
On noncollapsed almost Ricci-flat 4-manifolds 
Vitali Kapovitch, John Lott

American Journal of Mathematics, Volume 141, Number 3, June 2019, pp.
737-755 (Article)

Published by Johns Hopkins University Press
DOI:

For additional information about this article

Access provided at 25 May 2019 16:29 GMT from Max Planck Society

https://doi.org/10.1353/ajm.2019.0015

https://muse.jhu.edu/article/724162/summary

https://doi.org/10.1353/ajm.2019.0015
https://muse.jhu.edu/article/724162/summary


ON NONCOLLAPSED ALMOST RICCI-FLAT 4-MANIFOLDS

By VITALI KAPOVITCH and JOHN LOTT

Abstract. We give topological conditions to ensure that a noncollapsed almost Ricci-flat 4-manifold
admits a Ricci-flat metric. One sufficient condition is that the manifold is spin and has a nonzero Â-
genus. Another condition is that the fundamental group is infinite or, more generally, of sufficiently
large cardinality.

1. Introduction. One of the most basic pinching theorems in Riemannian
geometry says that a noncollapsed almost flat manifold admits a flat metric. The
word noncollapsed refers to a lower volume bound. More precisely, given n ∈ Z

+

and v > 0, there is some ε = ε(n,v) > 0 so that if (M,g) is a Riemannian n-
manifold with vol(M) ≥ v, diam(M) ≤ 1 and |RmM | ≤ ε, then M admits a flat
Riemannian metric. Here RmM denotes the Riemann curvature tensor. This result
seems to have first been stated by Gromov in [Gr78], where he noted that it follows
from Cheeger’s arguments in [Ch69]. (The point of [Gr78] was to characterize what
happens when one removes the volume assumption.)

One can ask if there is an analogous statement for noncollapsed almost Ricci-
flat manifolds. In dimension less than four, being almost Ricci-flat is the same as
being almost flat. Hence the first interesting case is in dimension four. We give
topological conditions to ensure that a noncollapsed almost Ricci-flat 4-manifold
admits a Ricci-flat metric. We also give more general results about noncollapsed
manifolds with almost nonnegative Ricci curvature, or almost nonnegative scalar
curvature and bounded Ricci curvature.

In the rest of the introduction we state the main results, outline the proof of
Theorem 1.1, mention some earlier related results and give the structure of the
paper.

1.1. Statement of results. The first result is in four dimensions. Recall that
the Â-genus Â(M) of a closed oriented manifold M is a certain rational combi-
nation of the Pontryagin numbers of M . In four dimensions, Â(M) equals minus
one eighth of the signature ofM . We consider a noncollapsed spin 4-manifold with
almost nonnegative scalar curvature and a nonzero Â-genus. With an upper bound
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on the Ricci curvature, the conclusion is that the manifold must be diffeomorphic
to a K3 surface.

Let S denote scalar curvature.

THEOREM 1.1. Given v > 0 and Υ < ∞, there is an ε= ε(v,Υ) > 0 with the
following property. Suppose that (M,g) is a closed connected Riemannian spin 4-
manifold with Â(M) �= 0, vol(M)≥ v, diam(M)≤ 1, RicM ≤Υg and SM ≥−ε.
Then M is diffeomorphic to a K3 surface.

As a consequence, if a noncollapsed almost Ricci-flat 4-manifold is spin, and
has a nonzero Â-genus, then it admits a Ricci-flat metric.

COROLLARY 1.2. Given v > 0, there is an ε′ = ε′(v) > 0 with the following
property. Suppose that (M,g) is a closed connected Riemannian spin 4-manifold
with Â(M) �= 0, vol(M) ≥ v, diam(M) ≤ 1 and |RicM | ≤ ε′. Then M is diffeo-
morphic to a K3 surface. In particular, M admits a Ricci-flat metric.

For example, if M =K3#(S2×S2) then there is no Riemannian metric on M
with vol(M)≥ v, diam(M)≤ 1 and |RicM | ≤ ε′.

If π1(M) is infinite, or of sufficiently large cardinality, then we have the fol-
lowing related n-dimensional result, which does not involve any spin assumption
on M .

THEOREM 1.3. Given n ∈ Z
+, v > 0 and Λ,Υ < ∞, there exist ε = ε(n,v,

Λ,Υ)>0,C=C(n,v,Λ,Υ)<∞, ε′=ε′(n,v,Λ)>0 and C ′=C ′(n,v,Λ)<∞ with
the following property. Suppose that (M,g) is an n-dimensional closed connected
Riemannian manifold with

∫

M |RmM |n2 dvolM≤Λ, vol(M)≥v and diam(M)≤1.
(1) If −εg ≤ RicM ≤ Υg and |π1(M)| ≥ C then M admits a W 2,p-regular

Riemannian metric h with nonnegative measurable Ricci curvature for which the
universal cover (M̃, h̃) isometrically splits off an R-factor. In particular, π1(M) is
infinite.

(2) If |RicM | ≤ ε′ and |π1(M)| ≥ C ′ then M admits a Ricci-flat metric h′ for
which the universal cover (M̃, h̃′) isometrically splits off an R-factor.

In the four dimensional case, the conclusions of Theorem 1.3 can be made
more precise. Theorem 1.3(1) becomes a statement about manifolds with almost
nonnegative Ricci curvature, again under an upper Ricci curvature bound. Theo-
rem 1.3(2) becomes a second sufficient topological condition, involving the funda-
mental group, for a noncollapsed almost Ricci-flat 4-manifold to admit a Ricci-flat
metric.

COROLLARY 1.4. Given v > 0 and Υ < ∞, there exist ε′′ = ε′′(v,Υ) > 0,
C ′′ = C ′′(v,Υ) < ∞, ε′′′ = ε′′′(v) > 0 and C ′′′ = C ′′′(v) < ∞ with the following
property. Suppose that (M,g) is a closed connected Riemannian 4-manifold with
vol(M)≥ v and diam(M)≤ 1.
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(1) If −ε′′g ≤ RicM ≤ Υg and |π1(M)| ≥ C ′′ then M admits a smooth Rie-
mannian metric with nonnegative Ricci curvature for which the universal cover
(M̃, g̃) isometrically splits off an R-factor.

