DIFFERENTIAL FORMS, SPINORS AND BOUNDED CURVATURE COLLAPSE

John Lott

University of Michigan

November, 2000

From preprints

"Collapsing and the Differential Form Laplacian"

"On the Spectrum of a Finite-Volume Negatively-Curved Manifold"

"Collapsing and Dirac-Type Operators"

http://www.math.lsa.umich.edu/~lott

WHAT I WILL (NOT) TALK ABOUT

Fukaya (1987) : Studied the function Laplacian, under a bounded curvature collapse.

Cheeger-Colding (preprint) : Studied the function Laplacian, under a collapse with Ricci curvature bounded below.

Today : The differential form Laplacian and geometric Dirac-type operators, under a bounded curvature collapse.

MOTIVATION : CHEEGER'S INEQUALITY

Let M be a connected compact Riemannian manifold.

Spectrum of \bigtriangleup^M :

$$0 = \lambda_1(M) < \lambda_2(M) \le \lambda_3(M) \le \dots$$

Theorem 1. (Cheeger 1969)

$$\lambda_2(M) \ge \frac{h^2}{4}.$$

Definition 1.

$$h = \inf_{A} \frac{Area(A)}{\min(vol(M_1), vol(M_2))}$$

where A ranges over separating hypersurfaces.

Question (Cheeger) : Is there a similar inequality for the *p*-form Laplacian? (Problem # 79 on Yau's list.)

THE *p*-FORM LAPLACIAN

The *p*-form Laplacian is

$$\Delta_p^M = dd^* + d^*d : \Omega^p(M) \to \Omega^p(M).$$

Spectrum of \triangle_p^M :

$$0 \le \lambda_{p,1}(M) \le \lambda_{p,2}(M) \le \lambda_{p,3}(M) \le \dots$$

By Hodge theory,

$$\operatorname{Ker}(\Delta_p^M) \cong \operatorname{H}^p(M; \mathbb{R}),$$

 \mathbf{SO}

$$0 = \lambda_{p,1}(M) = \ldots = \lambda_{p,b_p(M)}(M) < \lambda_{p,b_p(M)+1}(M) \le \ldots$$

COLLAPSING (Cheeger, Gromov)

Notation :

 R^M = Riemann sectional curvatures. diam(M) = $\sup_{p,q \in M} d_M(p,q)$.

Fix a number $K \ge 0$. Consider

{ connected Riem. manifolds $M^n : || R^M ||_{\infty} \le K$ and diam $(M) \le 1$ }.

There is a number $v_0(n, K) > 0$ such that one has the following dichotomy :

I. Noncollapsing case : $vol(M) \ge v_0$.

Finite number of topological types, $C^{1,\alpha}$ -metric rigidity. In particular, uniform bounds on eigenvalues of Δ_p .

or

II. Collapsing case : $vol(M) < v_0$.

Special structure. Need to analyze \triangle_p in this case.

BERGER EXAMPLE OF COLLAPSING

Hopf fibration $\pi: S^3 \to S^2$

Shrink the circles to radius ϵ . Look at the 1-form Laplacian Δ_1 . Since $\mathrm{H}^1(S^3; \mathbb{R}) = 0$, the first eigenvalue $\lambda_{1,1}$ of Δ_1 is positive.

Fact (Colbois-Courtois 1990)

$$\lim_{\epsilon \to 0} \lambda_{1,1} = 0.$$

New phenomenon : (uncontrollably) small eigenvalues.

When does this happen?

FUKAYA'S WORK ON THE FUNCTION LAPLACIAN

Suppose that $\{M_i\}_{i=1}^{\infty}$ are connected *n*-dimensional Riemannian manifolds with $\| R^{M_i} \|_{\infty} \leq K$ and diam $(M_i) \leq 1$.

Suppose that $M_i \xrightarrow{GH} X$.

Consider the function Laplacian on M_i , with eigenvalues $\{\lambda_j(M_i)\}_{j=1}^{\infty}$.

Question : Suppose that X is a smooth Riemannian manifold. Is it true that $\lim_{i\to\infty} \lambda_j(M_i) = \lambda_j(X)$?

Answer : In general, no. Need to add a probability measure μ to X.

