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ABSTRACT. I f  M is a compact spin manifold, we give relationships between the vanishing of  A( M) and the 

possibility that M can collapse with curvature bounded below. 

1. Introduction 

The purpose of this paper is to extend the following simple lemma. 

Lemma 1.I. I f  M is a connected closed Riemannian spin manifold of nonnegative sectional A 
curvature with dim(M) > 0, then A(M) = O. 

Proo f  Let K denote the sectional curvature of  M and let R denote its scalar curvature. Suppose 
that A(M) (: O. Let D denote the Dirac operator on M. From the Atiyah-Singer index theorem, 
there is a nonzero spinor field 7t on M such that D~p = 0. From Lichnerowicz's theorem, 

0 = IDOl 2 dvol = IV~Pl 2 dvol + ~- I•12 dvo l .  (1.1) 

From our assumptions, R > 0. Hence V~p = 0. This implies that I~k F 2 is a nonzero constant function 
on M and so we must also have R = 0. Then as K > 0, we must have K = 0. This implies, from 
the integral formula for A'(M) [14, p. 231], that A"(M) = O. [] 

The spin condition is necessary in Lemma 1.l, as can be seen in the case of  M = C P  2k. The 
Ricci-analog of Lemma 1.1 is false, as can be seen in the case of  M = K3. 

Definition 1.2. A connected closed manifold M is almost-nonnegatively-curved if for every E > 0, 
there is a Riemannian metric g on M such that K(M,  g) �9 diam(M, g)2 > -E .  

Special examples of  ~most-nonnegatively-curved manifolds are given by almost-flat manifolds; 
these all have vanishing A-genus, as can be seen by the integral formula. Along with Lemma 1.1, 
this raises the following question. 

Questionl.3. Givenn ~ Z+ , i s thereane(n)  > OsuchthatifM isaconnectedclosedRiemannian 
spin manifold with K (M, g) �9 diam(M, g)2 ~ -e (n)  then "A(M) = O? 
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We answer Question 1.3 under the assumption of an upper curvature bound. 

Proposition 1.4. For any n ~ Z + and any A > O, there is an e(n, A) > 0 such that i f  M is a 
connected closed n-dimensional Riemannian spin manifold with 

- e ( n ,  A) _< K ( M ,  g) �9 diam(M, g)2 _< A ,  (1.2) 

then A ( M )  = O. 

The proof of Proposition 1.4 uses Gromov's convergence theorem [11, 13]. Using the results 
of [17], the upper bound on the sectional curvature in Proposition 1.4 can be replaced by a lower 
bound on the conjugacy radius conj(M, g). 

An affirmative answer to Question 1.3 would imply that an almost-nonnegatively-curved spin 
manifold has vanishing A'-genus. There is a fiber bundle construction to create new almost- 
nonnegatively-curved manifolds out of old ones. The following proposition shows that the van- 
ishing of the A-genus is consistent with this construction. 

Proposition 1.5. Let  N be a connected closed manifold o f  nonnegative sectional curvature. Let  
G be a compact Lie group which acts on N by isometries. Let  P be a principal G-bundle with 
connected closed base B. Put M =- P • G N.  
I. I f  B is almost-nonnegatively-curved, then M is almost-nonnegatively-curved [8, Theorem O. 18]. 
2. I f  M is spin and dim(N) > 0 then A ( M )  = O. 

Part 2 of Proposition 1.5 also follows easily from the multiplicativity of the A-genus for such 
fiber bundles [16]. We give a direct geometric proof which will be useful later. Proposition 1.5 
covers a wide range of almost-nonnegatively-curved manifolds. It seems conceivable that every 
almost-nonnegatively-curved manifold has a finite cover which is the total space of a fiber bundle 
whose base is almost-flat and whose fiber has a metric of nonnegative sectional curvature. 

Rescaling metrics, a manifold M is almost-nonnegatively-curved if for every E > 0, there is 
a Riemannian metric g on M such that K ( M ,  g) _> - 1  and diam(M, g) < e. That is, there is a 
sequence of metrics {gi}~--1 such that K ( M ,  gi) >_ - 1  and the metric spaces {(M, gi)}i~__l converge 
in theGromov-Hausdorff topology to a point. It is natural to extend Question 1.3 to a question about 
the A-genus of a spin manifold M with a sequence of metrics {gi}~=l such that K ( M ,  gi) >-- --1 
and the metric spaces {(M, gi)}~C=l converge in the Gromov-Hausdorff topology to some lower- 
dimensional length space, not necessarily a point. The following definition is convenient for our 
purposes. 

Def in i t ion  1.6. A connected manifold M collapses with curvature bounded below and diameter 
bounded above if there is a number D > 0 such that for any e > 0, there is a Riemannian metric g 
on M with K ( M ,  g) > - 1 ,  diam(M, g) _< D and vol(M, g) < E. 

We remark that in the noncollapsing case there is a finiteness result [12]. Namely, given 
D, v > 0 and n > 3, there is a finite number of homeomorphism classes of connected manifolds M n 

admitting a Riemannian metric g satisfying K ( M ,  g) >_ - 1 ,  diam(M, g) _< D and vol(M, g) >_ v. 