(2) If |RicM | ≤ ε′′′ and |π1(M)| ≥ C ′′′ then M admits a flat metric.

As an example of Corollary 1.4(2), let M be the result of performing surgery
along an embedded circle in T 4, i.e., removing a tubular neighborhood of the circle
and attaching a copy of D2×S2. Then there is no Riemannian metric on M with
vol(M)≥ v, diam(M)≤ 1 and |RicM | ≤ ε′′′. (On the other hand, Anderson showed
that if the circle is a meridian curve in T 4, and one performs surgery with respect to
the canonical trivialization of its normal bundle, then the resulting manifold does
admit a sequence of collapsing almost Ricci-flat metrics [An92, Theorem 0.4].)

Remark 1.5. The diffeomorphism types of the manifolds M in the conclusion
of Corollary 1.4(1) are easy to describe, using [Ha86, Section 9].

Remark 1.6. The known Ricci-flat closed 4-manifolds are flat (hence with infi-
nite fundamental group) or are finitely covered by a K3 surface (which is spin and
has Â(K3) = 2). In view of this fact, the topological hypotheses of Corollary 1.2
and Corollary 1.4(2) are not unreasonable.

Finally, we give a fundamental group restriction on noncollapsed manifolds
with almost nonnegative Ricci curvature.

THEOREM 1.7. Given n ∈ Z
+ and v > 0, there are ε = ε(n,v) > 0 and I =

I(n,v)<∞ with the following property. Suppose that (M,g) is a closed connected
Riemannian n-manifold with vol(M) ≥ v, diam(M) ≤ 1 and RicM ≥ −ε. Then
π1(M) has an abelian subgroup (of index at most I) generated by at most n ele-
ments.

1.2. Outline of the proof of Theorem 1.1. If the theorem fails then we
take a sequence of counterexamples, with ε→ 0. The hypotheses imply that there
is a uniform lower Ricci curvature bound. From a result of Cheeger and Naber,
there is an a priori upper bound on

∫

M |RmM |2 dvolM [CN15]. The first part of the
argument for Theorem 1.1 is now standard, based on ideas of Anderson [An90],
Anderson-Cheeger [AC91] and Bando [Ba90a]. We can pass to a subsequence that
converges, in the Gromov-Hausdorff topology, to a four dimensional orbifold X
that has a finite number of orbifold singular points, and a C1,α-regular Riemannian
metric gX on its regular part Xreg. Doing appropriate blowups to zoom in on the
formation of singular points of X, one obtains noncompact Ricci-flat ALE orb-
ifolds. Doing further blowups to zoom in on the formation of their singular points,
one obtains a bubble tree whose vertices correspond to Ricci-flat orbifolds. By
assembling the geometric pieces in the bubble tree, one can reconstruct the diffeo-
morphism type of the original manifold.
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In order to proceed, we need more information about X and the ALE blowups.
The assumption that M is spin, with nonzero Â-genus, helps in several ways. First,
the nonvanishing of the Â-genus ofM implies thatM has a nonvanishing harmonic
spinor field. We show that these harmonic spinor fields pass to a nonzero parallel
spinor field on Xreg. This forces Xreg to be smooth and Ricci-flat. We show that X
is a Ricci-flat spin orbifold. The existence of the parallel spinor field now implies
that X is a hyperKähler orbifold.

The spin assumption on M also implies that the Ricci-flat ALE blowup
orbifolds are spin. Compatibility of spin structures, along with the existence of
the nonzero parallel spinor field on X, means that the blowup orbifolds have
spinor fields that are asymptotically parallel at infinity, and nonzero there. Then
a small variation on a result of Nakajima [Na90] says that the blowup orbifolds
are hyperKähler. One knows enough about hyperKähler ALE 4-manifolds, and
4-orbifolds, to conclude that after assembling the pieces in the bubble tree, the
result is diffeomorphic to a compact hyperKähler manifold. Theorem 1.1 follows
from this fact.

1.3. Related results. Anderson gave a Ricci pinching result for Riemann-
ian metrics on S4 and CP 2 [An90, Theorem 1.3(b)].

Regarding Riemannian manifolds with almost nonnegative Ricci curvature, the
following is known.

THEOREM 1.8. Given n ∈ Z
+, there are ε= ε(n)> 0 and J = J(n)<∞ with

the following property. Suppose that (M,g) is a closed connected Riemannian n-
manifold with diam(M)≤ 1 and RicM ≥−ε.

(1) Then π1(M) has a nilpotent subgroup (of index at most J) with nilpo-
tency rank at most n [KW11]. (This was also proved in [BGT12] without the index
bound.)

(2) IfM is spin and n is divisible by four then |Â(M)| ≤ 2
n
2 −1 [Ga83], [Gr82,

p. 86].

Theorem 1.7 refines Theorem 1.8(1) in the noncollapsed case, although the
constants I and J may not be related.

Remark 1.9. In four dimensions, Rokhlin’s theorem says that Â(M) is even if
M is spin. Hence under the assumptions of Theorem 1.8(2), if n= 4 and Â(M) �= 0
then |Â(M)| = 2. This means that after possibly reversing orientation, M is spin-
cobordant to the K3 surface. One can ask whether Theorem 1.1 still holds without
the upper Ricci curvature bound, say assuming a lower Ricci curvature bound and
possibly a lower volume bound.

In a somewhat different direction, Cabezas-Rivas and Wilking answered a
question from [Lo00] by showing that a spin manifold with almost nonnegative
sectional curvature has vanishing Â-genus [CW].
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Regarding almost Ricci-flat 4-manifolds, Brendle and Kapouleas found an ob-
struction to perturbing an almost Ricci-flat metric to a Ricci-flat metric [BK]. In
their example, the relevant limit space was a flat 4-dimensional orbifold. A gluing
obstruction for a nonflat limit space was found by Biquard [Bi13].

Finally, one can ask whether Corollary 1.4(1) holds without the upper Ricci
curvature bound.