Laplacian on weighted L^2 -space :

$$\frac{\langle f, \triangle^{X,\mu} f \rangle}{\langle f, f \rangle} = \frac{\int_X |\nabla f|^2 \, d\mu}{\int_X f^2 \, d\mu}.$$

Theorem 2. (Fukaya 1987) If

$$\lim_{i \to \infty} \left(M_i, \frac{dvol_{M_i}}{vol(M_i)} \right) = (X, \mu)$$

in the measured Gromov-Hausdorff topology then $\lim_{i\to\infty}\lambda_j(M_i) = \lambda_j(X,\mu).$

GOAL

Want a "p-form Laplacian" on the limit space X so that after taking a subsequence,

$$\lambda_{p,j}(M_i) \longrightarrow \lambda_{p,j}(X).$$

Question : What kind of structure do we need on X?

Input :

B a smooth manifold,

 $E = \bigoplus_{i=0}^{m} E^{i}$ a \mathbb{Z} -graded real vector bundle on B.

The (degree-1) superconnections A' that we need will be formal sums of the form

$$A' = A'_{[0]} + A'_{[1]} + A'_{[2]}$$

where

- A'_[0] ∈ C[∞] (B; Hom(E^{*}, E^{*+1})),
 A'_[1] is a grading-preserving connection ∇^E on E and
 A'_[2] ∈ Ω² (B; Hom(E^{*}, E^{*-1})).

Then $A': C^{\infty}(B; E) \to \Omega(B; E)$ extends by Leibniz' rule to an operator $A' : \Omega(B; E) \to \Omega(B; E).$

Flatness condition : $(A')^2 = 0$,

i.e.

•
$$(A'_{[0]})^2 = (A'_{[2]})^2 = 0,$$

• $\nabla^E A'_{[0]} = \nabla^E A'_{[2]} = 0$ and
• $(\nabla^E)^2 + A'_{[0]}A'_{[2]} + A'_{[2]}A'_{[0]} = 0.$

Note : $A'_{[0]}$ gives a differential complex on each fiber of E.

THE NEEDED STRUCTURE ON THE LIMIT SPACE X

A triple (E, A', h^E) , where

- 1. E is a \mathbb{Z} -graded real vector bundle on X,
- 2. A' is a flat degree-1 superconnection on E and
- 3. h^E is a Euclidean inner product on E.

We have

$$A': \Omega(X; E) \to \Omega(X; E).$$

Using g^{TX} and h^E , we get

$$(A')^* : \Omega(X; E) \to \Omega(X; E).$$

Put

$$\triangle^{E} = A'(A')^{*} + (A')^{*}A',$$

the superconnection Laplacian.

Example : If E is the trivial \mathbb{R} -bundle on X, A' is the trivial connection and h^E is the standard inner product on E then Δ^E is the Hodge Laplacian.

ANALYTIC COMPACTNESS

Theorem 3. If $M_i \xrightarrow{GH} X$ with bounded sectional curvature then after taking a subsequence, there is a certain triple (E, A', h^E) on X such that

$$\lim_{i \to \infty} \sigma \left(\triangle_p^{M_i} \right) = \sigma \left(\triangle_p^E \right)$$

Remark 1 : This is a pointwise convergence statement, i.e. for each j, the j-th eigenvalue converges.

Remark 2 : Here the limit space X is assumed to be a Riemannian manifold. There is an extension to singular limit spaces (see later).

Remark 3 : The relation to Fukaya's work on functions:

For functions, only $\Omega^0(X; E^0)$ is relevant. Here E^0 is a trivial \mathbb{R} bundle on X with a trivial connection. But its metric h^{E^0} may be nontrivial and corresponds to Fukaya's measure μ .

IDEA OF PROOF

1. The individual eigenvalues $\lambda_{p,j}$ are continuous with respect to the metric on M, in the C^0 -topology (Cheeger-Dodziuk).

2. By Cheeger-Fukaya-Gromov, if M is Gromov-Hausdorff close to X then we can slightly perturb the metric to get a Riemannian affine fiber bundle. That is,

affine fiber bundle : M is the total space of a fiber bundle $M \to X$ with infranil fiber Z, whose holonomy can be reduced from Diff(Z) to Aff(Z).

Riemannian affine fiber bundle : In addition, one has a. A horizontal distribution $T^H M$ on M with holonomy in Aff(Z), and b. Fiber metrics g^{TZ} which are fiberwise affine-parallel.

So it's enough to just consider Riemannian affine fiber bundles.

