'
x 0

From Propositions 5 and 6, we deduce
(5.28) Ind(Diny) = AVxF; 0(X).
Proposition 7. F; o(X) is independent of t.
Proof. We have

(5.29) Fro(X) = ZTrs( (D Ag,)

4% ITrs DA D, (D, 5,]) ds.

Then

d

(5.30) T FLo(X) = 3 ~Tr(De™ P07
o

1 B -
+§ZTrs(e (th+$)()D“[D“,;h]) =0.
o

The proposition follows. []
Proposition 8. F, .(X) is independent of .

Proof. Let [-,-], denote the anticommutator of two operators. We have an identity
of operators on L?(Y,, &y,):

l t
(531) 67([D72'"=5+gx>77a + E‘Jﬂei(SD’z"f’*€+g)X)Dac7 t,s[Da, tey ﬁzx} ds
0
PR | [ 6PRABID? s
0
1 t

(D2 -
_ EI[D&,I787 e (SD“"’S+$X>Da,t,s77x]+ ds
0
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(th . ,+fX)’7 _ f

i (SD +fx
o ds

o, 1 e nfxds
‘ D? % >
I[Da¢t78’e (S %[€+ X)Daﬁtvgna]‘FdS
0

1 D2, 45 ;
= e_yXﬁO( B EJ"[DO(,[,EH e_(ngzf""c-"_jX)D%l-,gﬂx]ﬁ- ds'

Then

t

(5.32) Ft,s(X):ZTrS( yX Mz f o,1,6, € SD"’#”?X)Da,z,eﬁahds)‘
o 0

In particular,

d 1 .
(5.33) %FM(X):—EZTQ[ m,je ) Mg;yads]

-+

1 ~
_EETrS octmd (_re SD”ﬁLgX 17178770<ds):|

+

=0.
The proposition follows. []
Corollary 10. F, .(X) is independent of t and e.
Proof.  This follows from Propositions 7 and 8. [

Proposition 9.  F, »(X) has a holomorphic extension to X € C*.

Proof.  One finds

1 X2
(5.34) 1D} 5+ Ly = D) + p(X) + 5 e(dX ™) = .
Writing
(5.35) F2(X) = ZTrs(e D}, ,+%) )
o
1 t sD? L +%) i
+§ZITIS( Doiat? Da,t,Z[DoL,t,Zana])dS?
%0

and using (5.34), we expand the right-hand side of (5.35) by means of a Duhamel expan-
sion. The estimates of [20], Lemma 2.1, show that the ensuing series defines a holomorphic
function of X e C*. [
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As a consequence of Corollary 10 and Proposition 9, for any # > 0 and ¢ € C, the
function F; ,(X) has a holomorphic extension to X e C¥.

5.3. Short-time delocalized limit. Let A(X,Y,)ch(X,&,/S) e Q*(Y,) be the equi-
variant characteristic form defined in [6], Chapter 8.1. Notationally,

(5.36) AX, 1) = Jdet (%)

with Ry(X) = R+ u(X), and

(5.37) ch(X,&/S) = try, s(e By,

Note that 4(X, Y,,) ch(X, &,/S) has an analytic extension to C* which is regular in a neigh-
borhood of 0, and on the complement of R¥.

Proposition 10. If X € R¥ then

(5.38) hm F.1(iX) =Y [A(iX, Y,) ch(iX, &,/S)i,
Y,

o

Proof. We can write

(539)  Fia(iX) = STrfe Pt q,)
+ = ZITI‘S SD7"+Z$X>Dac,t,i[D1,t.,i)ﬁoc])ds'

Note that tD? , . +i%y is a self-adjoint operator. Now

o, t,i

(540)  Try(e Pauti g f try(e” Pt ) (p, p)it, (p) dpay, (p)-

From [8], Section 2,

(541)  lim(e (Pt (p, p) = (A(X, Yy) ch(iX, £/S)) (p)-

Thus

(5.42) hszr( Dy i+ %0p = S [ A(iX, Y,) ch(iX, &,/S)7,
o Y,

o

Next, we want to show that

(5.43) lim - Z jTrS “OPLHEID, Dy g irfi,)) ds = 0.

1—0 2

For this, we have to show certain cancellations between the terms for various o.
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Define a measure v, on W by

(544) V= ( jtrﬁ SD""+lyX)Dot,t,i[Dot,t,iaﬁa])(p7p) dﬂ)ﬁ(p> dS)

We want to show that the integral of v, vanishes as ¢t — 0.