1.4. Structure of the paper. In Section 2 we prove Theorem 1.1. In Section
3 we prove Theorem 1.3 and Corollary 1.4. In Section 4 we prove Theorem 1.7.

Acknowledgments. We thank the participants of the MSRI Spring 2016 geom-
etry program for helpful discussions, especially Olivier Biquard, Ronan Conlon
and Jeff Viaclovsky. We also thank Jeff for comments on an earlier version of the
paper. We thank the referee for pointing out [BGR07]. We thank MSRI for its hos-
pitality during the Spring 2016 program.

2. Proof of Theorem 1.1. Arguing by contradiction, if Theorem 1.1 is not
true then there is a sequence {(Mi,gi)}∞

i=1 of closed connected Riemannian spin
4-manifolds with
• Â(Mi) �= 0,
• vol(Mi)≥ v,
• diam(Mi)≤ 1,
• RicMi ≤Υgi and
• SMi ≥− 1

i , but
• Mi is not diffeomorphic to a K3 surface.

2.1. Harmonic spinors onMi. By assumption, the second Stiefel-Whitney
class of Mi vanishes in H2(Mi;Z2). After reversing orientation if necessary, we
can assume that Â(Mi) > 0. We can then choose a spin structure on Mi that is
compatible with this orientation. The Atiyah-Singer index theorem implies that
Mi has a nonzero harmonic spinor φi of positive chirality. By rescaling, we can
assume that ‖φi‖2 = 1. Letting D denote the Dirac operator, the Lichnerowicz
formula gives

0 =

∫

Mi

|Dφi|2 dvolMi =

∫

Mi

(

|∇φi|2 + SMi

4
|φi|2

)

dvolMi .(2.1)

Hence

∫

Mi

|∇φi|2 dvolMi ≤
1
4i
.(2.2)
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As

∇|φi|= ∇
√
〈φi,φi〉= 〈∇φi,φi〉+ 〈φi,∇φi〉2|φi|(2.3)

away from the zero-locus of φi, we have

|∇|φi|| ≤ |∇φi|(2.4)

and so
∫

Mi

|∇|φi||2 dvolMi ≤
1
4i
.(2.5)

Let λi > 0 denote the Poincaré constant of (Mi,gi), so that
∫

Mi

|∇F |2 dvolMi ≥ λi
∫

Mi

(F −F )2 dvolMi(2.6)

for all F ∈H1(Mi), where F denotes the average value F = 1
vol(Mi)

∫

Mi
F dvolMi .

Then
∫

Mi

(
|φi|− |φi|

)2
dvolMi ≤

1
4iλi

.(2.7)

LEMMA 2.8. If Vi is open in Mi then

∫

Vi

|φi|2 dvolMi ≤
(

1√
4iλi

+

√
vol(Vi)
vol(Mi)

)2

.(2.9)

Proof. We work more generally with a measure space (M,dμ) having finite
mass, a measurable subset V ⊂M and a function f ∈L2(M,dμ) with ‖f‖L2(M) =

1. By the Cauchy-Schwarz inequality, |f | ≤ 1√
μ(M)

. Then

‖f‖L2(V ) ≤ ‖f − f‖L2(V ) +‖f‖L2(V ) ≤ ‖f − f‖L2(M) +

√
μ(V )

μ(M)
,(2.10)

from which the lemma follows. �

2.2. Parallel spinors on X. From the scalar curvature condition and the
upper bound on Ricci curvature, for large i we have RicMi ≥−10Υgi. Then from
[CN15, Theorem 1.13], there is a uniform upper bound on

∫

Mi
|RmMi |2 dvolMi . By

[An90, Theorem 2.6 and Pf. of Main Lemma 2.2], after passing to a subsequence
we can assume that limi→∞(Mi,gi) = (X,gX ) in the Gromov-Hausdorff topology,
where
• X is a four dimensional compact orbifold with finitely many isolated orb-

ifold singularities,
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• gX is a continuous orbifold Riemannian metric on X, and
• gX is locally W 2,p-regular away from the singular points, for all p < ∞.

Let Xreg denote the regular part of the orbifold X, i.e., the complement of the
finitely many singular points Xsing. It is a W 3,p-manifold, for all p < ∞, so we
can assume that it is equipped with an underlying smooth structure (although with
a Riemannian metric that is W 2,p-regular in that smooth structure). Then Xreg is
also a C2,α-manifold and gX is locally C1,α-regular, for all α ∈ (0,1).

For large j, let Uj be the union of the 1
j -balls around the singular points in X.

Note that X−Uj and Mi are both smooth. For large i, there is a smooth map σj,i :
(X −Uj)→Mi that is a diffeomorphism onto its image, so that limi→∞σ

∗
j,igi =

gX−Uj in the C1,α-topology. In particular, X −Uj admits a spin structure. As
H1(X −Uj ;Z2) is finite, after passing to a subsequence of i’s, we can assume
that each φj,i is spin compatible. From (2.2),

∫

σj,i(X−Uj)
|∇φi|2 dvolMi ≤

1
4i
.(2.11)

From Lemma 2.8,

∫

σj,i(X−Uj)
|φi|2 dvolMi ≥ 1−

(
1√
4iλi

+

√
vol(Mi−σj,i(X−Uj))

vol(Mi)

)2

.(2.12)

It makes sense to compare spinor fields on two diffeomorphic Riemannian
manifolds (cf. [Lo00, pp. 531–532]), so we can consider σ∗j,iφi, a spinor field on
X−Uj . The H1-norm on spinor fields over X−Uj is

‖ψ‖2
H1(X−Uj)

=

∫

X−Uj

(|ψ|2 + |∇ψ|2) dvolX−Uj .(2.13)

Note that the Christoffel symbols on X − Uj are locally Cα-regular and lo-
cally W 1,p-regular. From (2.11) and the normalization of φi, the H1-norms of
{σ∗j,iφi}∞

i=1 are uniformly bounded, so we can take a subsequence that converges
weakly in H1 to some positive chirality spinor field ψj on X − Uj . By Rel-
lich compactness, after passing to a further subsequence we can assume that
limi→∞σ

∗
j,iφi = ψj in L2. In particular,

‖ψj‖2
L2(X−Uj)

= lim
i→∞
‖σ∗j,iφi‖2

L2(X−Uj)
= lim
i→∞
‖φi‖2

L2(σj,i(X−Uj))

= lim
i→∞

∫

σj,i(X−Uj)
|φi|2 dvolMi .

