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WHAT I WILL (NOT) TALK ABOUT

Fukaya (1987) : Studied the function Laplacian, under a bounded
curvature collapse.

Cheeger-Colding (preprint) : Studied the function Laplacian,
under a collapse with Ricci curvature bounded below.

Today : The differential form Laplacian and geometric Dirac-type
operators, under a bounded curvature collapse.
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MOTIVATION : CHEEGER’S INEQUALITY

Let M be a connected compact Riemannian manifold.

Spectrum of 4M :

0 = λ1(M) < λ2(M) ≤ λ3(M) ≤ . . .

Theorem 1. (Cheeger 1969)

λ2(M) ≥ h2

4
.

Definition 1.

h = inf
A

Area(A)

min(vol(M1), vol(M2))
,

where A ranges over separating hypersurfaces.

Question (Cheeger) : Is there a similar inequality for the p-form Lapla-
cian? (Problem # 79 on Yau’s list.)
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THE p-FORM LAPLACIAN

The p-form Laplacian is

4M
p = dd∗ + d∗d : Ωp(M)→ Ωp(M).

Spectrum of 4M
p :

0 ≤ λp,1(M) ≤ λp,2(M) ≤ λp,3(M) ≤ ...

By Hodge theory,

Ker(4M
p ) ∼= Hp(M ;R),

so

0 = λp,1(M) = . . . = λp,bp(M)(M) < λp,bp(M)+1(M) ≤ . . . .
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COLLAPSING (Cheeger, Gromov)

Notation :
RM = Riemann sectional curvatures.

diam(M) = sup
p,q∈M

dM(p, q).

Fix a number K ≥ 0. Consider

{ connected Riem. manifolds Mn :‖ RM ‖∞≤ K and diam(M) ≤ 1}.

There is a number v0(n,K) > 0 such that one has the following di-
chotomy :

I. Noncollapsing case : vol(M) ≥ v0.

Finite number of topological types, C1,α-metric rigidity. In particu-
lar, uniform bounds on eigenvalues of 4p.

or

II. Collapsing case : vol(M) < v0.

Special structure. Need to analyze 4p in this case.
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BERGER EXAMPLE OF COLLAPSING

Hopf fibration π : S3 → S2

Shrink the circles to radius ε. Look at the 1-form Laplacian 41. Since
H1(S3;R) = 0, the first eigenvalue λ1,1 of 41 is positive.

Fact (Colbois-Courtois 1990)

lim
ε→0

λ1,1 = 0.

New phenomenon : (uncontrollably) small eigenvalues.

When does this happen?
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FUKAYA’S WORK ON THE FUNCTION LAPLACIAN

Suppose that {Mi}∞i=1 are connected n-dimensional Riemannian man-
ifolds with ‖ RMi ‖∞ ≤ K and diam(Mi) ≤ 1.

Suppose that Mi
GH−→ X.

Consider the function Laplacian onMi, with eigenvalues {λj(Mi)}∞j=1.

Question : Suppose that X is a smooth Riemannian manifold. Is it
true that limi→∞ λj(Mi) = λj(X)?

Answer : In general, no. Need to add a probability measure µ to X.

Laplacian on weighted L2-space :

< f,4X,µf >

< f, f >
=

∫
X
|∇f |2 dµ∫
X
f 2 dµ

.

Theorem 2. (Fukaya 1987) If

lim
i→∞

(
Mi,

dvolMi

vol(Mi)

)
= (X,µ)

in the measured Gromov-Hausdorff topology then

lim
i→∞

λj(Mi) = λj(X,µ).
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GOAL

Want a “p-form Laplacian” on the limit space X so that after taking a
subsequence,

λp,j(Mi) −→ λp,j(X).

Question : What kind of structure do we need on X?
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SUPERCONNECTIONS (Quillen 1985, Bismut-L. 1995)

Input :

B a smooth manifold,

E =
⊕m

j=0 E
j a Z-graded real vector bundle on B.

The (degree-1) superconnections A′ that we need will be formal sums
of the form

A′ = A′[0] + A′[1] + A′[2]

where

• A′[0] ∈ C∞ (B; Hom(E∗, E∗+1)),

• A′[1] is a grading-preserving connection ∇E on E and

• A′[2] ∈ Ω2 (B; Hom(E∗, E∗−1)).

Then A′ : C∞(B;E)→ Ω(B;E) extends by Leibniz’ rule to an operator
A′ : Ω(B;E)→ Ω(B;E).

Flatness condition : (A′)2 = 0,

i.e.

•
(
A′[0]

)2

=
(
A′[2]

)2

= 0,

• ∇EA′[0] = ∇EA′[2] = 0 and

•
(
∇E
)2

+ A′[0]A
′
[2] + A′[2]A

′
[0] = 0.

Note : A′[0] gives a differential complex on each fiber of E.