Given w € W, choose a point p € 7 that projects to w. Let K be the isotropy group
of 97 at p. For each o with w € U,, choose p, € Y, projecting to w. By the slice theorem,
there is a neighborhood of w in W homeomorphic to B(V)/K, where V is a representation
space of K and B(V) is a ball in V. There is a neighborhood of p which, for each «, is iso-
metric to a neighborhood of p,. We will use this to identify each p, with p.

Using Example 8§,

(5.45)

t
[try(e WP 9D, | Dy 1)) (5. ) dS>hW(W) iy ()
0

NI'—‘

v=(3

1 s i > g~
ﬁE [trs(e D"”+ 3X)Da,t,i[Do<,t,i7ﬂu])(p7p)

C—

R

—trg(e” (65, ’+I$X>D/3,t,i[Da,t.,i> 7,)) (P, ﬁ)]’lﬁ(W) ds hw (w) dpy (w).

As D, ,; coincides with Dy, ; in a neighborhood of p, under our identifications, it follows
from finite propagation speed estimates (see [14]) that

v (w)
hy (w) dpy (w)

decays as t — 0 faster than any power of ¢. These estimates can clearly be made uniform in
w. The proposition follows. []

We now prove a delocalized index theorem.
Corollary 11.

(5.46) Ind(Diny) = AVy S, [A(X, Y,)ch(X, &,/ S)ii,
o Y,

Proof:  As in (5.28), Ind(Diny) = AVyxF;0(X). By Corollary 10 and Proposition 9,
F; o(X) has a holomorphic extension to C*. By Corollary 10 and Proposition 10, if X e iR¥
then

(5.47) Fo(X) = [A(X, Y,)ch(X, &/S)i,

o

By analytic continuation, (5.47) holds for X € C*. The corollary follows. []
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Remark 4. Although j A(X,Y,)ch(X,&,/S)7, may have singularities in X for in-

dividual o, the proof of Corollary 11 shows that the sum over « is holomorphic in X.

6. Local index formula and applications

In this section we prove the main theorem of the paper. In Subsection 6.1 we localize
the index theorem of the previous section to the fixed-point sets. In Subsection 6.2 we prove
the index theorem stated in the introduction of the paper. In Subsection 6.3 we describe
how to compute the terms appearing in the local index formula. We carry out the compu-
tation when D is the pure Dirac operator, the signature operator and the Euler operator.

6.1. Localization to the fixed-point set. Let 7 7" be the subset of 7 g consisting of
points with isotropy group isomorphic to T*. Let {Z; Tt } be the connected components of
a(T Tk) < W. From our assumptions, each Z; " is a smooth manifold. Furthermore, the
Clifford module & on Z descends to a T* equlvarlant Clifford module &; on Z; Tt There
is a natural vector bundle N; on Z; " 50 that for w e Z; " if we choose p € 0! (w) € 7 then
the fiber (V;),, is isomorphic to the normal bundle of 7 7 in 7 at p. The bundle N; inher-
its an orthogonal connection. Let Ry, denote its curvature 2-form.

For simplicity, we assume that 7 has a % -invariant spin structure, with spinor
bundle S7, and that & = S7 ® W for some Z>-graded ¥ -equivariant vector bundle ¥
Suppose further that each Z [Tk is spin. We can define the normal spinor bundle Sy on Z ,-TA.

Let e=¥ e T* denote the exponential of —X € g.

Proposition 11.

Ch/j( )

(6.1)  AVyY [A(X,Y,)ch(X,8,/S)i, =AVyY, [ A(TZ]") =

1
oY, i erk ChS’v(

Proof. Let Z(X) denote the zero-set of X on ]_[ Y,. As in [6], Chapter 7.2, away
from Z(X) we can write

(62)  A(X,Y,)ch(X,&/S)i, = dy (X*/\A(X Y,)ch(X,&,/S)i, )

dyX*

XA A(X,Y,)ch(X,&,/S)
dy X *

/\dXﬁ“.

