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Abstract

Let Γ be a lattice in a connected Lie group. We show that, besides a few exceptional cases, the
deficiency of Γ is nonpositive.

1. Introduction

If Γ is a finitely presented group, then its deficiency def(Γ) is the maximum,
over all finite presentations of Γ, of the number of generators minus the number of
relations. If G is a connected Lie group, then a lattice in G is a discrete subgroup Γ
such that G/Γ has finite volume. It is uniform if G/Γ is compact. Lubotzky proved
the following result [7, Proposition 6.2].

Theorem 1 (Lubotzky). Let Γ be a lattice in a simple Lie group G.
(a) If R− rank(G) > 2 or G = Sp(n, 1) or G = F4, then def(Γ) 6 0.
(b) If G = SO(n, 1) ( for n > 3) or G = SU(n, 1) ( for n > 2), then def(Γ) 6 1.

We give an improvement of Lubotzky’s result.

Theorem 2. Let G be a connected Lie group. Let Γ be a lattice in G. If
def(Γ) > 0, then
(1) Γ has a finite normal subgroup F such that Γ/F is a lattice in PSL2(R),
or
(2) def(Γ) = 1 and either

(A) Γ is isomorphic to a torsion-free nonuniform lattice in R×PSL2(R) or PSL2(C),
or

(B) Γ is Z, Z2 or the fundamental group of a Klein bottle.

The examples in case (2) do have deficiency one [5]. A free group on r generators,
r > 1, has deficiency r and gives an example of case (1).

In some cases, we have sharper bounds on def(Γ).

Theorem 3. (1) If Γ is a lattice in SO(4, 1), then

def(Γ) 6 1− 3

4π2
vol(H4/Γ). (1.1)
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(2) If Γ is a lattice in SU(2, 1), then

def(Γ) 6 1− 6

π2
vol(CH2/Γ). (1.2)

(We normalize CH2 to have sectional curvatures between −4 and −1.)
(3) If Γ is a lattice in PSL2(R)× PSL2(R), then

def(Γ) 6 1− 1

4π2
vol((H2 ×H2)/Γ). (1.3)

2. Proofs

To prove Theorems 2 and 3, we use methods of L2-homology. For a review
of L2-homology, see [8]. Let G and Γ be as in the hypotheses of Theorem 2. Let
b

(2)
i (Γ) ∈ R denote the ith L2-Betti number of Γ. Let Rad be the radical of G, let
L be a Levi subgroup of G, and let K be the maximal compact connected normal
subgroup of L. Put G1 = Rad ·K and G2 = G/G1, a connected semisimple Lie group
whose Lie algebra has no compact factors. Let β : G → G2 be the projection map.
Put Γ1 = Γ ∩ G1 and Γ2 = β(Γ). Then there is an exact sequence

1 −→ Γ1 −→ Γ
β−→ Γ2 −→ 1, (2.1)

where Γ1 is a lattice in G1 and Γ2 is a lattice in G2 [1].

Lemma 1. If b(2)
1 (Γ) 6= 0, then Γ has a finite normal subgroup F such that Γ/F is

a lattice in PSL2(R).

Proof. There are the following possibilities.
(A) Γ1 is infinite. Then Γ has an infinite normal amenable subgroup. By a result

of Cheeger and Gromov, the L2-Betti numbers of Γ vanish [8, Theorem 10.12].
(B) Γ1 is finite and Γ2 is finite (that is, Γ2 = {e}). Then Γ is finite and b(2)

1 (Γ) = 0.
(C) Γ1 is finite and Γ2 is infinite. By the Leray–Serre spectral sequence for

L2-homology, b(2)
1 (Γ) = b

(2)
1 (Γ2)/|Γ1|. Suppose that b(2)

1 (Γ2) 6= 0. If G2 had an infinite
centre, then Γ2, being a lattice, would have to have an infinite centre. This would
imply, by [8, Theorem 10.12], that b(2)

1 (Γ2) vanishes, so G2 must have a finite centre
Z(G2). Put G3 = G2/Z(G2), let γ : G2 → G3 be the projection, and put Γ3 = γ(Γ2),
a lattice in G3. Then there is the exact sequence

1 −→ Γ2 ∩ Z(G2) −→ Γ2

γ−→ Γ3 −→ 1, (2.2)

and so b
(2)
1 (Γ2) = b

(2)
1 (Γ3)/|Γ2 ∩ Z(G2)|. Let K3 be a maximal compact subgroup of

G3, and let F be a fundamental domain for the Γ3-action on G3/K3. Let Π(x, y) be
the Schwartz kernel for the projection operator onto the L2-harmonic 1-forms on
G3/K3. By [4, Theorem 1.1],

b
(2)
1 (Γ3) =

∫
F

tr(Π(x, x))dvol(x).

