DEFICIENCIES OF LATTICE SUBGROUPS OF LIE GROUPS

JOHN LOTT

ABSTRACT

Let T be a lattice in a connected Lie group. We show that, besides a few exceptional cases, the
deficiency of I' is nonpositive.

1. Introduction

If T is a finitely presented group, then its deficiency def(I") is the maximum,
over all finite presentations of I', of the number of generators minus the number of
relations. If G is a connected Lie group, then a lattice in G is a discrete subgroup I
such that G/T" has finite volume. It is uniform if G/I" is compact. Lubotzky proved
the following result [7, Proposition 6.2].

THEOREM 1 (Lubotzky). Let T be a lattice in a simple Lie group G.
(a) If R —rank(G) = 2 or G =Sp(n, 1) or G = Fy4, then def(I') < 0.
(b) If G =S0O(n, 1) (for n=3) or G =SU(n,1) (for n = 2), then def(I') < 1.

We give an improvement of Lubotzky’s result.

THEOREM 2. Let G be a connected Lie group. Let T' be a lattice in G. If
def(I') > 0, then
(1) T has a finite normal subgroup F such that T'/F is a lattice in PSL,y(R),
or
(2) def(I') = 1 and either
(A) T is isomorphic to a torsion-free nonuniform lattice in RxPSL,(R) or PSL,(C),
or

(B) T is Z, Z? or the fundamental group of a Klein bottle.

The examples in case (2) do have deficiency one [5]. A free group on r generators,
r > 1, has deficiency r and gives an example of case (1).
In some cases, we have sharper bounds on def(I").

THEOREM 3. (1) If T is a lattice in SO(4,1), then

defT) <1 — iz vol(H*/T). (1.1)
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(2) If T is a lattice in SU(2, 1), then
def(IN) < 1— % vol(CH?/TI). (1.2)

(We normalize CH? to have sectional curvatures between —4 and —1.)
(3) If T is a lattice in PSLy(R) x PSL,(R), then

def(IN) < 1— # vol((H* x H*)/T). (1.3)

2. Proofs

To prove Theorems 2 and 3, we use methods of L’>-homology. For a review
of L?-homology, see [8]. Let G and T be as in the hypotheses of Theorem 2. Let
b§.2>(r ) € R denote the ith L?-Betti number of I'. Let Rad be the radical of G, let
L be a Levi subgroup of G, and let K be the maximal compact connected normal
subgroup of L. Put G; = Rad-K and G, = G/Gq, a connected semisimple Lie group
whose Lie algebra has no compact factors. Let f : G — G, be the projection map.
Put 'y =I' NGy and I', = B(I'). Then there is an exact sequence

| —T, —T251,—1, (2.1)

where I'y is a lattice in Gy and I', is a lattice in G, [1].

Lemma 1. If b‘ﬁ(r) =+ 0, then T has a finite normal subgroup F such that T'/F is
a lattice in PSLy(R).

Proof. There are the following possibilities.

(A) I'y is infinite. Then I' has an infinite normal amenable subgroup. By a result
of Cheeger and Gromov, the L?-Betti numbers of I" vanish [8, Theorem 10.12].

(B) I'; is finite and I'; is finite (that is, ['; = {e}). Then I" is finite and b*(I') = 0.

(C) I'y is finite and I, is infinite. By the Leray—Serre spectral sequence for
L2-homology, b\?(T') = b'?(I")/|Ty|. Suppose that b\7(T') # 0. If G had an infinite
centre, then I'5, being a lattice, would have to have an infinite centre. This would
imply, by [8, Theorem 10.12], that b(lz)(Fz) vanishes, so G, must have a finite centre
Z(Gy). Put Gz = G2/Z(Gy), let y : G, — G5 be the projection, and put I'; = y(I',),
a lattice in G3. Then there is the exact sequence

1 —T5NZ(Gy) — Ty -5 T3 — 1, (2.2)

and so b(lz)(l"g) = b(lz)(l"3)/|l"2 N Z(G3)|. Let K3 be a maximal compact subgroup of
Gs, and let # be a fundamental domain for the I';-action on G3/K3. Let Il(x, y) be
the Schwartz kernel for the projection operator onto the L?*-harmonic 1-forms on
G3/Kj3. By [4, Theorem 1.1],

bP(3) = /. tr(I1(x, x))dvol(x).