This formula extends analytically to X lying in a suitable neighborhood of the origin in C*.
Then because ) 7, = 1, the localization argument in the proof of [6], Theorem 7.13, ap-
plies to give  “

chy(e™¥)

(6.3) j Y,)ch(X, &,/S)q, ; {( (TZ(X)W%

oYy,

Because the left-hand side of (6.3) has a holomorphic extension to C*, the same is true for
the right-hand side. So the formula makes sense for X € RX.
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When we average over X € R¥, the integral over a component of Z(X) will not con-

tribute unless the component liesin (| Z(X’). Hence
X'eRk

(64)  AVYY [A(X, V.)ch(X,6/S)i, = AVy Y [ A(Tz(x) ),
* Y, N Z(X") chg, (e¥)

We can identify the image of ﬂ Z(X'"), under the projection map ]_[( (V) xk, Gy) — W,

with U Z; T After making thlS identification, the proposition follows O

Remark 5. It follows from the proof of Proposition 11 that

Ch/; ( X)

S [ ATz 7ChSN(e S

k
i Z[T

is holomorphic in X € C*. Each term

Chy; ( X)

AT o)

Tk
Z!

is meromorphic in X e C*.
Corollary 12. For any Q e C*,

k. Chy (e_X+Q)

. I Diy) = 4 A(TZTH =22
(6 5) ndeX( ) Vx ;Z‘L ( i )ChS‘\,(e_X+Q)
Proof. The integral

h ( )
ATz S

Tk
Z:

is a meromorphic function in X € C* which is invariant with respect to a lattice L; < R*.
As the sum over i is holomorphic, it follows that we can write

hy (e)
A( TZTk Swle )
ZZ‘J:" ChSA (e X)
as a finite sum ZH (X)), where each H; is a holomorphic function of X € C¥ that is in-

variant with respect to a lattice L; = R*. Now AVyH;(X) can be computed by means of
a product of contour integrals in Ck Computing instead AVyH;(X — Q) amounts to de-
forming the contours. Hence

AVyHy(X — Q) = AVx H;(X),

from which the corollary follows. [
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6.2. Local index formula. We will need the explicit formula for (chg, (e=**2)) -
Given z + 1 and a complex r-dimensional vector bundle L, put

X X

r X X;
(6.6) Foirae(L,2) = [[(z 27 — z2¢77) ",
=1

where the x;’s are the formal roots of the total Chern class of L. As usual, the expression
(6.6) is meant to be expanded in the x;’s, which have formal degree two.

Let Z,.Tk and N; be as before. Suppose that with respect to the R¥-action, N; is iso-
morphic to the underlying real bundle of a direct sum of complex line bundles @ N, ;,
where e~ acts on N, ; by e~V X for some n, ; € R*. Then q

1

(6.7) chs. (e ¥70)

= iH g;Dirac(Nq,[, 67‘/7_1"%1"(’\/*@)‘
q

See [3] for a discussion of the sign issue.

The individual term

Ch«///f'(e_X+Q)

A Tk Ly e )
Jﬂ A(TZZ ) ChSN (e_X+Q)

Tk
Zi

is smooth in X provided that Im(Q) ¢ quan -
Let Wy denote the image of | J Z" under the projection map
i

[1(B(V,) xx, G,) — W.

o

It is a smooth manifold and is the deepest stratum in W, with respect to the partial ordering
described in [26], Section 3.3. Note that Wy,.x could be the empty set.

Suppose that & = S7 ® W and that Wi,y is spin.

Definition 1. If Im(Q) ¢ JUn_,, define N o € Q Winax by
i q

q,0
Chﬂ"'(e_X-’_Q)

. o=AVy—21— L.
(6.8) N0 Vx chy, (e=X+0)
Theorem 2.

(6.9) Index(Diny) = [ A(TWinax) N, 0-

Wﬂ]aX
Proof. This follows from Corollary 12. []

We now remove the assumptions that € = S7 ® W and Wiy is spin. We use the
notation of [6], Chapter 6.4.
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Definition 2. If Im(Q) ¢ | Un;i, define N g € Q" Winax by

i q

Chg/SN (einLQ)

6.10 Ny o=AV, :
( ) 6.0 X \/det(l — e 0. e~ Ry)
Theorem 3.

(6.11) Index(Diny) = [ A(TWax) Vi, o-

Wmax

Proof. 1f & = S7 ® W and Wy, is spin then from [6], Chapter 6.4, we deduce

chg/s, (e=¥*Q) B chy-(e=¥1+9)
Vdet(1 — e~ ¥+ . ¢=Rv)  chg,(e7¥+2)

(6.12)

Hence in this case, the theorem reduces to Theorem 2. The general case can be proved by
means similar to the proof of Theorem 2, carrying along the more general assumptions
throughout. []

Theorem 3 implies Theorem 1, because of our assumption in Theorem 1 that the
Molino sheaf acts on the Clifford module & (which lives on M). More precisely, we are
assuming that the restriction &4 of & to J carries a representation of the Lie algebroid
g in the sense of [17], Section 1.4. Then &7 is a 7 -equivariant vector bundle on .7~ and
Theorem 3 applies.