Question 1.7. Given n ~ Z + and D > 0, is there a v(n, D) > 0 such that i f  M is a con- 
nected closedn-dimensionalRiemannian spin manifold with K (M, g) >_ - 1, diam(M, g) <_ D and 
vol(M, g) 5 v(n, D), then A ( M )  = O? 

An affirmative answer to Question 1.7 would imply that a spin manifold that collapses with 
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curvature bounded below and diameter bounded above has vanishing )"-genus. In the next proposition 
we show that this is indeed the case for a large class of  collapsing examples. 

Proposition 1.8. Let Z and N be connected closed Riemannian manifolds. Suppose that N 
has nonnegative sectional curvature. Let G be a compact Lie group which acts on Z and N by 
isometries. Suppose that for a generic point z in Z, the stabilizer group G z does not act transitively 
on N. Suppose that the diagonal action o f  G on Z x N has the property that all o f  its orbits are 
principal orbits. Let M be the quotient manifold Z • G N. Then 
1. M collapses with curvature bounded below and diameter bounded above. The collapsing sequence 
converges in the Gromov-Hausdorff topology to the length space Z~ G. 
2. I f  M is spin, then A(M)  = O. 

In Proposition 1.8, M is the total space of a possibly-singular fibration whose base is Z~ G. The 
fiber over a coset zIG ~ Z / G  is Gz,\N.  The hypotheses imply that the generic fiber has positive 
dimension. Some special cases of  Proposition 1.8 are: 
1. I f  G acts freely on Z; then Proposition 1.8 is equivalent to Proposition 1.5. 
2. If  N = G is a connected compact Lie group which acts nontrivially on Z; then M = Z x G G = Z 
and the second part of  Proposition 1.8 is equivalent to the Atiyah-Hirzebruch theorem [2]. 

To put the results of this paper in perspective, let us mention known necessary conditions for a 
connected closed manifold M to be almost-nonnegatively-curved : 
1. The fundamental group zq (M) must be virtually nilpotent [8, Theorem 0.1]. 
2. If  7rl (M) is infinite, then the Euler characteristic of  M must vanish [8, Corollary 0.12]. 
3. M must be dominated by a CW-complex with the number of cells bounded above by a function 
of d im(M) [10, 18]. 

A d i m ( M )  l 
4. If  M is spin, then [A(M)I < 2 - - 7 - - -  . (This is a necessary condition for M to have almost- 
nonnegative-Ricci curvature [9].) 

I thank Peter Petersen for his interest in these questions. 

2. Proof of Proposition 1.4 

For background material on spin geometry, we refer to [14]. Before giving the proof  of  Proposi- 
tion 1.4, we must discuss how to compare spinors on diffeomorphic Riemannian manifolds which are 
not necessarily isometric. This is an elementary point which has caused confusion in the literature. 

Let M be a smooth connected closed n-dimensional oriented manifold. Let P M  be a principal 
Spin(n)-bundle on M. Let Sn be the complex spinor module of  Spin(n). Then we can form the 
associated Hermitian vector bundle S = P M  • Sn on M. The corresponding spinor fields are 
defined to be the sections of  S, or equivalently, the Spin(n)-equivariant maps from P M  to S,. Thus 
far we have made no reference to a Riemannian metric on M. 

Let p : F M  ~ M be the oriented frame bundle of  M, a principal GL+(n, IR)-bundle on M. 
Given g c GL + (n, 1R), let R• 6 Di f f (FM)  denote the right action of V on FM.  There is a canonical 
R n-valued 1-form 0 on F M  such that if f = { fi }n= 1 is an oriented frame at m ~ M and v ~ Tf FM,  

then dp(v) = ~in=l 0 i (v) fi. It has the following properties: 
1. I f  V is a vertical vector field on FM,  then O(V) = O. 
2. For all y E GL+(n, R), R~O = V -1 . O. 
3. For all f c FM,  0 : T u F M  -+ R ~ is onto. 
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Giving a Riemannian metric g on M is equivalent to giving a reduction i : O M  --+ F M  of the 
oriented frame bundle from a principal GL+(n,  R)-bundle to a principal SO(n)-bundle OM.  As a 
topological fiber bundle, O M  is unique. We obtain an Rn-valued 1-form r = i*O on O M  with the 
following properties: 
1. If  V is a vertical vector field on OM,  then r (V)  = 0. 
2. For all ?' E SO(n) ,  R~,r = y - 1  . "C. 

3. For all f ~ O M , r : T f O M --+ R n is onto. 

Conversely, given the topological SO(n)-bundle zr : O M  ~ M and an Rn-valued 1-form r on 
O M  satisfying Properties 1 through 3. immediately above, one recovers the metric g. Namely, for 
v, W C TraM, choose m r ~ r c - l ( m ) a n d  v r, w r ~ Tm, O M  such that dzr(v r) = v and dzr(w r) = w. 
Then g(v,  w) = (r(vr),  r(wr)) .  