Hence G3/K3 has nonzero L?>-harmonic 1-forms. By the Kiinneth formula for L*-
cohomology and [2, Section I1.5], the only possibility is G3 = PSL,(R). Then there
is the exact sequence

l—TNKer(yof) — T 25T, — 1, (2.3)
with I' N Ker(y o f) finite.
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Let geomdim I be the minimal dimension of a K(I', 1)-complex [3, p. 185]. We
shall need the following result of Hillman [6, Theorem 2]. For completeness, we give
the short proof.

LeEmMaA 2 (Hillman). If'T is a finitely-presented group, then def(I') < 1+ b(lz)(F).
Equality implies that there is a finite K(I', 1)-complex X with dim(X) < 2.

Proof. IfT is finite, then def(I') < 0, so we may assume that I" is infinite. Given
a presentation of I with g generators and r relations, let X be the corresponding
2-complex. As X is two-dimensional, its second L>-homology group is the same as
the space of square-integrable real cellular 2-cycles on the universal cover X. This
contains the ordinary integer cellular 2-cycles as a subgroup.

We have

1X)=1—g+r=b(X) - bP(X) +bP(X) = —bP(I) + bP(X). (2.4)

Hence
g—r=14+bPT) —bP(X) <1+ bP(I). (2.5)

Ifg—r=1+ b(lz)(F), then b(zz)(X) = 0. Hence H2()~(;Z) = 0. From the Hurewicz
theorem, X is contractible.

Proof of Theorem 2. Suppose that def(I') > 0. Then, first, |I'] = oo. Suppose
that T" does not have a finite normal subgroup F such that G/F is a lattice in
PSL,(R). By Lemma 1, b(lz)(l“) = 0. Then Lemma 2 implies that def(I') = 1 and
geomdim I" < 2. In particular, I is torsion-free.

As Ty is a lattice in K - Rad, it is a uniform lattice [9, Chapter I1I]. Furthermore,
as I'y is a subgroup of I', geomdim Iy < 2, and so I';y must be {e}, Z, Z? or the
fundamental group of a Klein bottle. We go through the possibilities.

(i) I'1 = {e}. Then T =TI'; is a torsion-free lattice in the semisimple group G.
Using a result of Borel and Serre [3, p. 218], the fact that geomdim " < 2 implies
that the Lie algebra of G, is sh(R), sh(R) @ sl(R) or sh(C). One possibility is
G, = PSL,(R). Using the embedding PSLy(R) = Z xz PSLy(R) — R xz PSLy(R),
in this case we can say that ' is isomorphic to a lattice in R xz PSL;(R). On
the other hand, if G, is a finite covering of PSL,(R), then b(lz)(l") =+ 0, contrary to
assumption. If G, is an infinite covering of PSLy(R) x PSL,(R), then the Leray—
Serre spectral sequence implies that I'; has cohomological dimension greater than
two, contrary to assumption. If G, is a finite covering of PSL,(R) x PSL,(R), then
Lemma 3 below will show that def(I") < 0, contrary to assumption. If G, = SL,(C),
let p : SLy(C) — PSL,(C) be the projection map. Then there is the exact sequence

1 — T'nKer(p) — T - pI) — 1. (2.6)

As T is torsion-free, I' N Ker(p) = {e}, and so T" is isomorphic to p(T'), a lattiAcS in

PSL,(C). Thus in any case, I is isomorphic to a torsion-free lattice in R xz PSL,(R)
or PSLy(C). If I' is uniform, then geom dim I = 3. Thus I must be nonuniform. The
torsion-free nonuniform lattices in R xzPSL;(R) and R x PSL;(R) are isomorphic, as
they both correspond to the Seifert fibre spaces whose base is a hyperbolic orbifold
with boundary [10]. We conclude that I" is isomorphic to a torsion-free nonuniform

lattice in R x PSL,(R) or PSL,(C).
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(i) I'1 = Z. Let ") be a finite-index torsion-free subgroup of I'; which acts
trivially on Z, and put I' = g~1(I'}), a finite-index subgroup of I'. Then there is the
exact sequence

|l —T —r 51 (2.7)