3. If M is a Riemannian affine fiber bundle then $\sigma(\triangle_p^M)$ equals $\sigma(\triangle_p^E)$ up to a high level, which is on the order of $d_{GH}(M, X)^{-2}$. Here E is the vector bundle on X whose fiber over $x \in X$ is

 $E_x = \{ \text{affine-parallel forms on } Z_x \}.$

4. Show that the ensuing triples $\{(E_i, A'_i, h^{E_i})\}_{i=1}^{\infty}$ have a convergent subsequence (modulo gauge transformation).

APPLICATION TO SMALL EIGENVALUES

Fix M and $K \geq 0$. Consider

 $\{g : \| R^M(g) \|_{\infty} \le K \text{ and } \operatorname{diam}(M,g) \le 1\}.$

Question : Among these metrics, are there more than $b_p(M)$ small eigenvalues of Δ_p^M ?

Suppose so, i.e. that for some $j > b_p(M)$, there are metrics $\{g_i\}_{i=1}^{\infty}$ so that

$$\lambda_{p,j}(M,g_i) \xrightarrow{i \to \infty} 0$$

Step 1. Using Gromov precompactness, take a convergent subsequence of spaces

$$(M, g_i) \xrightarrow{i \to \infty} X.$$

Since there are small positive eigenvalues, we must be in the collapsing situation.

Step 2. Using the analytic compactness theorem, take a further subsequence to get a triple (E, A', h^E) on X. Then

$$\lambda_{p,j}(\Delta^E) = 0.$$

In the limit, we've turned the small eigenvalues into **extra zero eigen-**values.

Recall that \triangle^E has the Hodge form $A'(A')^* + (A')^* A'$. Then from Hodge theory,

 $\dim(\mathrm{H}^p(A')) \ge j.$

Analysis \longrightarrow Topology

Fact : There is a spectral sequence to compute $H^p(A')$. Analyze the spectral sequence.

RESULTS ABOUT SMALL EIGENVALUES

Theorem 4. Given M, there are no more than $b_1(M) + \dim(M)$ small eigenvalues of the 1-form Laplacian.

More precisely, if there are j small eigenvalues and $j > b_1(M)$ then in terms of the limit space X,

 $j \leq \mathbf{b}_1(X) + \dim(M) - \dim(X).$

(Sharp in the case of the Berger sphere.)

More generally, where do small eigenvalues come from?

Theorem 5. Let M be the total space of an affine fiber bundle $M \to X$, which collapses to X. Suppose that there are small positive eigenvalues of Δ_p in the collapse. Then there are exactly three possibilities :

1. The infranil fiber Z has small eigenvalues of its q-form Laplacian for some $0 \le q \le p$. That is, $b_q(Z) < \dim\{affine-parallel q-forms on Z\}$.

OR

2. The "direct image" cohomology bundle H^q on X has a holonomy representation $\pi_1(X) \to \mathrm{Aut}(\mathrm{H}^q(Z;\mathbb{R}))$ which fails to be semisimple, for some $0 \leq q \leq p$.

\mathbf{OR}

3. The Leray spectral sequence to compute $H^p(M; \mathbb{R})$ does not degenerate at the E_2 term.

Each of these cases occurs in examples.

UPPER EIGENVALUE BOUNDS

Theorem 6. Fix M. If there is not a uniform upper bound on $\lambda_{p,j}$ (among metrics with $|| R^M ||_{\infty} \leq K$ and diam(M) = 1) then Mcollapses to a limit space X with $1 \leq \dim(X) \leq p-1$.

In addition, the generic fiber Z of the fiber bundle $M \to X$ is an infranilmanifold which does not admit nonzero affine-parallel k-forms for $p - \dim(X) \leq k \leq p$.

Example : Given M, if there is *not* a uniform upper bound on the j-th eigenvalue of the 2-form Laplacian then M collapses with bounded curvature to a 1-dimensional limit space. We know what such M look like.

SINGULAR LIMIT SPACES

Technical problem : in general, a limit space of a bounded-curvature collapse is not a manifold.

Theorem 7. (Fukaya 1986) : A limit space X is of the form \check{X}/G , where \check{X} is a Riemannian manifold and $G \subset \text{Isom}(\check{X})$.