Let h : Spin(n) --+ S 0 (n) be the double-covering homomorphism. Giving a spin structure on 
M means giving a principal Spin(n)-bundle P M  on M such that O M  = P M  )<Spin(n) S O ( n ) .  The 
1-form r lifts to an Rn-valued 1-form r r on P M  with the following properties: 
1. If  V is a vertical vector field on P M ,  then rr(V) = 0. 
2. For all g ~ Spin(n), R~r  r = h(g -1) . r r. 
3. For all f ~ P M , r r : T f P M -+ JR n is onto. 

Thus a Riemannian spin manifold consists of 
1. the principal Spin(n)-manifold P M  on M and 
2. an ]Rn-valued 1-form r t on P M  satisfying Properties 1 through 3. immediately above. 
We can think of P M ,  as a topological fiber bundle, as being metric-independent. Thus, the notion 
of a spinor field on M is also metric-independent. The metric only enters in defining the R n-valued 
1-form r r on P M .  In this way we can compare spinor fields on two different Riemannian manifolds 
with the same underlying smooth structure. 

P r o o f  o f  Propos i t ion  1.4. Suppose that the proposition is not true. Then there is some n ~ Z +, 
some A > 0, and a sequence {Ei }~1 of positive numbers such that 
1. limi_,ee ~i ~--- 0. 

2. For each i, there is a connected closed n-dimensional s ~ n  manifold Mi with a Riemannian metric 
gi s u c h  that - e i  < K (Mi,  gi) " diam(Mi, gi) 2 < A_ and A ( M i )  ~ O. 

By rescaling, we can assume that diam(Mi, gi) = I. I f  i is large enough, then [ K (Mi, gi ) [ < A. 
We can write 

L A (Mi) = P ( g  (Mi, gi)) dvol (Mi) (2.1) 
i 

for some explicit homogeneous polynomial P in the curvature tensor [14, p. 231]. Thus, there is 
an explicit number v(n, A) > 0 such that vol(Mi, gi) >_ v(n, A) ,  as otherwise we could conclude 
from the integral formula that A(Mi)  = 0. By Gromov 's  convergence theorem and its elabora- 
tions [11, 13], there are 
1. a smooth manifold M equipped with a metric gee which is c l ,~-smooth  for all 0 < ~ < 1 and 
2. a subsequence of {Mi }~--1, which we will relabel to again call {Mi }~=1, and a sequence of diffeo- 

morphisms Fi : M ~ Mi such that l imi~ee F*gi = gee in the c l ,~- topology for all 0 < ~ < 1. 

Replacing (Mi, gi) by (M, F*gi), we may assume that the metrics {gi}eei=l all live on the same 

manifold M (with A'(M) 5& 0) and converge to gee in the C 1,,_topology. In particular, the Christoffel 
symbols o f g ~  are locally C ~ on M. In fact, we may assume that for all p 6 [1, ~ ) ,  the sequence 
{gi}~=l converges to gee in the Sobolev space L 2'p of covariant 2-tensors on M whose first two 
derivatives are LP; a somewhat similar case is treated in [1, Section 2]. Let Ki denote the curvature 
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tensor of  gi and let Koo denote the curvature tensor of  g ~ ,  an LP-tensor for all p > 1. Then 
l imi~cc Ki = K~ in L p for all p > 1. In particular, Kco > 0 in the sense of sectional curvatures. 
Let Ri denote the scalar curvature of  gi and let Rcc > 0 denote the scalar curvature of  gc~. 

The manifold M is spin and we fix a spin structure on it. As discussed above, we may take spinor 
fields to be sections of the Hermitian vector bundle S = P M x Spin(n) Sn, regardless of  the Riemannian 
metric gi. Let dvoli E g2 n (M) be the volume form coming from gi and let d v o l ~  e f2 n (M) be 
the volume form coming from gw. Let Vi be the connection on S coming from gi and let Voo be 
the connection on S coming from g ~ .  Then as i --+ oc, the tensor V i - -  Vc~  E End(S, S | T 'M)  
converges to zero in the C ~ Let Di denote the Dirac operator on S coming from gi. Let 
H ~ be the Hilbert space of LZ-spinors on M with norm 

[I 7, 1120 -- fM 17"12 dvol~. (2.2) 

Let H 1 be the Sobolev space of spinors on M with norm 

II ~ 112, = fM ( I V ~ I 2  + 1~12)dvol~. (2.3) 

A 

As A(M) # 0, the Atiyah-Singer index theorem implies that there is a nonzero spinor field 
7ti on M such that Di~i  = 0. We may assume that fat I api 12 d v o l i =  1. From the Lichnerowicz 
formula, 

L 0 -~- IDi~il 2 d v o l i =  IVi~i] 2 q- ~ I~il 2 dvo l i .  (2.4) 

By our assumptions, 

fM Ri n(n -- 1)~i [ ~ i l  2 d v o l i >  (2.5) T - 4 

Hence, 

fM fM Ri 12 0 ~ ]Vi~il2dvoli = - -~ I~i dvoli 5 
n ( n -  1)Ei 

4 
(2.6) 

Thus, limi_+~ [[ ~ki II H 1 = 1. Taking a subsequence, we may assume that {Tel }~1 converges weakly 

to some 7t~ 6 H 1 . By compactness, {Tti }~1 converges strongly to ~Pco in H ~ Thus, II ~P~ II H0 = 1. 
Furthermore, for general reasons, 

Hence 

II ~ IIH 1 5 .lim II ~i IIH': 1.  (2.7) 
1 ----> OO 

l=f  28, 
Thus, V c ~ k ~  = 0. In particular, I~c~ 12 is a nonzero constant function on M. Also, from (2.6), 
{7 ti }~=1 converges strongly to 7t~ in H i. 