(2.14)



744 V. KAPOVITCH AND J. LOTT

As norms can only decrease when taking weak limits, using (2.11) we have

‖ψj‖2
H1(X−Uj)

≤ liminf
i→∞

‖σ∗j,iφi‖2
H1(X−Uj)

= liminf
i→∞

‖φi‖2
H1(σj,i(X−Uj))

= liminf
i→∞

∫

σj,i(X−Uj)

(|∇φi|2 + |φi|2
)

dvolMi

= lim
i→∞

∫

σj,i(X−Uj)
|φi|2 dvolMi .

(2.15)

Thus ‖ψj‖H1(X−Uj) = ‖ψj‖L2(X−Uj), so ∇ψj vanishes weakly.
There is a uniform positive lower bound on λi in terms of the upper diameter

bound and the lower Ricci bound; see [BQ00] and references therein. We have con-
vergence limi→∞(Mi,gMi ,dvolMi)→ (X,gX ,dvolX) in the measured Gromov-
Hausdorff topology. Then using (2.12), we find

1− vol(Uj)
vol(X)

≤ ‖ψj‖2
L2(X−Uj)

≤ 1.(2.16)

The preceding construction of ψj was for a fixed but sufficiently large j. We
can take j→∞, and apply a diagonal argument in j and i, to obtain a weakly paral-
lel positive chirality spinor field ψ∞ on the spin manifold Xreg, with ‖ψ∞‖L2(Xreg) =

1.
In a coordinate chart and using an orthonormal frame {ea}4

a=1, the fact that ψ∞
is weakly parallel means that

∂kψ∞ =−1
8

4∑

a,b=1

Γabk[γ
a,γb]ψ∞(2.17)

holds weakly, where {γa}4
a=1 are the Dirac matrices. We know that ψ∞ is W 1,2-

regular. As Γ is W 1,p-regular for all p < ∞, using the Sobolev embedding theorem
and bootstrapping, one finds that ψ∞ is locally W 2,p-regular for all p < ∞. In par-
ticular, ψ∞ is locally C1,α-regular for all α ∈ (0,1). Hence ψ∞ satisfies (2.17) in
the classical sense. Then for any smooth vector field V on Xreg, we have

V 〈ψ∞,ψ∞〉= 〈∇V ψ∞,ψ∞〉+ 〈ψ∞,∇V ψ∞〉= 0,(2.18)

showing that |ψ∞| is a (nonzero) constant.
Since ψ∞ is parallel and locally W 2,p-regular, for smooth vector fields V and

W on Xreg we have

0 = ∇V ∇Wψ∞−∇W∇V ψ∞−∇[V,W ]ψ∞ =R(V,W )ψ∞(2.19)

in Lploc, for all p < ∞. Along with the nowhere-vanishing of ψ∞, this implies alge-
braically that RicX = 0 [BHMMM15, Corollary 2.8].

We recall that the W 2,p-regularity of gX around x ∈Xreg is derived using co-
ordinates that are constructed by starting with harmonic coordinates around points
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mi ∈Mi, with limi→∞mi = x and passing to the limit [An90, Pf. of Main Lemma
2.2]. Hence the formula for Ric in harmonic coordinates [An90, (2.7)] still holds
weakly in the coordinates around x ∈ X. By elliptic regularity, the vanishing of
RicX implies that gX is smooth on Xreg, relative to the smooth structure defined
by these coordinates. Being parallel, ψ∞ is also smooth.

From [BGR07, Theorem 1], the spin structure on Xreg extends to an orbifold
spin structure on X. By removable singularity results for Einstein metrics, gX is a
smooth Ricci-flat orbifold Riemannian metric on X; cf. [BKN89, §5].

Given p ∈ Xsing, let (U,q,Γp) be an orbifold chart for a neighborhood of p.
Here U is a ball in R

4 around the origin q, and Γp is the local group of p. The lift
of ψ∞ is a parallel spinor field ψ̂∞ on U − q. Since U − q is simply connected, ψ̂∞
has a unique extension to a smooth parallel spinor field over U . Hence ψ∞ extends
uniquely to a nonzero positive chirality parallel spinor field on X. Given x ∈Xreg,
let γ be a special loop at x in the sense of [KL14, Chapter 2.2]. Identifying the
oriented isometry group of TxX with SO(4), from the decomposition Spin(4) =
SU(2)× SU(2) it follows that the holonomies around such γ’s lie in one of the
SU(2)-factors. (As the parallel spinor field has positive chirality, our conventions
are that the SU(2)-factor is the second factor.) That is,X acquires the structure of a
hyperKähler orbifold. In particular, if p ∈Xsing then we can take the orbifold chart
(U,q,Γp) to have U an open ball in C

2 with origin q and Γp a finite subgroup of
SU(2) that acts freely on T 1

q U
∼= S3.

2.3. ALE blowups. If p ∈ Xsing then there are points pi ∈ Mi so that
limi→∞(Mi,pi) = (X,p) in the pointed Gromov-Hausdorff topology. After pass-
ing to a subsequence, from [AC91, Remark 3.1] and [Ba90a, Proposition 2] there
is an appropriate sequence {δi}∞

i=1 of positive numbers with limi→∞ δi = 0 so that

limi→∞

(
Mi,

1
δ2
i
gMi ,pi

)
= (Y,gY ,y0) in the pointed Gromov-Hausdorff topology,

where Y is an nonflat Ricci-flat ALE orbifold with finitely many orbifold singular
points. The decay rate of Y is order-4 in the terminology of [BKN89]; see [Ba90a,
Proposition 2] and [BKN89, Theorem 1.5]. For any small ε > 0, the complement
Cε of the ε-neighborhood of Ysing embeds in Mi for large i. In particular, Cε
admits a spin structure. Since H1(Cε;Z2) is finite, after passing to a subsequence
we can assume that the embeddings are spin compatible. Taking ε going to zero,
Yreg acquires a spin structure. From [BGR07, Theorem 1], the orbifold Y is a spin
orbifold. Its tangent cone at infinity is C2/Γp.