Hence G3/K3 has nonzero L2-harmonic 1-forms. By the Künneth formula for L2-
cohomology and [2, Section II.5], the only possibility is G3 = PSL2(R). Then there
is the exact sequence

1 −→ Γ ∩Ker(γ ◦ β) −→ Γ
γ◦β−→ Γ3 −→ 1, (2.3)

with Γ ∩Ker(γ ◦ β) finite.
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Let geom dim Γ be the minimal dimension of a K(Γ, 1)-complex [3, p. 185]. We
shall need the following result of Hillman [6, Theorem 2]. For completeness, we give
the short proof.

Lemma 2 (Hillman). If Γ is a finitely-presented group, then def(Γ) 6 1 + b
(2)
1 (Γ).

Equality implies that there is a finite K(Γ, 1)-complex X with dim(X) 6 2.

Proof. If Γ is finite, then def(Γ) 6 0, so we may assume that Γ is infinite. Given
a presentation of Γ with g generators and r relations, let X be the corresponding
2-complex. As X is two-dimensional, its second L2-homology group is the same as
the space of square-integrable real cellular 2-cycles on the universal cover X̃. This
contains the ordinary integer cellular 2-cycles as a subgroup.

We have

χ(X) = 1− g + r = b
(2)
0 (X)− b(2)

1 (X) + b
(2)
2 (X) = −b(2)

1 (Γ) + b
(2)
2 (X). (2.4)

Hence

g − r = 1 + b
(2)
1 (Γ)− b(2)

2 (X) 6 1 + b
(2)
1 (Γ). (2.5)

If g − r = 1 + b
(2)
1 (Γ), then b

(2)
2 (X) = 0. Hence H2(X̃; Z) = 0. From the Hurewicz

theorem, X̃ is contractible.

Proof of Theorem 2. Suppose that def(Γ) > 0. Then, first, |Γ| = ∞. Suppose
that Γ does not have a finite normal subgroup F such that G/F is a lattice in

PSL2(R). By Lemma 1, b(2)
1 (Γ) = 0. Then Lemma 2 implies that def(Γ) = 1 and

geom dim Γ 6 2. In particular, Γ is torsion-free.

As Γ1 is a lattice in K ·Rad, it is a uniform lattice [9, Chapter III]. Furthermore,
as Γ1 is a subgroup of Γ, geom dim Γ1 6 2, and so Γ1 must be {e}, Z, Z2 or the
fundamental group of a Klein bottle. We go through the possibilities.

(i) Γ1 = {e}. Then Γ = Γ2 is a torsion-free lattice in the semisimple group G2.
Using a result of Borel and Serre [3, p. 218], the fact that geom dim Γ 6 2 implies
that the Lie algebra of G2 is sl2(R), sl2(R) ⊕ sl2(R) or sl2(C). One possibility is

G2 = ˜PSL2(R). Using the embedding ˜PSL2(R) ∼= Z ×Z
˜PSL2(R) → R ×Z

˜PSL2(R),

in this case we can say that Γ is isomorphic to a lattice in R ×Z
˜PSL2(R). On

the other hand, if G2 is a finite covering of PSL2(R), then b
(2)
1 (Γ) 6= 0, contrary to

assumption. If G2 is an infinite covering of PSL2(R) × PSL2(R), then the Leray–
Serre spectral sequence implies that Γ2 has cohomological dimension greater than
two, contrary to assumption. If G2 is a finite covering of PSL2(R) × PSL2(R), then
Lemma 3 below will show that def(Γ) 6 0, contrary to assumption. If G2 = SL2(C),
let p : SL2(C)→ PSL2(C) be the projection map. Then there is the exact sequence

1 −→ Γ ∩Ker(p) −→ Γ
p−→ p(Γ) −→ 1. (2.6)

As Γ is torsion-free, Γ ∩Ker(p) = {e}, and so Γ is isomorphic to p(Γ), a lattice in

PSL2(C). Thus in any case, Γ is isomorphic to a torsion-free lattice in R×Z
˜PSL2(R)

or PSL2(C). If Γ is uniform, then geom dim Γ = 3. Thus Γ must be nonuniform. The

torsion-free nonuniform lattices in R×Z
˜PSL2(R) and R×PSL2(R) are isomorphic, as

they both correspond to the Seifert fibre spaces whose base is a hyperbolic orbifold
with boundary [10]. We conclude that Γ is isomorphic to a torsion-free nonuniform
lattice in R× PSL2(R) or PSL2(C).
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(ii) Γ1 = Z. Let Γ′2 be a finite-index torsion-free subgroup of Γ2 which acts
trivially on Z, and put Γ′ = β−1(Γ′2), a finite-index subgroup of Γ. Then there is the
exact sequence

1 −→ Γ1 −→ Γ′
β−→ Γ′2 −→ 1. (2.7)