Remark 6. If M is a simply-connected manifold with a Riemannian foliation then
its space W of leaf closures is the quotient of an orbifold Y by a TV-action; see [30]. One
might hope to reduce the computation of the index of a basic Dirac-type operator on M to
the computation of the 7"-invariant index of a Dirac-type operator on Y. Unfortunately,
the étale groupoid Y > T} is generally not weak equivalent to % with its étale topology.
In general dim(Y) > dim(7), so there is no associated Dirac-type operator on Y.

6.3. Computing the index. For simplicity, we assume again that & = S7 @ ¥~
(which is always the case locally) and that Wi,y is spin, so that we have the simpler for-
mula (6.8) for A% o.

The action of {¢ %} on Sy and ¥, over a connected component Z[ “ of Winax,
factors through an action of TX. Because of this 7TX-action, we can compute A4Vy by
performing the contour integral over (S 1)k = C* of a certain rational function times

le de ..
. The result depends a priori on recall that Im nt.
oy PR e vy p p Q ( (Q)¢L[JLéJ ),

although of course the final answer for the index is independent of Q.

Changing Q amounts to deforming the contour of integration in C*. Hence the local
formula for Index(Dj,,) depends on Q through the chamber of (((R* — n, ;) to which
iq i

Im(Q) belongs. Passing from one chamber to another one, the local formula could a priori
change. This is not surprising, in view of the cancellations of singularities that occur; one
could add various local contributions to the index formula, which will cancel out in the
end.
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We now apply Theorem 1 to some geometric Dirac-type operators, in which case the
action of the Molino sheaf on & is automatic.

6.3.1. Pure Dirac operator.

Proposition 12.  Suppose that D is the pure Dirac operator. Then Index(Diy,y) vanishes
if kk > 0, while

(6.13) Index(Din,) = A(W)
if k= 0.

Proof.  From Corollary 12,

1

S 1 T*
(6.14) Index(Diny) = AVx Y. [ A(TZ; )ChSN(e*)”Q)'

[ k
1 ZiT

Take Q so that Im(Q) e ﬂﬂ(le —nt.). Consider the effect of multiplying Q by 4 > 0.

q,i

Each factor in (6.6) has a term of either z7 or zz appearing in the denominator. It fol-
lows that as 4 — oo, the right-hand side of (6.7) decreases exponentially fast in /. Thus if
k > 0 then Index(Dj,y) = 0. If k = 0 then the foliated manifold M is the total space of a
fiber bundle over W = Wy« and Dy, is conjugate to the pure Dirac operator on W, so
Index(Diny) = A(W). O

6.3.2. Signature operator.

Proposition 13. Suppose that F is transversely oriented and dim(7") is divisible by
four. Recall the notion of the basic signature a(M, F; 23,) from Subsection 2.7. We have

1
(6.15) (M, T D) = 0(Wna)-

1
Proof.  From Corollary 8, (M, # ;%) equals the index of Di,, when D is the
operator d + d* and the Z,-grading comes from the Hodge duality operator. A compo-
nent ZiTk of Whax acquires a natural orientation. Given z % 1 and a complex r-dimensional
vector bundle L, put

1Y 1Y
' z72e2 + z2e” 2
(616) %ign(l‘yz) = H T R
j=lz72e2 — z2¢™ 2
Then
(6.17) Index(Diny) = AVy Y [ L(TZF)D(e¥+9),
iZiTk
where
(6.18) O(e ™) = +T] Fujgn(Ny.iy eV 1mr(=0)),
q

Take Q so that Im(Q) e N(R* — n;i). Consider the effect of multiplying Q by

i q
2> 0. From the structure of (6.16), and taking the signs into account, the limit as A — oo
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of ®(e~¥*+Q) is 1. Thus Index(Di) =3 [ L(TZ!"), which equals the signature of
Wax. [ d Z,-Tk

6.3.3. Euler operator.

Proposition 14. Suppose that dim(7") is even. Recall the notion of the basic Euler
characteristic y(M, 7 ; 23,) from Subsection 2.1. We have

1
(6'19) X(Mvg;@fld):X(WmaX)'

L
Proof. From Corollary 8, y(M,7;Z;3,) equals the index of Dj,, when D is the
operator d + d* and the Z,-grading comes from the form degree. Then

(6.20) Index(Din,) = AVx Y [ e(TZ["),

| k
l Z,'T

where e denotes the Euler form. Thus Index(Din,) = 3 7(Z"), which equals the Euler

characteristic of Wpax. O !
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