LEMMA 2.20. Y has a nonzero parallel spinor field.

Proof. The proof is essentially the same as that of [Na90, Corollary 3.4], which
treats the case when Y is a manifold, with only minor changes. To make this clear,
we outline the steps of the proof. From the existence of the positive chirality paral-
lel spinor ψ∞ in a neighborhood of p∈X, the action of Γp on S3 is a right action in
the sense of [Na90, p. 390]. As in Witten’s proof of the positive mass theorem, one
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constructs a positive chirality spinor field η0 on Y that is asymptotically parallel at
infinity, with norm approaching one. Then one puts η = η0−DGDη, where D is
the Dirac operator and G is the inverse of the (invertible) operator D2, when con-
sidered as an operator between appropriate weighted function spaces. The spinor
field η is harmonic and has the same asymptotics as η0. This linear analysis extends
with only trivial change to the orbifold case.

Integration by parts, and the fact that Y is scalar-flat, give

m= const.
∫

Y
|∇η|2 dvolY ,(2.21)

wherem is the ADM mass, as defined using integration over large distance spheres
in Y . The order-4 decay rate of Y implies that m= 0. Hence the positive chirality
spinor field η is parallel. �

Thus Y is also a hyperKähler orbifold.

2.4. Bubble tree. We can repeat the blowup analysis at a point of Ysing,
using the fact that Y has a nonzero parallel spinor field of positive chirality. The
result is that we get a bubble tree T , as in [AC91, Ba90a]. (The papers [Ba90a,
Ba90b] treat the case when the initial manifold is Einstein, while [AC91] treats
the more general case of bounded Ricci curvature.) This is a finite directed rooted
tree, with a connected orbifold associated to each vertex. The orbifold associated
to the root vertex is X. The orbifolds associated to the other vertices v are Ricci-
flat ALE orbifolds Wv. The edges of T point inward toward the root vertex. Given
a vertex v ∈ T , the edges with terminus v are in bijective correspondence with
Wv,sing. The initial vertex v′ of such an edge e is the result of the blowup analysis
at the corresponding point w ∈ Wv,sing. If Γw is the local group of w then the
asymptotic cone of Wv′ is C

2/Γw. The finiteness of T comes from the uniform
upper bound on

∫

Mi
|RmMi |2 dvolMi , since each blowup orbifold has a definite

amount of
∫ |Rm|2 dvol.

Given k ≥ 0, let Tk be the vertices of distance k from the root vertex. Let N be
the largest k for which Tk �= /0, which we will call the height of T . The orbifolds
associated to vertices in TN are manifolds.

From T we can construct a compact smooth manifoldMT that is diffeomorphic
to Mi, for large i. To describe MT , first consider the case when N = 0. Then X
is a smooth manifold and MT = X. If N = 1 then T consists of the root vertex
along with vertices in T1. The only edges in T join vertices in T1 to the root vertex.
Given x ∈ Xsing, a small neighborhood Ox of x is orbifold-diffeomorphic to a
finite cone over the space form S3/Γx. If v′ ∈ T1 is the initial vertex of the edge
corresponding to x then its associated orbifoldWv′ has asymptotic cone C2/Γx. Let
Px be a truncation ofWv′ whose boundary is a copy of S3/Γx at large distance. We
remove Ox from X and glue in a rescaled copy of Px. Doing this for all x ∈Xsing

gives MT . Given the combinatorics of the matchings, the gluing process is unique
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up to isotopy, because of the existence of the small-scale asymptotics near x and
the large-scale asymptotics of Wv′ .

For N > 1, we do the same gluing procedure inductively. That is, given a
vertex v ∈ TN−1, if there are no edges terminating at v then the orbifold associated
to v is a manifold and we leave it alone. If there are edges terminating at v then
the orbifold associated to v has singular points. We remove neighborhoods of the
singular points and glue in truncated manifolds associated to the vertices v′ ∈ TN
that are joined to v in T . Doing this for all v ∈ TN−1, the result is a tree of height
N−1 for which the orbifolds associated to the vertices of distance N−1 from the
root vertex are all noncompact manifolds. Then we iterate downward in the height
of the tree, until we finish with MT .

From the uniqueness of the gluing procedure, up to isotopy, if we know the
orbifolds associated to the vertices of T and the combinatorics of the matchings
then we can uniquely determine the diffeomorphism type of MT .

2.5. End of the proof. In the previous subsection, we did not make refer-
ence to the hyperKähler structures. In our situation, all of the orbifolds associated
to the vertices of T carry hyperKähler structures.

LEMMA 2.22. For large i, the manifold Mi is diffeomorphic to a hyperKähler
manifold.

Proof. Consider the height N of the bubble tree T . If N = 0 then Mi is dif-
feomorphic to the hyperKähler manifold X. If N > 0 then the orbifolds associated
to the vertices of T are hyperKähler ALE orbifolds. Those associated to vertices in
TN are hyperKähler ALE manifolds.

For a hyperKähler ALE manifold associated to a vertex in TN , if its asymptotic
cone is C2/Γ then the manifold is deformation equivalent to the minimal resolution
of C2/Γ, through hyperKähler ALE manifolds with asymptotic cone C

2/Γ [Jo00,
Theorem 7.2.3],[Kr89]. Consequently, for our gluing purposes, we can assume that
the hyperKähler structure on the ALE manifold is exactly that of the minimal res-
olution.

Consider first the case N = 1. Using the compatible trivializations of the posi-
tive chirality spinor bundles, in a neighborhood of a singular point of X and at the
infinity of the corresponding ALE manifold, there is no ambiguity in the match-
ings. We see that MT is the minimal resolution of the hyperKähler orbifold X. As
X is hyperKähler, it has a trivial canonical bundle. The minimal resolution of an
orbifold of complex dimension two is a crepant resolution, i.e., the minimal res-
olution of X also has a trivial canonical bundle. Hence it admits a hyperKähler
structure.