Let M be a Γ′2-module, and let β∗M be the corresponding Γ′-module. If H∗(Γ′2;M)
6= 0, let k be the largest integer such that Hk(Γ′2;M) 6= 0. Then by the Leray–Serre
spectral sequence, Hk+1(Γ′; β∗M) 6= 0. As geom dim Γ′ 6 2, we must have k 6 1.
Thus the cohomological dimension of Γ′2 is at most one, and the Stallings–Swan
theorem implies that Γ′2 must be trivial or a free group [3, p. 185]. If Γ′2 = {e}, then
G2 = {e} and Γ = Z. If Γ′2 is a free group, then G2 is a finite covering of PSL2(R).
Let σ : G2 → PSL2(R) be the projection map, and put L = (σ ◦ β)(Γ). Then there is
the exact sequence

1 −→ Γ ∩Ker(σ ◦ β) −→ Γ
σ◦β−→ L −→ 1, (2.8)

where L is a lattice in PSL2(R) and Γ∩Ker(σ◦β) is virtually cyclic. As Γ∩Ker(σ◦β) is
torsion-free, it must equal Z. It follows that Γ is isomorphic to a lattice in R×PSL2(R)

or R×Z
˜PSL2(R). If Γ is uniform, then geom dim Γ = 3. Thus Γ is nonuniform and

is isomorphic to a lattice in R× PSL2(R).
(iii) Γ1 = Z2. Let Γ′2 be a finite-index torsion-free subgroup of Γ2 which acts on

Z2 with determinant 1, and put Γ′ = β−1(Γ′2), a finite-index subgroup of Γ. Let M
be a Γ′2-module, and let β∗M be the corresponding Γ′-module. If H∗(Γ′2;M) 6= 0, let
k be the largest integer such that Hk(Γ′2;M) 6= 0. Then by the Leray–Serre spectral
sequence, Hk+2(Γ′; β∗M) 6= 0. As geom dim Γ′ 6 2, we must have k = 0. Thus the
cohomological dimension of Γ′2 is zero, so Γ′2 = {e} and G2 = {e}. Then Γ = Z2.

(iv) Γ1 is the fundamental group of a Klein bottle. Let Z2 be the unique maximal
abelian subgroup of Γ1. Any automorphism of Γ1 acts as an automorphism of Z2.
Thus we obtain a homomorphism φ : Aut(Γ1) → GL2(Z). Let ρ : Γ → Aut(Γ1) be
given by (ρ(γ))(γ1) = γγ1γ

−1. Put Γ̃ = Ker(det ◦ φ ◦ ρ), an index-2 subgroup of Γ,

and put Γ̃2 = β(Γ̃). Then there is an exact sequence

1 −→ Z2 −→ Γ̃
β−→ Γ̃2 −→ 1. (2.9)

As in case (iii), it follows that G2 = {e} and Γ = Γ1 is the fundamental group of a
Klein bottle.

This proves Theorem 2.

Proof of Theorem 3. Let X be as in the proof of Lemma 2. As the classifying
map X → BΓ is 2-connected, b(2)

2 (X) > b(2)
2 (Γ). Then from (2.5),

def(Γ) 6 1 + b
(2)
1 (Γ)− b(2)

2 (Γ). (2.10)

For the lattices in question, let G be the Lie group, let K now be a maximal compact
subgroup of G, and put M = Γ\G/K , an orbifold. As G/K has no L2-harmonic

1-forms [2, Section II.5], it follows from [4, Theorem 1.1] that b(2)
1 (Γ) = b

(2)
3 (Γ) = 0.

As |Γ| = ∞, we have b(2)
0 (Γ) = b

(2)
4 (Γ) = 0. If χ(Γ) is the rational-valued group Euler

characteristic of Γ [3, p. 249], then

χ(Γ) = b
(2)
0 (Γ)− b(2)

1 (Γ) + b
(2)
2 (Γ)− b(2)

3 (Γ) + b
(2)
4 (Γ) = b

(2)
2 (Γ). (2.11)

From (2.10) and (2.11), we obtain

def(Γ) 6 1− χ(Γ). (2.12)
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Furthermore, letting e(M, g) ∈ Ω4(M) denote the Euler density, it follows from
[4, Theorem 1.1] that

χ(Γ) =

∫
M

e(M, g). (2.13)

Let Gd/K be the compact dual symmetric space to G/K . By the Hirzebruch pro-
portionality principle, ∫

M
e(M, g)

χ(Gd/K)
=

vol(M)

vol(Gd/K)
. (2.14)

We have the following table.

G Gd/K χ(Gd/K) vol(Gd/K)

SO(4, 1) S4 2 8π2/3

SU(2, 1) CP 2 3 π2/2

PSL2(R)× PSL2(R) S2 × S2 4 16π2

This proves Theorem 3.

Lemma 3. Let G be a connected Lie group with a surjective homomorphism
ρ : G → PSL2(R) × PSL2(R) such that Ker(ρ) is central in G and finite. If Γ is
a lattice in G, then def(Γ) 6 0.

Proof. Equation (2.12) is still valid for Γ. We have χ(Γ) = χ(ρ(Γ))/|Γ∩Ker(ρ)|.
Applying (2.13) to ρ(Γ), the proof of Theorem 3 gives χ(ρ(Γ)) > 0. Hence χ(Γ) > 0
and def(Γ) 6 0.
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