10

THE NEEDED STRUCTURE ON THE LIMIT SPACE X

A triple (E,A′, hE), where

1. E is a Z-graded real vector bundle on X,
2. A′ is a flat degree-1 superconnection on E and
3. hE is a Euclidean inner product on E.

We have

A′ : Ω(X;E)→ Ω(X;E).

Using gTX and hE, we get

(A′)∗ : Ω(X;E)→ Ω(X;E).

Put

4E = A′(A′)∗ + (A′)∗A′,

the superconnection Laplacian.

Example : If E is the trivial R-bundle on X, A′ is the trivial connec-
tion and hE is the standard inner product on E then 4E is the Hodge
Laplacian.
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ANALYTIC COMPACTNESS

Theorem 3. If Mi
GH−→ X with bounded sectional curvature then after

taking a subsequence, there is a certain triple (E,A′, hE) on X such
that

lim
i→∞

σ
(
4Mi
p

)
= σ

(
4E
p

)
.

Remark 1 : This is a pointwise convergence statement, i.e. for each
j, the j-th eigenvalue converges.

Remark 2 : Here the limit space X is assumed to be a Riemannian
manifold. There is an extension to singular limit spaces (see later).

Remark 3 : The relation to Fukaya’s work on functions:
For functions, only Ω0(X;E0) is relevant. Here E0 is a trivial R-

bundle on X with a trivial connection. But its metric hE
0

may be
nontrivial and corresponds to Fukaya’s measure µ.
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IDEA OF PROOF

1. The individual eigenvalues λp,j are continuous with respect to the
metric on M , in the C0-topology (Cheeger-Dodziuk).

2. By Cheeger-Fukaya-Gromov, if M is Gromov-Hausdorff close to X
then we can slightly perturb the metric to get a Riemannian affine fiber
bundle. That is,

affine fiber bundle : M is the total space of a fiber bundle M → X
with infranil fiber Z, whose holonomy can be reduced from Diff(Z) to
Aff(Z).

Riemannian affine fiber bundle : In addition, one has
a. A horizontal distribution THM on M with holonomy in Aff(Z), and
b. Fiber metrics gTZ which are fiberwise affine-parallel.

So it’s enough to just consider Riemannian affine fiber bundles.

3. If M is a Riemannian affine fiber bundle then σ(4M
p ) equals σ(4E

p )

up to a high level, which is on the order of dGH(M,X)−2. Here E is
the vector bundle on X whose fiber over x ∈ X is

Ex = {affine-parallel forms on Zx}.

4. Show that the ensuing triples {(Ei, A′i, hEi)}∞i=1 have a convergent
subsequence (modulo gauge transformation).
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APPLICATION TO SMALL EIGENVALUES

Fix M and K ≥ 0. Consider

{g : ‖ RM(g) ‖∞ ≤ K and diam(M, g) ≤ 1}.

Question : Among these metrics, are there more than bp(M) small
eigenvalues of 4M

p ?

Suppose so, i.e. that for some j > bp(M), there are metrics {gi}∞i=1

so that
λp,j(M, gi)

i→∞−→ 0.

Step 1. Using Gromov precompactness, take a convergent subsequence
of spaces

(M, gi)
i→∞−→ X.

Since there are small positive eigenvalues, we must be in the collaps-
ing situation.

Step 2. Using the analytic compactness theorem, take a further sub-
sequence to get a triple (E,A′, hE) on X. Then

λp,j(4E) = 0.

In the limit, we’ve turned the small eigenvalues into extra zero eigen-
values.

Recall that 4E has the Hodge form A′(A′)∗ + (A′)∗ A′. Then from
Hodge theory,

dim(Hp(A′)) ≥ j.

Analysis −→ Topology

Fact : There is a spectral sequence to compute Hp(A′). Analyze the
spectral sequence.
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RESULTS ABOUT SMALL EIGENVALUES

Theorem 4. Given M , there are no more than b1(M)+dim(M) small
eigenvalues of the 1-form Laplacian.

More precisely, if there are j small eigenvalues and j > b1(M) then
in terms of the limit space X,

j ≤ b1(X) + dim(M) − dim(X).

(Sharp in the case of the Berger sphere.)

More generally, where do small eigenvalues come from?

Theorem 5. Let M be the total space of an affine fiber bundle M → X,
which collapses to X. Suppose that there are small positive eigenvalues
of 4p in the collapse. Then there are exactly three possibilities :

1. The infranil fiber Z has small eigenvalues of its q-form Laplacian
for some 0 ≤ q ≤ p. That is, bq(Z) < dim{affine-parallel q-forms on Z}.

OR

2. The “direct image” cohomology bundle Hq on X has a holonomy
representation π1(X) → Aut(Hq(Z;R)) which fails to be semisimple,
for some 0 ≤ q ≤ p.

OR

3. The Leray spectral sequence to compute Hp(M ;R) does not de-
generate at the E2 term.

Each of these cases occurs in examples.
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UPPER EIGENVALUE BOUNDS

Theorem 6. Fix M . If there is not a uniform upper bound on λp,j
(among metrics with ‖ RM ‖∞ ≤ K and diam(M) = 1) then M
collapses to a limit space X with 1 ≤ dim(X) ≤ p− 1.