If N > 1 then let v be a vertex in TN−1, with associated hyperKähler ALE
orbifold Wv. If there are no edges terminating at v then Wv is a hyperKähler ALE
manifold. As before, we deform it to a minimal resolution of a C

2/Γ. If there
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are edges terminating at v then Wv is a hyperKähler ALE orbifold with singular
points. From [Ba90a, Theorem 4], after we perform the gluing procedure around
the orbifold singular points of Wv, the result has the structure of a hyperKähler
ALE manifold. We again deform it to a minimal resolution of a C

2/Γ.
Doing this for all v ∈ TN−1, we have reduced to a tree of height N − 1. The

lemma follows from downward iteration. �

Lemma 2.22 says that for large i, the manifold Mi is diffeomorphic to a com-
pact hyperKähler 4-manifold. Such a hyperKähler manifold is a 4-torus or a K3
surface [BHPV04, Chapter 6]. Since Â(T 4) = 0, in either case we obtain a contra-
diction to the assumptions of the argument.

Remark 2.23. From the gluing procedure, one obtains geometric approxima-
tions for theMi’s, for large i. It seems possible that one could perturb the geometric
approximation, as in [BM11, Theorem 2.5], in order to find a Ricci-flat metric on
Mi that is biLipschitz close to gi.

Remark 2.24. The direct higher dimensional analog of Theorem 1.1 would
be to ask whether for any n ∈ Z

+, v > 0 and Λ,Υ < ∞, there is some ε =

ε(n,v,Λ,Υ) > 0 so that if M is a closed connected spin Riemannian n-manifold
with Â(M) �= 0, vol(M)≥ v, diam(M)≤ 1,

∫

M |Rm|n2 dvolM ≤Λ, RicM ≤ΥgM
and SM ≥−ε, then M admits a Ricci-flat metric of special holonomy.

The discussions of Subsections 2.3–2.4 go through without change to produce
a limit orbifold X with special holonomy, blowup Ricci-flat ALE orbifolds with
special holonomy and a bubble tree. However, if n > 4 then there are more possi-
bilities for the holonomies and hence more possibilities for the orbifolds associated
to the vertices of the bubble tree. Rather than trying to classify the possibilities,
it is conceivable that one could perform a gluing construction, as mentioned in
Remark 2.23, in order to directly construct Ricci-flat metrics of special holonomy.

3. Proofs of Theorem 1.3 and Corollary 1.4. We first prove Theo-
rem 1.3(1). Arguing by contradiction, if it is not true then for some n ∈ Z

+,
v > 0 and Λ,Υ < ∞, there is a sequence {(Mi,gi)}∞

i=1 of closed connected
n-dimensional Riemannian manifolds with
• ∫

Mi
|RmMi |

n
2 dvolMi ≤ Λ,

• vol(Mi)≥ v,
• diam(Mi)≤ 1,
• − 1

i gi ≤ RicMi ≤Υgi and
• |π1(Mi)| ≥ i, but
• Mi does not admit a W 2,p-regular Riemannian metric hi with nonnegative

measurable Ricci curvature for which the universal cover (M̃i, h̃i) isometrically
splits off an R-factor.

By [An90, Theorem 2.6], after passing to a subsequence we can assume that
limi→∞(Mi,gi) = (X,gX) in the Gromov-Hausdorff topology, where
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• X is an n-dimensional compact orbifold with finitely many isolated orbifold
singularities,
• gX is a continuous orbifold Riemannian metric on X, and
• gX is locally C1,α-regular away from the singular points, for all α ∈ (0,1).

As before, gX is locally W 2,p-regular on Xreg, for all p < ∞. In particular, gX has
a locally-Lp Ricci tensor.

Given x ∈X, there are points pi ∈Mi so that limi→∞(Mi,pi) = (X,x) in the
pointed Gromov-Hausdorff topology. Put Γi = π1(Mi,pi), let πi : M̃i → Mi be
the universal cover of Mi equipped with the pullback metric gM̃i

, and pick p̃i ∈
π−1
i (pi). After passing to a subsequence, we can assume that limi→∞(M̃i, p̃i,Γi) =

(Y, p̃,Γ) in the equivariant pointed Gromov-Hausdorff topology of [FY92, §3],
where (Y, p̃) is a pointed length space on which Γ acts by isometries, with quo-
tient X.

Since |π1(Mi)| ≥ i, we know that vol(M̃i)≥ iv, so limi→∞ vol(M̃i) =∞. Using
the fact that RicMi ≥ −1, volume comparison implies that limi→∞ diam(M̃i) = ∞.
Hence diamY = ∞ and Y is noncompact. We have RicMi ≥ − 1

i , so the Cheeger-
Colding almost splitting theorem [CC96, Theorem 6.64] holds on Y . As the action
of Γ on Y is cocompact, the Cheeger-Gromoll argument [CG72, §9] implies that
Y is isometric to R

m×Z , where 1≤m≤ n and Z is a compact length space.

LEMMA 3.1. Given r > 0, there is a upper bound on the integral of |RmM̃i
|n2

over r-balls in M̃i, uniform in i.

Proof. Since RicMi ≥ − 1
i gi, Bishop-Gromov relative volume compari-

son gives an explicit c = c(n,v,r) > 0 such that for any mi ∈ Mi, we have
vol(Br(mi)) ≥ c. Let m̃i be a preimage of mi in M̃i. Absolute volume compari-
son gives an explicit c′ = c′(n,r)<∞ such that vol(B10r(m̃i))≤ c′. Suppose now
that some m′i ∈Br(mi) has N preimages in Br(m̃i). Then any m′′i ∈Br(mi) has
at least N preimages in B10r(m̃i). Thus

N ≤ vol(B10r(m̃i))

vol(Br(mi))
≤ c′

c
.(3.2)

Hence
∫

Br(m̃i)
|RmM̃i

|n2 dvolM̃i
≤ c′

c

∫

Mi

|RmMi |
n
2 dvolMi ≤

c′

c
Λ.(3.3)

This proves the lemma. �

Using Lemma 3.1, we can apply [An90] to conclude that Y is an n-dimensional
orbifold with a discrete set of isolated orbifold singular points, and a nonnegative
measurable Ricci tensor. From the splitting Y ∼=R

m×Z , the set of singular points
in Y must be empty. Then limi→∞(M̃i, p̃i) = (Y, p̃), with Riemannian metrics con-
verging in the pointed weak W 2,p-topology; cf. [An90, Remark 2.7(ii)]. In partic-
ular, Y has nonnegative measurable Ricci curvature.
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Since X = Y/Γ is n-dimensional, it follows that Γ ⊂ Iso(Y ) is discrete. A
priori, Γ need not act freely on Y . However, since the orbifold singular points of
X are isolated, if Γ does not act freely on Y then the points in Y with nontrivial
isotropy groups must be isolated. We claim that the action is free in our situation.