As the A'-genus is only nonzero in dimensions divisible by 4, we may assume that n > 2. Then 

H 1 embeds continuously in L n~l-"2 . Hence l imi-+~ ]~ki [ 2 -- I~12 in L ~'-~-'2. As limi_+~ Ri = R~ 
in L~,  (2.6) implies that 

fM R~ fM Ri [ a -T- I~p~I2 d v o l ~  = lim Iffi d v o l l =  0 (2.9) 
i->(x~ 4 -  
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tl  

As Rc~ > 0, we conclude that R ~  --- 0. Hence K ~  = 0. As limi_+~ Ki = K ~  in LT, we obtain 

A'(M) = lim f P(Ki)  d v o l i =  0 .  (2.10) 
i--+~ dM 

This is a contradiction. [ ]  

Let us make some comments about Ricci curvature. As mentioned in the introduction, if M is 
n ] 

a connected closed n-dimensional spin manifold with [A'(M) I > 27 -  , then M cannot have almost- 
nonnegative-Ricci curvature [9]. One can ask what happens when [A(M) I lies between 1 and 27 -  . 
It may be that any such manifold with almost-nonnegative-Ricci curvature is necessarily very special. 
The method of proof of Proposition 1.4, along with the smoothing result of [17], gives the following 
proposition. 

Proposition 2.1. For any n c Z + and any c > O, there is an E(n, c) > 0 such that i f  M 
is a connected closed n-dimensional Riemannian spin manifold with Ric(M, g) �9 diam(M, g)2 > 
-E(n,  c) and conj(M, g) >_ c .  diam(M, g), then A(M) = 0 or M admits a cX'"-metric go whose 
local holonomy group factorizes into products of  { SU (m ) }~m=2, { Sp(m) } f _  1, Spin(7) and G2. 

As was pointed out to me by Peter Petersen, the metric go constructed in Proposition 2.1 is 
actually smooth, as it has vanishing LP-Ricci curvature. 

Ques t i on  2.2. Given n ~ Z +, is there an ~ (n) > 0 such that i f  M is a connected closed n- 
dimensional Riemannian spin manifold with Ric(M, g) �9 diam(M, g)2 >_ -E(n) ,  then "A(M) = 0 
or the frame bundle of  M admits a topological reduction to a principal bundle whose local smlcture 
group factorizes into products of  { SU (m) }~_2, { Sp(m ) }~m_l , Spin(7) and G2 ? 

For example, M = K3#(S 2 x S 2) is a spin manifold with A'(M) = - 2  but without an almost 
complex structure having cl = 0. Does M have almost-nonnegative-Ricci curvature? An affirmative 
answer to Question 2.2 would imply that it does not. 

Remark: One may think of trying to answer Question 1.3 by an extension of the Bochner method. 
However, such an approach cannot work, at least not directly. For example, a fiat torus is almost- 
nonnegatively-curved but, with the right spin structure, does have harmonic spinors. It is just the index 
of its Dirac operator which vanishes. Also, a nonflat nilmanifold has locally homogeneous metrics 
of constant negative scalar curvature, for which the use of Lichnerowicz's formula is problematic. 

3. Proof of Proposition 1.5 

Part 1 of Proposition 1.5 is proven in [8, Section 2]. More precisely, if there is a metric h on B 
with K(B,  h). diam(B, h) 2 > - E  then there is a metric g on M with K(M,  g). diam(M, g)2 > -E.  

A 

We now prove Part 2. Suppose first that N is not flat. Recall that the A-genus is multiplicative 
under finite coverings. Hence, by taking a double cover if necessary, we may assume that B is 
orientable. Fix an orientation of B. Choose a metric on B and a connection on P. There is an 
induced metric on M. 