In addition, the generic fiber Z of the fiber bundle M → X is an
infranilmanifold which does not admit nonzero affine-parallel k-forms
for p − dim(X) ≤ k ≤ p.

Example : Given M , if there is not a uniform upper bound on the
j-th eigenvalue of the 2-form Laplacian then M collapses with bounded
curvature to a 1-dimensional limit space. We know what such M look
like.



16

SINGULAR LIMIT SPACES

Technical problem : in general, a limit space of a bounded-curvature
collapse is not a manifold.

Theorem 7. (Fukaya 1986) : A limit space X is of the form X̌/G,
where X̌ is a Riemannian manifold and G ⊂ Isom(X̌).

What should the “forms on X” be? Answer : the basic forms on X̌.

Ω∗basic(X̌) = {ω ∈ Ω∗(X̌) : ω is G-invariant and for all x ∈ g, ixω = 0}.

Fact : One can do analysis on the singular space X by working G-
equivariantly on X̌, i.e. construct superconnection Laplacians, etc.
The preceding results extend to this setting.
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FINITE-VOLUME NEGATIVELY-CURVED MANIFOLDS

Theorem 8. Let Mn be a complete connected Riemannian manifold
with vol(M) < ∞ and − b2 ≤ RM ≤ − a2, with 0 < a ≤ b.
Then the space of square-integrable harmonic p-forms on M is finite-
dimensional.

Previously known to be true if p 6= n−1
2

and b
a

is close enough to one
(Donnelly-Xavier).

The result is also true ifM just has bounded curvature and asymptotically-
cylindrical ends, as long as the cross-sections of the ends are not too
big.

Theorem 9. There is a number δ(n) > 0 such that if
1. Mn is a complete connected Riemannian manifold,
2. ‖ RM ‖∞ ≤ b2 and
3. The ends of M are δ(n) b−1-Gromov-Hausdorff close to rays
then the space of square-integrable harmonic p-forms on M is finite-
dimensional.

Theorem 10. If M is a finite-volume negatively-curved manifold as
above then one can write down an explicit ordinary differential operator
whose essential spectrum coincides with that of the p-form Laplacian on
M .
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GEOMETRIC DIRAC-TYPE OPERATORS

Spinor modules V :

Say G is SO(n) or Spin(n), and V is a Hermitian G-module.
Suppose that there is a G-equivariant map γ : Rn → End(V ) such that

γ(v)2 = |v|2 Id.

Geometric Dirac-type operators :

Let Mn be a closed Riemannian manifold which is oriented or spin.
Let V be a spinor module and let DM be the corresponding Dirac-type
operator. (Special cases: signature operator, pure Dirac operator.)

Theorem 11. Suppose that Mi
GH−→ X with bounded curvature, with X

smooth. Then after taking a subsequence, there are a Clifford-module E
on X and a certain first-order elliptic operator DE on C∞(X;E) such
that

lim
i→∞

σ
(
DMi

)
= σ

(
DE
)
.
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DIRAC OPERATORS ON SINGULAR SPACES

Suppose now that Mi
GH−→ X with bounded curvature, but with X

singular. To describe the limit of σ(DMi), we need a Dirac-type oper-
ator on the singular space X. How to do this?

Let Pi be the principal G-bundle on Mi. Following Fukaya, we can

assume that Pi
GH−→ X̌, with X̌ a G-manifold. We want to define a

Dirac-type operator on X = X̌/G.

Fundamental Problem : There is no notion of a “G-basic spinor”.

Resolution : Observe that a spinor field on Mi is a G-invariant
element of C∞(Pi)⊗ V . Take Pi −→ X̌.

Definition 2. A “spinor field on X” is a G-invariant element of C∞(X̌)⊗
V .

Fact : There’s a certain first-order transversally elliptic operator Ď
on C∞(X̌)⊗ V .

Definition 3. The Dirac-type operator D on X is the restriction of Ď
to the G-invariant subspace of C∞(X̌)⊗ V .
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APPLICATIONS TO SPECTRAL ANALYSIS OF
DIRAC-TYPE OPERATORS

With this notion of the Dirac operator on X, one can prove a general
convergence theorem for σ(DMi).

An application to upper eigenvalue bounds :

Theorem 12. Fix M and the spinor module V . If there is not a uni-
form upper bound on the j-th eigenvalue of |DM | (among metrics with
‖ RM ‖∞ ≤ K and diam(M) = 1) then M collapses to a limit space
X. Furthermore, the generic fiber Z of the map M → X is an infranil-
manifold which does not admit any affine-parallel spinor fields.

Finally, one can characterize the essential spectrum of a geomet-
ric Dirac-type operator on a finite-volume negatively-curved manifold.
That is, one can show that it equals the essential spectrum of a certain
first-order ordinary differential operator associated to the ends.