LEMMA 3.4. The group Γ acts freely on Y .

Proof. Suppose to the contrary that there is a point q ∈ Y with a nontrivial
isotropy group. Let γ ∈ Γ be a nontrivial element that fixes q. Then q is isolated in
the fixed point set of γ. Since the action of γ near q can be linearized, there exist
r > 0 and δ ∈ (0,r/100) such that Bs(q) is a topological ball for any s ∈ (0,10r),
and dY (γ(y),y)> δ for any y ∈ Y with r/2< dY (q,y)< 2r.

Let γi ∈ Γi converge to γ and let qi ∈ M̃i converge to q. Since γ(q) = q we
have limi→∞ dM̃i

(γi(qi),qi) = 0. Hence for large i,

Br− δ
100
(qi)⊂ γi(Br(qi))⊂Br+ δ

100
(qi).(3.5)

Also, dM̃i
(γi(m̃i), m̃i)> δ/2 for any m̃i ∈ M̃i with r/2<dM̃i

(m̃i,qi)< 2r. Since
limi→∞(M̃i,qi) = (Y,q) in the pointed C1,α-topology, we can find a closed topo-
logical 4-disk Di ⊂ M̃i which is εi-Hausdorff close to Br(qi) with εi → 0. Its
image γi(Di) is εi-Hausdorff close to γi(Br(qi)). Then for large i, equation (3.5)
implies that γi(Di) is δ

50 -Hausdorff close to Br(qi). Using the fact that B2r(qi)

is C1,α-close to B2r(q) ⊂ Y , by slightly squeezing B2r(qi) inward we can find a
continuous map φi : B2r(qi)→ M̃i such that
• φi acts as the identity on Br−δ/10(qi),
• φi sends Br+δ/20(qi) into Br−δ/20(qi), and
• dM̃i

(φi(m̃i), m̃i)<
δ
5 for all m̃i ∈B2r(qi).

Then φi(γi(Di))⊂Di.
The map φi◦γi : Di→Di is continuous. We wish to show that for large i, it has

no fixed points. If m̃i ∈Br−δ/5(qi) then for large i, we have γi(m̃i) ∈Br−δ/10(qi)

and so (φi ◦γi)(m̃i) = γi(m̃i) �= m̃i. If m̃i ∈Di but m̃i /∈Br−δ/5(qi) then

dM̃i
((φi ◦γi)(m̃i), m̃i)

≥ dM̃i
(γi(m̃i), m̃i)−dM̃i

((φi ◦γi)(m̃i),γi(m̃i))>
3

10
δ.

(3.6)

Hence φi ◦γi has no fixed points in Di. This contradicts the Brouwer fixed point
theorem, so Γ must act freely on Y . �

We now know that X is aW 3,p-manifold. Therefore, from convergence theory,
Mi is W 3,p-diffeomorphic to X for all large i. Pulling back the metric on X to Mi

gives a metric hi that contradicts our assumptions. This proves Theorem 1.3(1).
To prove part (2) of the theorem, we replace the upper Ricci curvature bound

in the contradiction argument, by the assumption that
• |RicMi | ≤ 1

i .
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We construct the orbifold X as before. Because of the Ricci pinching of Mi, the
metric gX has vanishing measurable Ricci tensor away from the singular points.
Then gX is smooth and Ricci-flat away from the singular points. By removable sin-
gularity results for Einstein metrics, gX is a smooth Ricci-flat orbifold Riemannian
metric on X; cf. [BKN89, §5]. The rest of the proof proceeds as before. �

We now prove part (1) of Corollary 1.4. From [CN15, Theorem 1.13], for any
v > 0 there is a constant Λ = Λ(v) > 0 so that vol(M) ≥ v, diam(M) ≤ 1 and
|RicM | ≤ 3 imply that

∫

M |Rm|2 dvolM ≤ Λ. Without loss of generality, we can
assume that the constant ε in Theorem 1.3 is less than 3. From the proof of Theo-
rem 1.3(1), we obtain a W 2,p-regular metric h on M with nonnegative measurable
Ricci curvature for which the universal cover (M̃, h̃) is an isometric product Rm×
K, where 1≤m≤ n and K is a compact length space. Since isometries take lines
to lines, the arguments of [CG72, §9] show that Iso(Rm×K)∼= Iso(Rm)× Iso(K),
with the action of π1(M) on R

m×K being diagonal. By [CN12, Theorem 1.21],
Iso(K) is a Lie group.

NowK is a compact W 3,p-manifold of dimension at most three, equipped with
aW 2,p-regular Riemannian metric gK having nonnegative measurable Ricci tensor.
Also, Iso(K) is a compact Lie group G that acts on K by W 3,p-diffeomorphisms.
We can fix an underlying smooth structure on K for which G acts by smooth
diffeomorphisms; cf. [Pa70, Theorem B]. (Any two such smooth structures are
G-diffeomorphic; cf. [Pa70, Theorem A].) We can slightly smooth gK to get a se-
quence {gk}∞

k=1 of Riemannian metrics on K with diameter uniformly bounded
above, volume uniformly bounded below by a positive number, and Ricgk ≥ − 1

k .
Furthermore, this smoothing can be done equivariantly with respect to G. (For ex-
ample, we could pick a smooth G-invariant metric on K and apply the ensuing
heat operator, acting on symmetric 2-tensor fields, to our W 2,p-regular Riemann-
ian metric for short time.) From [Si12, Corollary 1.12], there is a smooth Rie-
mannian metric on K with nonnegative Ricci curvature. The construction of this
metric, using Ricci flow, can be done G-equivariantly. Hence we obtain a smooth
metric h∞ on (Rm×K)/π1(M) with nonnegative Ricci curvature. There is a C∞-
diffeomorphism from M to (Rm×K)/π1(M), the latter being equipped with the
quotient smooth structure. Pulling back h∞ to M , part (1) of the corollary follows.