What should the "forms on X" be? Answer : the basic forms on \check{X} . $\Omega^*_{basic}(\check{X}) = \{\omega \in \Omega^*(\check{X}) : \omega \text{ is } G\text{-invariant and for all } \mathfrak{x} \in \mathfrak{g}, i_{\mathfrak{x}}\omega = 0\}.$

Fact : One can do analysis on the singular space X by working G-equivariantly on \check{X} , i.e. construct superconnection Laplacians, etc. The preceding results extend to this setting.

FINITE-VOLUME NEGATIVELY-CURVED MANIFOLDS

Theorem 8. Let M^n be a complete connected Riemannian manifold with $vol(M) < \infty$ and $-b^2 \leq R^M \leq -a^2$, with $0 < a \leq b$. Then the space of square-integrable harmonic p-forms on M is finitedimensional.

Previously known to be true if $p \neq \frac{n-1}{2}$ and $\frac{b}{a}$ is close enough to one (Donnelly-Xavier).

The result is also true if M just has bounded curvature and asymptoticallycylindrical ends, as long as the cross-sections of the ends are not too big.

Theorem 9. There is a number $\delta(n) > 0$ such that if 1. M^n is a complete connected Riemannian manifold, 2. $\|R^M\|_{\infty} \leq b^2$ and 3. The ends of M are $\delta(n) b^{-1}$ -Gromov-Hausdorff close to rays then the space of square-integrable harmonic p-forms on M is finitedimensional.

Theorem 10. If M is a finite-volume negatively-curved manifold as above then one can write down an explicit ordinary differential operator whose essential spectrum coincides with that of the p-form Laplacian on M.

GEOMETRIC DIRAC-TYPE OPERATORS

Spinor modules V:

Say G is SO(n) or Spin(n), and V is a Hermitian G-module. Suppose that there is a G-equivariant map $\gamma : \mathbb{R}^n \to End(V)$ such that

$$\gamma(v)^2 = |v|^2 \operatorname{Id}.$$

Geometric Dirac-type operators :

Let M^n be a closed Riemannian manifold which is oriented or spin. Let V be a spinor module and let D^M be the corresponding Dirac-type operator. (Special cases: signature operator, pure Dirac operator.)

Theorem 11. Suppose that $M_i \xrightarrow{GH} X$ with bounded curvature, with X smooth. Then after taking a subsequence, there are a Clifford-module E on X and a certain first-order elliptic operator D^E on $C^{\infty}(X; E)$ such that

$$\lim_{i \to \infty} \sigma \left(D^{M_i} \right) = \sigma \left(D^E \right).$$

DIRAC OPERATORS ON SINGULAR SPACES

Suppose now that $M_i \xrightarrow{GH} X$ with bounded curvature, but with X singular. To describe the limit of $\sigma(D^{M_i})$, we need a Dirac-type operator on the singular space X. How to do this?

Let P_i be the principal *G*-bundle on M_i . Following Fukaya, we can assume that $P_i \xrightarrow{GH} \check{X}$, with \check{X} a *G*-manifold. We want to define a Dirac-type operator on $X = \check{X}/G$.

Fundamental Problem : There is no notion of a "G-basic spinor".

Resolution : Observe that a spinor field on M_i is a *G*-invariant element of $C^{\infty}(P_i) \otimes V$. Take $P_i \longrightarrow \check{X}$.

Definition 2. A "spinor field on X" is a G-invariant element of $C^{\infty}(X) \otimes V$.

Fact : There's a certain first-order transversally elliptic operator D on $C^{\infty}(\check{X}) \otimes V$.

Definition 3. The Dirac-type operator D on X is the restriction of \dot{D} to the G-invariant subspace of $C^{\infty}(\check{X}) \otimes V$.

APPLICATIONS TO SPECTRAL ANALYSIS OF DIRAC-TYPE OPERATORS

With this notion of the Dirac operator on X, one can prove a general convergence theorem for $\sigma(D^{M_i})$.

An application to upper eigenvalue bounds :

Theorem 12. Fix M and the spinor module V. If there is not a uniform upper bound on the *j*-th eigenvalue of $|D^M|$ (among metrics with $|| R^M ||_{\infty} \leq K$ and diam(M) = 1) then M collapses to a limit space X. Furthermore, the generic fiber Z of the map $M \to X$ is an infranilmanifold which does not admit any affine-parallel spinor fields.

Finally, one can characterize the essential spectrum of a geometric Dirac-type operator on a finite-volume negatively-curved manifold. That is, one can show that it equals the essential spectrum of a certain first-order ordinary differential operator associated to the ends.