U K Let 7r : M ~ B be the projection map. Put b = dim(B). Let { i}i:1 be a finite covering 
of B by open sets such that for any k ~ Z + and any il . . . . .  ik ~ {1, . . .  , K}, the intersection 
Ui~ N . . .  N Ui~ is empty or is diffeomorphic to R b. Each nonempty intersection Uil A . . .  A Ui~ 
acquires an orientation from B and then has a unique spin structure. 
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The pre-image 7r -1 (Ui) C M of Ui is diffeomorphic to N x Ui and has a spin structure coming 
from that of M. The spin structures on Ui and zr -~ (Ui) give a spin structure on the vertical tangent 
bundle TN over zr -1 (Ui). As each fiber N has nonnegative scalar curvature which is positive 
somewhere, it follows as in Lemma 1.1 that Ker(DN) = 0. From [5], there is a canonically defined 
differential form "~i e ~ * ( U i )  such that on Ui, 

d'~i : f A ( v T N )  . (3.1) 
?N \ " 

The canonical nature of the constructions implies that on an intersection Uil n Ui2, we have ~il = ~i2. 
Hence, we obtain a globally defined differential form ~ e ~*(B)  such that 

d'~= fuX(V~N ) . (3.2) 

Then 

L f, f, ( u-t 
(3.3) 

Now suppose that N is flat. Then N = Tk/F for some k > 0, where T ~ has a flat metric, F 
is a finite group of  isometries of T k and T k is a minimal such covering. Let p : G -+ Isom(N) 
describe the action of G on N. Let Isom(Tk) F denote the isometries of  T ~ which commute with 
F.  There is a homomorphism | : Isom(TlC) F -+ Isom(N).  The induced map on Lie algebras 0 : 
isom(Tk) F ~ isom(N) is an isomorphism, as isom(N) is the Lie algebra of  Killing vector fields on 
N, each of  which can be lifted to an F-invariant Killing vector field on T k. As Ker(| ---- center(F), 
| restricts to an isomorphism between Isom(Tk) F and lsom(N)0, the connected components of  the 
identity. 

Put 

G ' : { ( g l , g 2 )  e I s o m ( T k ) o X G : |  } �9 (3.4) 

There is a finite covering P XG, T k --+ M. As Isom(Tk) ff acts on T k by translations, it commutes 

with the action of  T k on itself by translations and so there is a nontrivial Tk-action on P XG, T ~. 
By the Atiyah-Hirzebruch theorem [2], the A~-genus of  P x G' Tk vanishes. Thus, A'(M) = 0. 

Remark: Under the hypotheses of  Proposition 1.5, it may not be true that the vertical tangent 
bundle TN, a real vector bundle on M, has a spin structure; I thank Stephan Stolz for showing me 
such an example. This is why we do the pasting procedure to define ~. 

4. Proof of Proposition 1.8 

Let Z be the union of the principal orbits for the action of  G on Z. Put B = 2 / G ,  a smooth 
manifold and put M = Z • 6 N, a dense open subset of M. There is a Riemannian submersion 
zr : M -+ B whose fiber over zG e B is Gz\N. 

To describe the geometry of  M more explicitly, fix z c Z. Let N(Gz) denote the normalizer 
of  Gz in G. Then Z is a fiber bundle over B with structure group contained in K = Gz\N(Gz) [6, 
Theorem 3.3]. That is, there is a principal K-bundle P over B such that Z = P XK (Gz\G). 
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Furthermore, Z --+ B is a Riemannian submersion whose horizontal distribution comes from a 
connection on ft. We note that although all of the G-orbits on 2 are diffeomorphic to Gz\G, their 
Riemannian metrics may vary from fiber to fiber. Topologically, we can write M = P XK (Gz\N). 
The horizontal distribution on the Riemannian submersion re : M --+ B again comes from the 
connection on P. Metrically, the fibers of rc can be more accurately written as (Gz\G) x G N, with 
the orbit Gz\G obtaining its metric from its embedding in Z. 

Proof of  Proposition 1.8 Part 1. Let gz and gN be the Riemannian metrics on Z and N. 
Let K0 > 0 be such that K(Z, gz) > -Ko. For j >_ 1, consider the Riemannian metric hj = 
gz + j-Zg:v on Z x N. Clearly K(Z x N, hi) > -Ko and diam(Z x N, hi) < diam(Z, gz) + 
j - l d i a m ( N ,  gN). Let (M, g j) = (Z • N, hj) /G be the quotient metric on M. From the O'Neill 
formula [4, Chapter 9], K (M, g.i) > -Ko. Clearly diam(M, g j) < diam(Z x N, h j). 

Let N denote (N, j-zgN). Let ~ denote the restriction of gj to M. Then (M, ~-]) is obtained 
J 

from the Riemannian submersion Jr by changing the fiber from (Gz\G) XG N to (Gz\G) XG N. 
Let us concentrate on a given fiber (Gz\G) x ~ N. As Gz\N is a smooth manifold, there is a number 
Vmin > 0 such that every Gz-orbit on (N, g) has volume at least l)mi n. Then 

vol (Gz\G) �9 vol(N) vol(N) 
= (4.1) 

vol (Gz\G) �9 Vrnin Vmin 
vol((Gz\G) XG N) < 

U gives Replacing N by 7 

v ~ 2 1 5  <j-dim(Gz\N) v~ 

By assumption, dim(Gz\N ) > 0. Thus, 

. l imvol((Gz\G) x a N ) = o .  
j --+ e c  

It follows that 

(4.2) 

(4.3) 

lim vol(M, g j )=  lim vol(M,~j) = 0 .  
j~cc j ~  

(4.4) 

We can think of the projection map Jr : M --+ ZIG as a singular fibration whose fiber over 
zPG ~ Z /G is Gz,\N. From the same arguments as above, we see that lim./_+c~(M, g j) = Z /G in 
the Gromov-Hausdorff topology. [ ]  