The proof of part (2) of the corollary is similar but easier, using Theo-
rem 1.3(2). In this case, K is Ricci-flat. Since it has dimension at most three, it is
flat. Hence the metric h′ of Theorem 1.3(2) is flat. The corollary follows. �

Remark 3.7. In the conclusions of Theorem 1.3 and Corollary 1.4, a finite
cover of M is diffeomorphic to a product S1×N .

Remark 3.8. With regard to the conclusion of Corollary 1.4(2), we can also
say that the flat metric is C1,α-close to the original metric g.



752 V. KAPOVITCH AND J. LOTT

4. Proof of Theorem 1.7. Arguing by contradiction, if Theorem 1.7 is not
true then there is a sequence {(Mi,gi)}∞

i=1 of closed connected Riemannian n-
manifolds with
• vol(Mi)≥ v,
• diam(Mi)≤ 1 and
• RicMi ≥− 1

i , but
• π1(Mi) does not have an abelian subgroup (of index at most i) generated by

at most n elements.
By Gromov’s precompactness theorem, we can assume that limi→∞(Mi,gi) =

(X,dX) in the Gromov-Hausdorff topology, where (X,dX ) is a compact length
space. The uniform lower volume bound on the Mi’s implies that X has Hausdorff
dimension n [CC97, Theorem 5.9].

Let p∈X be a regular point, meaning that every tangent cone TpX is isometric
to R

n. The existence of regular points is guaranteed by [CC97, Theorem 2.1]. A
small neighborhood of p is homeomorphic to an open ball in R

n [CC97, Theorem
A.1.8]. Furthermore, for any sequence pi ∈Mi converging to p, there is some ε > 0
such that for all large i, the ball Bε(pi) is contained in a topological disk Di ⊂Mi

[CC97, Theorem A.1.8].
In particular, for all large i,

any loop at pi of length at most ε/2 is contractible.(4.1)

By passing to a subsequence, we can assume that this is true for all i.
As in Section 3, put Γi= π1(Mi,pi), let πi : M̃i→Mi be the universal cover of

Mi equipped with the pullback metric gM̃i
, and pick p̃i ∈ π−1

i (pi). After passing to
a subsequence, we can assume that limi→∞(M̃i, p̃i,Γi)= (Y, p̃,Γ) in the equivariant
pointed Gromov-Hausdorff topology, where Γ is a closed subgroup of Iso(Y ) and
Y/Γ =X.

Given γi ∈ Γi we will refer to |γi| = d(p̃i,γi(p̃i)) as the norm or the length
of γi. We will use the same notation for elements γ of Γ. By (4.1), any nontrivial
γi ∈ Γi satisfies |γi| ≥ ε/2. This property passes to the limit, so

any nontrivial γ ∈ Γ satisfies |γ|= d(p̃,γp̃)≥ ε/2.(4.2)

The length space Y satisfies the splitting theorem [CC96, Theorem 6.64]. Since
the action of Γ on X is cocompact, the Cheeger-Gromoll argument [CG72, §9]
implies that Y is isometric to R

m×Z where Z is a compact length space and
m≤ n. Furthermore, since isometries take lines to lines, the arguments of [CG72,
§9] show that Iso(Y ) ∼= Iso(Rm)× Iso(Z), with the action of Γ on Y = R

m×Z
being diagonal. Let φ : Γ→ Iso(Rm) be the composition of inclusion Γ→ Iso(Y )

and projection onto the first factor. Put H = kerφ. Then H is a subgroup of the
compact group Iso(Z). Property (4.2) and the compactness of Z imply that H
is a discrete subgroup of Iso(Z), and hence is finite. Again using property (4.2),
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we obtain that L = φ(Γ) is a closed discrete subgroup of Iso(Rm). It must be
cocompact and hence it contains a free abelian subgroup of finite index and rank
m, consisting only of translations. There is a short exact sequence

1−→H −→ Γ−→ L−→ 1,(4.3)

where H is finite, Γ is finitely presented and L is crystallographic.
Let 〈γ1, . . . ,γN1 |w1, . . . ,wN2〉 be a presentation of Γ. By possibly increasing

the generating set, we can assume that it contains all of the elements γ of Γ

with |γ| ≤ 10. The number of such elements is still bounded because of (4.2) and
Bishop-Gromov volume comparison. Let T be the maximum wordlength of the
relations w1, . . . ,wN2 .

For large i, properties (4.1) and (4.2), along with the definition of equivariant
pointed Gromov-Hausdorff convergence [FY92, §3], imply that for any generator
γj , there is a unique γij ∈ Γi that approximates γj in the sense of [FY92, Definition
3.3]. In other words, all generators γj have unique “lifts” to Γi. In particular, γij
will be uniformly ε

10T -close to γj on B10T (p̃i), in the sense of [FY92, Definition
3.3(4,5)]. Hence any relation ws(γ1, . . . ,γN1) = 1 remains true for the lifts, i.e.,
ws(γ

i
1, . . . ,γ

i
N1
) = 1, as otherwise one would obtain a noncontractible loop at pi

with length at most ε/2.
Thus there is a homomorphism ρi : Γ → Γi defined by ρi(γk) = γik. Now

ρi is an epimorphism, since π1(Mi,pi) is generated by loops of length at most
2diam(Mi) ≤ 2, and the image of ρi contains all such elements by construction.
From (4.3), it follows that Γ contains a finite-index free abelian subgroup Γ′ of
rank m. Call the index c. Then ρi(Γ′) is an abelian subgroup of Γi (of index at
most c) generated by at most n elements. This contradicts our assumptions and
proves Theorem 1.7. �
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