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WHAT I WILL (NOT) TALK ABOUT

Fukaya (1987) : Studied the function Laplacian, under a bounded
curvature collapse.

Cheeger-Colding (preprint) :  Studied the function Laplacian,
under a collapse with Ricci curvature bounded below.

Today : The differential form Laplacian and geometric Dirac-type
operators, under a bounded curvature collapse.



MOTIVATION : CHEEGER’S INEQUALITY

Let M be a connected compact Riemannian manifold.

Spectrum of AM :

Theorem 1. (Cheeger 1969)

Definition 1.

b — inf Area(A)
1 min(vol (M), vol(Ms))’

where A ranges over separating hypersurfaces.

Question (Cheeger) : Is there a similar inequality for the p-form Lapla-
cian? (Problem # 79 on Yau’s list.)



THE p-FORM LAPLACIAN
The p-form Laplacian is

AN =dd* + d*d QP (M) — Q(M).

Spectrum of A}
0 <A1 (M) < Xpa(M) < Aps(M) < ...

By Hodge theory,
Ker(A)') = HP(M;R),

SO

0= Apal(M) == )\p,bp(M)(M) < )\p,bp(M)+l(M) S R



COLLAPSING (Cheeger, Gromov)

Notation :
RM = Riemann sectional curvatures.

diam(M) = sup dy(p,q).
p,gEM

Fix a number K > 0. Consider

{ connected Riem. manifolds M" :|| R™ |, < K and diam(M) < 1}.

There is a number vg(n, K) > 0 such that one has the following di-
chotomy :

I. Noncollapsing case : vol(M) > vy.

Finite number of topological types, C''®-metric rigidity. In particu-
lar, uniform bounds on eigenvalues of A,,.

or

II. Collapsing case : vol(M) < v.

Special structure. Need to analyze A, in this case.



BERGER EXAMPLE OF COLLAPSING

Hopf fibration 7 :S% — 52

Shrink the circles to radius €. Look at the 1-form Laplacian A;. Since
H'(S3%;R) = 0, the first eigenvalue A, ; of A is positive.

Fact (Colbois-Courtois 1990)
lim Ay 1 = 0.

New phenomenon : (uncontrollably) small eigenvalues.

When does this happen?



FUKAYA’S WORK ON THE FUNCTION LAPLACIAN

Suppose that { M;}5°, are connected n-dimensional Riemannian man-
ifolds with || R? || < K and diam(M;) < 1.

Suppose that M; CHox

o0

Consider the function Laplacian on M;, with eigenvalues {\;(M;)}52,;.

Question : Suppose that X is a smooth Riemannian manifold. Is it
true that lim; .. A\;(M;) = A\;(X)7

Answer : In general, no. Need to add a probability measure p to X.

Laplacian on weighted L?-space :

< f,ANuf s [V dp
<f.f> [ fdu

Theorem 2. (Fukaya 1987) If

dvolys.
li M; =) = (X,
- ( UOZ(Mi)) (X,4)
in the measured Gromov-Hausdorff topology then

lim \;(M;) = Aj(X, p).




GOAL

Want a “p-form Laplacian” on the limit space X so that after taking a
subsequence,

Ap,j(Mi) — Apj (X).

Question : What kind of structure do we need on X7



SUPERCONNECTIONS (Quillen 1985, Bismut-L. 1995)
Input :

B a smooth manifold,

E = @;nzo FEJ a Z-graded real vector bundle on B.

The (degree-1) superconnections A’ that we need will be formal sums
of the form

/ / / /
A= Ay + Ay + Ap

where
o Ay eC™ (B; Hom(E*, E*t1)),
° A’m is a grading-preserving connection V¥ on E and
o Ay € Q02 (B; Hom(E*, E*71)).

Then A’ : C*°(B; E) — Q(B; F) extends by Leibniz’ rule to an operator
A" Q(B;E) — Q(B; E).

Flatness condition : (A')* =0,

i.e.

. (A'[01>2 = <A'[21>2 =0,

2
o (VE)" + Ay Ay + Ay Ay = 0.

Note : AEO] gives a differential complex on each fiber of E.
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THE NEEDED STRUCTURE ON THE LIMIT SPACE X

A triple (E, A’, h®), where

1. F is a Z-graded real vector bundle on X,
2. A’ is a flat degree-1 superconnection on E and
3. h¥ is a Euclidean inner product on E.