Proof of  Proposition 1.8 Part 2. Without loss of generality, we may assume that dim(M) is 
even. As before, we fix z 6 Z. Put B = Z~ G, 

Z sing = {z'  E Z :  dim (Ge,) < dim (Gz)} , (4.5) 

B sing ~-- zsing/G and M sing = Z sing • N. Given e > 0, let Bsing(6)  be the e-neighborhood of 

B sing in B, let Z sing @) be its preimage in Z and put Msing(e) = zsing@) • G N. Put M1 = Msing(E), 

M2 = M - Msing@), W = OM1 = OM2 and B2 = B - Bsing(~). We note that B2 is a smooth 
orbifold and that M2 is a fiber bundle over B> 

By the O'Neill formula, Gz \ N  has a metric of nonnegative sectional curvature. Given this fact, 
it follows from the Cheeger-Gromoll splitting theorem [7] that the condition that Gz\N be flat is 
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topological in nature, namely that zrl (Gz \N )  have a free abelian subgroup of rank dim(G z \N) .  We 
divide the proof of Proposition 1.8 into two cases. 

Case 1. Gz\N  is not flat. 

We first prove a general result about the index of the Dirac operator on a compact spin manifold- 
with-boundary. 

L e m m a  4.1. Let X be a compact even-dimensional Riemannian spin manifold with boundary 
X. Let Dx be the Dirac operator on X with Atiyah-Patodi-Singer boundary conditions [3]. Let 

Hox E C cc (OX) be the mean curvature function. (With our conventions, i f  X is the unit ball in ]~n, 
n > 1, thenHox > 0.)SupposethatRx >_ O andHox > O. SupposethatRxispositivesomewhere 
or H~x is positive somewhere. Then ind(Dx) = 0. 

Proof. Let {ej }j= 1 denote a local orthonormal frame on X. Let y J denote Clifford multiplication 
by ej. With our conventions, 

y i y j  q_ ~ / j y i  = 2~iJ . (4.6) 

The Dirac operator on X has the local form 

/2 

Dx=-/ZyJv  
j=i 

(4.7) 

Along OX, we take en to be an inward-pointing unit normal vector. With respect to the decomposition 

( o ) ~  , S = S + ~ S- ,  we can write y J  = aj for 1 _ < j _ < n - 1 and yn = 0 ' where 

n - 1  {crj }j=l are generators for the Clifford algebra on ~n - l .  The Dirac operator on OX has the local 
form 

n - 1  

Dox = - i  ~ a j V ~ ej " 
j = l  

(4.8) 

Let ap be a spinor field on X. Let gt = 7e + + ~ -  be its decomposition with respect to the 
Z2-grading on spinors. Let ~kox be its restriction to 0X. Let p>_0 be the projection onto the subspace 
of spinors on 0X spanned by eigenvectors of Dox of nonnegative eigenvalue, and similarly for P <0. 
The Atiyah-Patodi-Singer boundary conditions are 

p>-O~+ X = p<O,t,- = 0 v'OX �9 (4.9) 

These boundary conditions are usually considered when X is a product near the boundary, but one 
obtains an elliptic self-adjoint boundary condition for Dx regardless of whether or not X is a product 
near the boundary. 

Suppose that Dx ap = 0. The Lichnerowicz equation 

)* RX 
0 = D 2 ~ =  V x Vx~k+- -~-~p  (4.10) 
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is valid on the interior of X. Define a vector field J = Ej=ln JJej o n X b y  JJ = (~, Vei~).X Then 

___ f x  RX 1~12 dvol (4.11) 

div(J) dvol + -~- I~[ 2 dvol 

RX ~ jn -~- [gr[ 2 dvol + dvol (4.12) 
X 

Now Dx~P = 0 implies that v x 7  re,, = -- E j - - I  ynyj VeXj a/r. Hence, 

0 = vXg,, vxg~) dvol + -7- I~l 2 dvo l -  gr, E Ynx; veX~ dvol. 
X j= l  

A computation gives that on 3X, 

n--I n--I 
�9 Has V ~ - ( n  - 1 )  - -  E ynyj Ve X = E YnzJ ej 2 

j= l  j=l  

Then 

(4.13) 

(4.14) 

} 0 = VX~p, vxT* dvol + ~ -  I~12 dvol (4.15) 

fo ox Hox - ~ , E y n y J v q  ~ d v o l + ( n - 1 )  l~]2dvol 
X j=l  X T ' 

The Atiyah-Patodi-Singer boundary conditions (4.9) imply that 

n-1 ) 

f0 vOX - ~ , E F ~ Y  j ej ~ d v o l > 0 .  ( 4 . 1 6 )  

X j= l  

> 0, we obtain from (4.15) that VXgr = 0. In particular, I~Pl 2 is locally 

(4.17) 

We will show that after shrinking the fiber metrics, we can apply Lemma 4.1 to show that ind(DM~ ) = 
0. Then we will use index theory techniques to show that ind(DM2) = 0. 

