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Warmup case

Say M is a compact orientable surface.

The Ricci flow equation :

dg
dt

= −2 K g.

Here
1. g ≡ gij is a Riemannian metric on M.
2. K is the Gaussian curvature of g.



Warmup case

Say M is a compact orientable surface.

The Ricci flow equation :

dg
dt

= −2 K g.

Here
1. g ≡ gij is a Riemannian metric on M.
2. K is the Gaussian curvature of g.



Some explicit solutions

1. The shrinking two-sphere :

g(t) = r2(t) ground ,

r2(t) = r2(0)− 2t .

2. The static two-torus :

g(t) = gflat .

3. The expanding higher-genus surface :

g(t) = r2(t) ghyp,

r2(t) = r2(0) + 2t .
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Conformal invariance

From the 2-D Ricci flow equation

dg
dt

= −2 K g,

we get
g(t) = Φ(t) g(0)

for some positive function Φ(t).

Here Φ satisfies the logarithmic fast diffusion equation

∂Φ

∂t
= 4g(0)(ln Φ) − 2K0.
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Results of Hamilton (1988), Chow (1991)

Say g(0) is an arbitrary Riemannian metric on the surface M.

1. If M is a two-sphere then there is a finite extinction time
T <∞. Also,

lim
t→T−

g(t)
T − t

= 2 ground .

2. If M is a two-torus then the flow exists for t ∈ [0,∞) and

lim
t→∞

g(t) = gflat

for some flat metric gflat .
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Hamilton/Chow

3. If M is a higher genus surface then the flow exists for
t ∈ [0,∞). Putting

ĝ(t) =
g(t)

t
,

we have
lim

t→∞
ĝ(t) = 2 ghyp

for some metric ghyp of constant curvature −1.



Uniformization theorem

The uniformization theorem says that any Riemannian metric
on a compact orientable surface is conformally equivalent to a
constant curvature metric.

Does this give a Ricci flow proof of the uniformization theorem?

Not quite : there’s a circularity in the argument.

In the two-sphere case, the Hamilton/Chow convergence proof
uses the uniformization theorem.

However, one can get around this (Chen-Lu-Tian 2006).
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The Ricci flow equation

dg
dt

= − 2 Ric .

This is a weakly parabolic equation for the Riemannian metric
g(t).

The “de Turck” trick gives an equivalent parabolic equation.

If M is compact then for any initial Riemannian metric g(0) on
M, there is a smooth Ricci flow solution on some maximal time
interval [0,T ) with 0 < T ≤ ∞.
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Constant curvature solutions

Some explicit solutions :

1. Round shrinking sphere

2. Static flat metric

3. Expanding hyperbolic metric



Product solutions

If (M,g(·)) is a Ricci flow solution on a surface M then we get a
Ricci flow solution on M × S1 :

h(t) = g(t) + dθ2.

Here the S1-factor is static.



First nontrivial case

Take the manifold M × S1 again, but now allow the length of the
circle fiber over m ∈ M to depend on m.

This gives a warped product metric on M × S1 :

h = g + e2udθ2,

where u is a function on the surface M.

Fact : if the initial metric h(0) is a warped product metric then
so is the Ricci flow metric h(t).

As the metric evolves, what happens? An old question in Ricci
flow.
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Warped product Ricci flow

The Ricci flow equation for the metric

h = g + e2udθ2

on M × S1 becomes the coupled equations on the surface M :

∂u
∂t

= 4g(t)u,

∂gij

∂t
= − 2 K gij + 2(∂iu)(∂ju).

Problem : this flow is no longer conformal.
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U(1) x U(1) symmetry

If U(1)× U(1) acts freely on a compact orientable
three-dimensional manifold then it is topologically a 3-torus. It
fibers over a circle, with the 2-torus fibers being the orbits of the
U(1)× U(1) action.

A U(1)× U(1)-invariant metric takes the form

g =
2∑

i,j=1

Gij(y)dx idx j + gyy (y)dy2,

where
I y is a coordinate for the base circle,
I x1 and x2 are linear coordinates for the two-torus, and
I
(
Gij(y)

)
is a positive-definite symmetric 2× 2 matrix.
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Flow equation

The Ricci flow equation becomes

∂G
∂t

= gyy
(

G′′ −G′G−1G′
)
,

∂gyy

∂t
=

1
2

Tr
((

G−1G′
)2
)
.