Let M be a I';-module, and let f*M be the corresponding I"-module. If H*(I'y; M)
+ 0, let k be the largest integer such that H*(I",; M) = 0. Then by the Leray—Serre
spectral sequence, H*"(I"; " M) # 0. As geomdimI” < 2, we must have k < 1.
Thus the cohomological dimension of I is at most one, and the Stallings—Swan
theorem implies that I, must be trivial or a free group [3, p. 185]. If I'; = {e}, then
Gy ={e} and I = Z. If T} is a free group, then G, is a finite covering of PSL,(R).
Let ¢ : G, — PSLy(R) be the projection map, and put L = (¢ o f)(I'). Then there is
the exact sequence

| —TNKer(gof) —T L1, (2.8)

where L is a lattice in PSL;(R) and I'NKer(oof) is virtually cyclic. As 'MKer(aof) is
torsion-free, it must equal Z. It follows that I" is isomorphic to a lattice in RxPSL(R)
or R xz PSL,(R). If T is uniform, then geomdim I" = 3. Thus I' is nonuniform and
is isomorphic to a lattice in R x PSL,(R).

(iii) Ty = Z2. Let Iy be a finite-index torsion-free subgroup of I'; which acts on
7? with determinant 1, and put I = g~(I'}), a finite-index subgroup of I'. Let M
be a I',-module, and let f*M be the corresponding I''-module. If H*(I'y; M) # 0, let
k be the largest integer such that H¥(I",; M) # 0. Then by the Leray-Serre spectral
sequence, H**>(I"; *M) # 0. As geomdim I < 2, we must have k = 0. Thus the
cohomological dimension of T is zero, so I', = {e} and G, = {e}. Then I' = Z°.

(iv) 'y is the fundamental group of a Klein bottle. Let Z? be the unique maximal
abelian subgroup of I';. Any automorphism of I'; acts as an automorphism of Z2.
Thus we obtain a homomorphism ¢ : Aut(I'y) - GLy(Z). Let p : ' — Aut(I'y) be
given by (p(7))(y1) = yy1y~". Put I' = Ker(det o ¢ o p), an index-2 subgroup of T,

and put I'; = ﬁ(f). Then there is an exact sequence
| —72 T LT 1 (2.9)

As in case (iii), it follows that G, = {e} and I" = I'; is the fundamental group of a
Klein bottle.
This proves Theorem 2.

Proof of Theorem 3. Let X be as in the proof of Lemma 2. As the classifying
map X — BI is 2-connected, b(z)(X) > b(z)(l"). Then from (2.5),
2 2
def(T) < 1+ BP(T) — BP(T). (2.10)

For the lattices in question, let G be the Lie group, let K now be a maximal compact
subgroup of G, and put M = I'\G/K, an orbifold. As G/K has no L>-harmonic
1-forms [2, Section II.5], it follows from [4, Theorem 1.1] that b(lz)(l“) = bgz)(l") =0.
As |I'| = oo, we have bgz)(l") = bf)(l“) = 0. If y(T') is the rational-valued group Euler
characteristic of I" [3, p. 249], then
2(T) = B2() — BA(T) + BP(T) — bP(T) + BP(T) = b(TD). (2.11)
From (2.10) and (2.11), we obtain
def(IT') < 1 — x(T). (2.12)
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Furthermore, letting e(M,g) € Q*(M) denote the Euler density, it follows from
[4, Theorem 1.1] that

xI) = /Me(M,g). (2.13)

Let GY/K be the compact dual symmetric space to G/K. By the Hirzebruch pro-
portionality principle,
JueM,g)  vol(M)

2(G/K) — vol(G!/K)' (2.14)

We have the following table.

G G/K  7(G'/K) vol(GY/K)
SO(4, 1) 4 2 872/3
SU(2,1) cp? 3 n2/2
PSL»(R) x PSLy(R) S2 x S2 4 1672

This proves Theorem 3.

LEMMA 3. Let G be a connected Lie group with a surjective homomorphism
p : G — PSLy(R) x PSLy(R) such that Ker(p) is central in G and finite. If T is
a lattice in G, then def(I') < 0.

Proof. Equation (2.12) is still valid for I'. We have x(I') = y(p(I"))/|T N Ker(p)|.
Applying (2.13) to p(I'), the proof of Theorem 3 gives y(p(I')) > 0. Hence y(I') > 0
and def(I') < 0.
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