L e m m a  4.2. Define the metric g j on M as in the proof of part 1. Then for large j,  there is an 
e > 0 such that the submanifoldM1 of(M, g j) has RM1 > 0 andHw > O. 

Proof  This follows from computations as in [15, Section 7-10]. We omit the details but give 
an illustrative example which has all of the features of the general case. Suppose that z' c Z sing 

ind (DM) = ind (DM,) + ind (DM2) �9 

Our strategy to prove the proposition in Case 1 is the following. If Dw is invertible, then the 
Atiyah-Patodi-Singer index theorem (and its generalization to the case of nonproduct boundary) 
implies that 

As R x > 0 and Ho x 
constant on X. Equation (4.15), along with the fact that Rx or Hox is positive somewhere, implies 
that Igrl 2 = 0. Thus, there are no nonzero solutions to Dx~  = 0 and so ind(Dx) = 0. [] 
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is a G-fixed point. By the equivariant tubular neighborhood theorem, there is a G-vector space V 
which is G-diffeomorphic to an e-neighborhood of z / in Z [6, Theorem VI.2.2]. (In particular, for 
generic v E V, the G-stabilizer of v is conjugate to Gz.) Then UM = V x G N is a neighborhood of 
zr -I  (ziG) C M. Consider the case when N is a homogeneous space G/H.  

If  N has positive scalar curvature, then it is easy to see that from the O'Neil l  formula that for 
large j ,  (UM, gj) has positive scalar curvature. Suppose, to take the other extreme, that N is flat. 
Taking a finite cover, we may assume that N = T k and that G acts on T k through a homomorphism 
pP : G ~ r k. As UM is a smooth manifold, K e r ( y )  must act trivially on V. Put G = G/Ker(pl). 
There are induced homomorphisms ~ : G --+ Aut(V) and ~I : G ~ T ~, with T being an inclusion. 
Then UM =- V • ~ T k. Taking a finite cover, we may assume that G is connected. If  V is flat, 
then one can check that for large j ,  (UM, g j) has a positive scalar curvature function whose value 
at [0, t] E V •  T ~ is O(j2). This can be seen intuitively by the fact that ~reduces  into trivial 
R-factors and at least one nontrivial Re-factor. If  V = ~2  and G = T k = S 1 , then R 2 • S1 has a 
torpedo shape which becomes more curved at the tip as the S l-factor shrinks. 

In the general case, the torpedo effect ensures that if j is large enough and e is small enough, 

then (UM, g j)  will have positive scalar curvature. In fact, for large j we can take e = O(j-(�89 +cO) 
for any o~ > 0. As B sing C B has codimension at least two, the mean curvature of  OM~ is positive 
for large j .  Doing a similar procedure for a finite collection of z' E Z sing, we can deal with all of  
the strata of  Z sing. The lemma follows. 

As G z \ N  is not fiat, each fiber of  the fiber bundle M2 --+ B2 has a nonnegative scalar curvature 
function which is positive somewhere. Then by the Lichnerowicz formula, the Dirac operator on 

N is asymptotically that each fiber is invertible. For large j ,  the geometry of a fiber (Gz\G) x c  7 

of Cz.~N. If  j is large and 0 < o~ < �89 then it follows as in [5, Proposition 4.41] that Dw is also J 
invertible. By Lemmas 4.1 and 4.2, ind(DMt ) = 0. 

We now show that ind(DM2) = 0. Let [0, 8) x W C M2 be a neighborhood of W such that 
if u E [0, 8) is the coordinate function, then 0u is a unit length vector field whose flow generates 
unit-speed geodesics which are nomlal to W. We can write the metric near W as du 2 + h(u), 
where h(u) is a metric on W. Let F : [0, ~ )  --+ [0, 1] be a smooth nondecreasing function such 
that F(x)  is identically zero for x near zero and identically one if x > 1. For v E [0, 1], define 
fu : [0, ~c) ----> [0, ec) by 

fv(u) = F ( ~ )  i f v  ~ (0, 1]. (4.18) 

Let M2 (v) be the manifold M2 with the metric du 2 + h (fv (u)) on [0, 8) x W. Then M2 (0) is the same 
as )142 with the original metric and M2(1) has a product metric near its boundary. For all v c [0, 1], 
O M2 (v) is isometric to W. Then the Dirac operators on Ma (v), with Atiyah-Patodi-Singer boundary 
conditions, form a continuous family of  Fredholm operators and so have constant index with respect 
to v. Thus, for computational purposes, we may assume that M2 is a product near the boundary. 

By the Atiyah-Patodi-Singer index theorem [3], 

fM 1 ind (DM2) = A" (V  TM2) - ~ ~ w .  
2 

From [5, Theorems 4.35 and 4.95], we have an equality in f2*(B2) : 

d'~M2 ~- fGz\NA(vT(Gz\N)) . 

(4.19) 

(4,20) 
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(Strictly speaking, we have to generalize the results of [5] from smooth fiber bundles to fiber bundles 
with orbifold base. Such a generalization is straightforward. We will not give the details here.) 