We have
A QX E) — QX E).
Using ¢”* and A, we get
(A QX FE) — QX E).
Put
NE = A(AY + (A) A,

the superconnection Laplacian.

Example : If E is the trivial R-bundle on X, A’ is the trivial connec-
tion and h¥ is the standard inner product on E then A is the Hodge
Laplacian.
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ANALYTIC COMPACTNESS

Theorem 3. If M; S X with bounded sectional curvature then after
taking a subsequence, there is a certain triple (E, A’,hf) on X such
that

lim o (Aéwi) =0 (Af) .

1—00

Remark 1 : This is a pointwise convergence statement, i.e. for each
7, the j-th eigenvalue converges.

Remark 2 : Here the limit space X is assumed to be a Riemannian
manifold. There is an extension to singular limit spaces (see later).

Remark 3 : The relation to Fukaya’s work on functions:

For functions, only Q°(X; E?) is relevant. Here EY is a trivial R-
bundle on X with a trivial connection. But its metric hZ’ may be
nontrivial and corresponds to Fukaya’s measure p.
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IDEA OF PROOF

1. The individual eigenvalues A, ; are continuous with respect to the
metric on M, in the C°-topology (Cheeger-Dodziuk).

2. By Cheeger-Fukaya-Gromov, if M is Gromov-Hausdorff close to X
then we can slightly perturb the metric to get a Riemannian affine fiber
bundle. That is,

affine fiber bundle : M is the total space of a fiber bundle M — X
with infranil fiber Z, whose holonomy can be reduced from Diff(Z) to
Aff(Z).

Riemannian affine fiber bundle : In addition, one has
a. A horizontal distribution 7% M on M with holonomy in Aff(Z), and
b. Fiber metrics ¢g?# which are fiberwise affine-parallel.

So it’s enough to just consider Riemannian affine fiber bundles.

3. If M is a Riemannian affine fiber bundle then o(A)') equals o(A))
up to a high level, which is on the order of dgy(M,X) 2. Here E is
the vector bundle on X whose fiber over x € X is

E, = {affine-parallel forms on Z,}.

4. Show that the ensuing triples {(E;, A}, hFi)}3°, have a convergent
subsequence (modulo gauge transformation).
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APPLICATION TO SMALL EIGENVALUES

Fix M and K > 0. Consider
{g | RM(g) loo < K and diam(M,g) < 1}.

Question : Among these metrics, are there more than b,(M) small
eigenvalues of A7

Suppose so, i.e. that for some j > b,(M), there are metrics {g;}32,
so that ,
)\pJ(M, gz) — 0.

Step 1. Using Gromov precompactness, take a convergent subsequence
of spaces

1—00

Since there are small positive eigenvalues, we must be in the collaps-
ing situation.

Step 2. Using the analytic compactness theorem, take a further sub-
sequence to get a triple (E, A, h¥) on X. Then

M (AF) = 0.

In the limit, we've turned the small eigenvalues into extra zero eigen-
values.

Recall that AP has the Hodge form A’(A")* + (A’)* A’. Then from
Hodge theory,
dim(H?(A)) = j.

Analysis — Topology

Fact : There is a spectral sequence to compute H?(A’). Analyze the
spectral sequence.
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RESULTS ABOUT SMALL EIGENVALUES

Theorem 4. Given M, there are no more than by(M)+dim(M) small
eigenvalues of the 1-form Laplacian.

More precisely, if there are j small eigenvalues and j > by (M) then
in terms of the limit space X,

J < bi(X) + dim(M) — dim(X).

(Sharp in the case of the Berger sphere.)

More generally, where do small eigenvalues come from?

Theorem 5. Let M be the total space of an affine fiber bundle M — X,
which collapses to X . Suppose that there are small positive eigenvalues
of A, in the collapse. Then there are exactly three possibilities :

1. The infranil fiber Z has small eigenvalues of its q-form Laplacian
for some0 < g < p. That is, by(Z) < dim{affine-parallel q-forms on Z}.

OR

2. The “direct image” cohomology bundle H? on X has a holonomy
representation m (X) — Aut(HY(Z;R)) which fails to be semisimple,
for some 0 < q < p.

OR

3. The Leray spectral sequence to compute HP(M;R) does not de-
generate at the Ey term.

Each of these cases occurs in examples.
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UPPER EIGENVALUE BOUNDS

Theorem 6. Fiz M. If there is not a uniform upper bound on A, ;
(among metrics with || RM | < K and diam(M) = 1) then M
collapses to a limit space X with 1 < dim(X) < p—1.