Periodic boundary condition :

G(y + 1) = G(y).

Hamilton (1995) : Under some additional assumptions, as
t →∞, the metric approaches a flat metric on T 3.
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Twisted torus bundles

Twisted boundary conditions : require

G(y + 1) = HT G(y)H,

where H ∈ SL(2,Z). This gives a metric on the 2-torus bundle
over a circle with holonomy H.

Hamilton-Isenberg (1993) : If H has distinct real eigenvalues
then under some additional assumptions, as t →∞, the metric
approaches a locally homogeneous metric of Sol-type.
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Natural questions

From Perelman’s first Ricci flow paper :

“The natural questions that remain open are whether the
normalized curvatures must stay bounded as t →∞, and
whether reducible manifolds and manifolds with finite
fundamental group can have metrics which evolve smoothly by
the Ricci flow on the infinite interval.”

The second question was answered in the negative in
Perelman’s third Ricci flow paper.

We’ll answer the first question in the positive in the special
cases of warped products and 2-torus bundles.
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Results

Joint work with Natasa Sesum (Rutgers)



Warped products

Theorem
Suppose that h(·) is a Ricci flow on M × S1 whose initial metric
h(0) is a warped product metric over a two-dimensional
compact base M.

1. If M is a 2-sphere then there is a finite extinction time
T <∞. As t → T−, the metric on M × S1 is asymptotic to
the product of a shrinking round metric on M with a static
metric on S1.

2. If M is a 2-torus then the flow exists for t ∈ [0,∞). As
t →∞, the metric on M × S1 approaches a flat metric
exponentially fast.

3. If M is a higher genus surface then the flow exists for
t ∈ [0,∞). The sectional curvatures on M × S1 are
O
(
t−1). For large t, there is a large region of M on which

the curvature of g(t)
t is close to − 1

2 , and over which the
circle fibers have almost constant length.
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Torus bundles

Theorem
Suppose that N is the total space of a 2-torus bundle over the
circle, with holonomy H ∈ SL(2,Z). Let h(·) be a Ricci flow
solution on N which is locally U(1)× U(1) invariant. Then the
sectional curvatures of (N,h(t)) are O

(
t−1) in magnitude.

1. If H has finite order then as t →∞, the metric h(t)
approaches a flat metric exponentially fast.

2. If H is hyperbolic then as t →∞, the manifold
(

N, g(t)
t

)
approaches a circle in the Gromov-Hausdorff sense. When
pulled back to the universal cover, as t →∞, the Ricci flow
solution approaches the homogeneous solution(

R3,e−2z dx2 + e2z dy2 + 4 t dz2
)
.
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Parabolic rescaling

If f (x , t) is a solution of the heat equation

∂f
∂t

= 4f

on Rn then so is
fs(x , t) = f (

√
sx , st).

If g(t) is a solution to the Ricci flow equation

dg
dt

= − 2 Ric

then so is
gs(t) =

1
s

g(st).
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Diffeomorphism invariance

If φ : N → N is a diffeomorphism and g(t) is a Ricci flow
solution on N then so is φ∗g(t).



Static solutions

The static solutions to the Ricci flow equation

dg
dt

= − 2 Ric

are the Ricci-flat metrics.

Allowing uniform expansion or contraction, we also get the
Einstein metrics

Ric = cg, c ∈
{
− 1

2
,0,

1
2

}
.
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Soliton solutions

If a metric satisfies the steady soliton equation

Ric +
1
2
LV g = 0

then we get a Ricci flow solution

g(t) = φ∗t g,

where {φt} is the flow generated by the vector field V .

Similarly, there are the shrinking soliton equation

Ric +
1
2
LV g =

1
2

g

and the expanding soliton equation

Ric +
1
2
LV g = − 1

2
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3D solitons

Algebraic fact : if N is a three-dimensional manifold then any
Einstein metric on N has constant curvature.