In addition, the generic fiber Z of the fiber bundle M — X is an
infranilmanifold which does not admit nonzero affine-parallel k-forms
forp — dim(X) < k < p.

Example : Given M, if there is not a uniform upper bound on the
j-th eigenvalue of the 2-form Laplacian then M collapses with bounded
curvature to a 1-dimensional limit space. We know what such M look
like.
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SINGULAR LIMIT SPACES

Technical problem : in general, a limit space of a bounded-curvature
collapse is not a manifold.

Theorem 7. (Fukaya 1986) : A limit space X is of the form X/G,
where X is a Riemannian manifold and G C Isom(X).

What should the “forms on X” be? Answer : the basic forms on X.
Qe X) = {w € O (X) : w is G-invariant and for all t € g, iw = 0}.

Fact : One can do analysis on the singular space X by working G-
equivariantly on X, i.e. construct superconnection Laplacians, etc.
The preceding results extend to this setting.
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FINITE-VOLUME NEGATIVELY-CURVED MANIFOLDS

Theorem 8. Let M™ be a complete connected Riemannian manifold
with vol(M) < oo and — b < RM < —a? with0 < a < b.
Then the space of square-integrable harmonic p-forms on M is finite-
dimensional.

Previously known to be true if p # ”T’l and g is close enough to one
(Donnelly-Xavier).

The result is also true if M just has bounded curvature and asymptotically-
cylindrical ends, as long as the cross-sections of the ends are not too
big.

Theorem 9. There is a number 6(n) > 0 such that if

1. M" is a complete connected Riemannian manifold,

2. || RM || < b% and

3. The ends of M are 6(n) b='-Gromov-Hausdorff close to rays

then the space of square-integrable harmonic p-forms on M is finite-
dimensional.

Theorem 10. If M is a finite-volume negatively-curved manifold as
above then one can write down an explicit ordinary differential operator
whose essential spectrum coincides with that of the p-form Laplacian on

M.
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GEOMETRIC DIRAC-TYPE OPERATORS

Spinor modules V :

Say G is SO(n) or Spin(n), and V is a Hermitian G-module.
Suppose that there is a G-equivariant map v : R" — End(V') such that

A(w)? = o 1d.

Geometric Dirac-type operators :

Let M™ be a closed Riemannian manifold which is oriented or spin.
Let V be a spinor module and let D™ be the corresponding Dirac-type
operator. (Special cases: signature operator, pure Dirac operator.)

Theorem 11. Suppose that M; S X with bounded curvature, with X
smooth. Then after taking a subsequence, there are a Clifford-module E
on X and a certain first-order elliptic operator D¥ on C*(X; E) such
that

lim o (DM") =0 (DE) .

1—00
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DIRAC OPERATORS ON SINGULAR SPACES

Suppose now that M; 9 X with bounded curvature, but with X
singular. To describe the limit of o(D*i), we need a Dirac-type oper-
ator on the singular space X. How to do this?

Let P; be the principal G-bundle on M;. Following Fukaya, we can

assume that P; LA , with X a G-manifold. We want to define a
Dirac-type operator on X = X/G.

Fundamental Problem : There is no notion of a “G-basic spinor”.

Resolution :  Observe that a spinor field on M; is a G-invariant
element of C*(P;) ® V. Take P, — X.

Definition 2. A “spinor field on X 7 is a G-invariant element of C=(X)®
V.

Fact : There’s a certain first-order transversally elliptic operator D
on C¥(X)® V.

Definition 3. The Dirac-type operator D on X is the restriction of D
to the G-invariant subspace of C*(X)® V.
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APPLICATIONS TO SPECTRAL ANALYSIS OF
DIRAC-TYPE OPERATORS

With this notion of the Dirac operator on X, one can prove a general
convergence theorem for (D).

An application to upper eigenvalue bounds :

Theorem 12. Fiz M and the spinor module V. If there is not a uni-
form upper bound on the j-th eigenvalue of |DM| (among metrics with
| RM ||oo < K and diam(M) = 1) then M collapses to a limit space

X. Furthermore, the generic fiber Z of the map M — X is an infranil-
manifold which does not admit any affine-parallel spinor fields.

Finally, one can characterize the essential spectrum of a geomet-
ric Dirac-type operator on a finite-volume negatively-curved manifold.
That is, one can show that it equals the essential spectrum of a certain
first-order ordinary differential operator associated to the ends.