Analytic fact : if N is a compact three-dimensional manifold
then any Ricci soliton on N has constant curvature.
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Hyperbolizable manifolds

The only general result about the long-time asymptotics of
three-dimensional Ricci flow :

Theorem
(Perelman 2003) Suppose that N is a compact
three-dimensional manifold that admits a hyperbolic metric ghyp.
Let g(0) be any Riemannian metric on N. Run the Ricci flow
starting with g(0). Then

I There is a finite number of surgeries.
I As t →∞, the rescaled metric g(t)

t approaches 4ghyp.
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Apparent paradox

Most compact three-dimensional manifolds do not admit a
constant curvature metric.

But the only quasistatic Ricci flow solutions on compact
three-dimensional manifolds have constant curvature.

Suppose that we run the Ricci flow on a compact
three-dimensional manifold that doesn’t admit a constant
curvature metric.

What happens?
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Locally homogeneous manifolds

A Riemannian manifold is locally homogeneous if any two
points have isometric neighborhoods.

Thurston’s geometrization conjecture = Perelman’s theorem :

Any compact three-dimensional manifold N can be
decomposed into pieces that admit finite-volume locally
homogeneous metrics.

Suppose that N has a locally homogeneous metric. Run the
Ricci flow. What happens?
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Locally homogeneous Ricci flow

If N is locally homogeneous then its universal cover Ñ is a
globally homogeneous space G/K .

The Ricci flow on G/K reduces to a system of ODE’s. In three
dimensions, the system can either be solved explicitly or its
asymptotics can be computed (Isenberg-Jackson 1992).
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Gromov-Hausdorff limits

Thurston type GH limit of
(

N, g(t)
t

)

H3 3-manifold of constant curvature − 1
4

H2 × R or ˜SL(2,R) 2-orbifold of constant curvature − 1
2

Sol circle or interval

Nil or R3 point

In general, the compact 3-manifold N collapses to a
lower-dimensional space.

Let’s pass to the universal cover Ñ.
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Expanding solitons

Proposition
(L. 2007) Suppose that N is a compact locally homogeneous
three-dimensional manifold whose Ricci flow exists for
t ∈ [0,∞). On the universal cover Ñ, the rescaled pullback
metric approaches a homogeneous expanding soliton.

Thurston type Expanding soliton
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Blowdown limits

The meaning of the limit in the Proposition :

Let g(·) be a Ricci flow solution on N that exists for t ∈ [0,∞).
For s > 0, define a blowdown solution by

gs(t) =
1
s

g(st).

Then on the universal cover Ñ, there are diffeomorphisms {φs}
so that

lim
s→∞

φ∗s g̃s = gexpander ,

with smooth convergence on compact subsets.
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Main tool : a convergence criterion

Theorem
(L. 2010) Suppose that (N,g(·)) is a Ricci flow on a compact
three-dimensional manifold, that exists for t ∈ [0,∞). Suppose
that the sectional curvatures are O

(
t−1) in magnitude, and the

diameter is O(
√

t). Then the pullback of the Ricci flow to Ñ
approaches a homogeneous expanding soliton.

Remarks :
I The hypotheses are invariant under parabolic rescaling.
I The hypotheses imply that there is only one piece in the

Thurston decomposition of N, so N admits a locally
homogeneous metric.

I One can also describe the Gromov-Hausdorff limit of
(N,g(·)).
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Ingredients of the proof

1. Monotonic quantities : modifications of Perelman’s
W -functional.

2. Compactness theorem : an extension of Hamilton’s
compactness theorem for Ricci flows, to remove the
assumption of a lower bound on the injectivity radius.

3. Contradiction arguments, using blowdown limits.
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Warped products and torus bundles

In the case of warped products and 2-torus bundles, the main
work is to show that the sectional curvatures are O

(
t−1) in

magnitude, and that the diameter is O(
√

t).

In the warped product case, the sectional curvature bound
comes from a contradiction argument, using blowdown limits
and the Gauss-Bonnet theorem.

In the case of torus bundles, the diameter bound comes from
the evolution formula for lengths, along with the maximum
principle.
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What’s missing so far

1. For warped products over a higher genus surface, the bound
diam(M,g(t)) = O(

√
t) is missing.

What could go wrong :

As t →∞, the metric g(t)
t on the surface could describe a family

of hyperbolic surfaces that slowly degenerate.

2. For a torus bundle with parabolic H ∈ SL(2,Z), a diameter
bound on the torus fibers is missing. There is a uniform volume
bound for the fibers.

3. What about the general case of a free U(1) action?
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