Also, 

.lim[ X(V '2) 
j--+oe J M2 

B2 
(4.21) 

On the other hand, by [5, Theorems 4.35 and 4,95], 

lim "~w /~ ~ vTOB2 (4.22) 
j~ee  2 r/W -- B2 

Combining Equations (4.19) through (4.22) gives that ind(DM2) = 0. This proves the proposition 
in Case 1. [ ]  

Case 2. Gz\N is flat. 

We will show that there is a finite cover of M with a nontrivial S l -action�9 It then follows from 
the Atiyah-Hirzebruch theorem [2] that A'(M) = 0. 

The various fibers of the fiber bundle M ~ B are all fiat. They are not necessarily all isometric. 
However, they are all affine-equivalent. 

Write Gz \ N  = F \ T  k, where k > 0, F C Aff(T k) is a finite group of affine diffeomorphisms of 
T k and T k is a minimal such covering. Let p : K --> A f f ( G z \ N )  describe the action of K on G z \ N .  

Let A f f ( T k )  F denote the affine diffeomorphisms of T k which commute with F and let Aff(Tk)0 F 

denote the connected component of the identity. There is a homomorphism | : A f f (Tk )  F -+ 

Af f (Gz  \ N ) .  Put 

I 
Put M~ = P x K' Tk, a finite cover of M. Then M~ is a fiber bundle over B with fiber K x K' Tk, a 
finite disjoint union of tori. There is a nontrivial Tk-action on Me. Similarly, we want to show that 

there is a finite cover M ~ of M with a nontrivial T/~-action. The problem is that Me may not extend 
to a finite cover of M. However, we will show that the disjoint union of a certain number of copies 
of it does extend. 

Choose z r c Z - Z. Let G z, c__ G be its stabilizer subgroup. Then Gz C G z, and G z , \ N  is 
a smooth manifold. There is a Riemannian submersion G z \ N  --+ G z , \ N  with fiber Gz\Gz , .  As 
G z \ N  is flat and both G z , \ N  and G z \ G  z, are nonnegatively curved, one sees from the homotopy 
groups that G z , \ N  and Gz\Gz ,  must be flat. As G z \ G  z, is a globally homogeneous space, it must 
be a disjoint union of tori of dimension dim(Gz,) - dim(Gz). 

By the equivariant tubular neighborhood theorem, there is a finite-dimensional real vector space 
V, a representation p �9 G z, -+ Aut(V), and a neighborhood Uz of the G-orbit of z ~ such that Uz 
is G-diffeomorphic to V x G z, G. Then UM = Uz x G N = V x Gz , N is a neighborhood of 

z r - l ( z ' G )  c M.  
�9 . . ! , . 

As G z, \ N  is flat, we can write it as U \ T  k , where F '  is a fimte group of affinc diffeomorphisms 
t ! . . . .  f f 

of T k and T k is a mlmmal such covering. Let s : T ~ --+ F r \ T  k be the projection map. Consider 
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the fiber bundle F \ T  k f_~ F , \ T  k' with fiber Gz\Gz,.  Put 

Equivalently, C = r*T k', as shown in the diagram 

C -+ T k' 

.1, ,~s 
F \ T  k -~ F ' \ T  k' " 

541 

(4.24) 

(4.25) 

and 

1 ~ 7"(1 ( a z \ a z O  ~ / r l ( C )  --+ ~ U .  (4.29) 

Put A = ImQrt (C) -+ zk ' ) ,  a free abelian subgroup of finite index. Then (4.29) is equivalent to the 
short exact sequence 

1 --+ rCl (Gz\Gz,)  --+ yrl(C) --+ A --+ 1 . (4.30) 

From (4.28), Jrl(C) is isomorphic to a subgroup of F. One can see that it is of  finite index in F 
and so has polynomial growth of degree k. This implies that the sequence (4.30) splits and that 
yq(C) = zr~ (Gz\Gz,)  • A ~ Z k. As C is flat, it must be the disjoint union of m copies of T k for 
some m > 0. 

Let ~ : N --+ Gz , \N  be the projection map. Put 

= [(n,  t ' ) E  N x Tk ' :  ~ ( n ) = s  (t ')[ . (4.31) R 
t -  

That is, R = ~*T k', as shown in the diagram 

R -+ T k' 

.~ 4`s 
N ~ Gz,\N, 

(4.32) 

(4.27) 

(4.28) 

I z k ' :  / 
r • ! 

Projecting zq (C) on F or Z k', it follows from (4.26) that there are exact sequences 

1 ~ rq (C) -+  F 

Now 

We claim that C is a disjoint union of k-dimensional toil. To see this, put F = 7r~ ( G z \ N )  and 
F I = zrl (Gz' \N) .  Then we have a diagram of  exact sequences: 

1 

4, 
zk'  

4,3 
1 -+ Jq (Gz \Gz ,  ) -+ F ~ F ~ --+ zro(Gz\Gz, ) -+ 1.  (4.26) 

4, 
F I 

4` 
1 
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whose vertical arrows are finite coverings. There is an action of G z, on R by g(n, t ~) = (gn, t~), 
with G z \ R  = C (compare (4.25)). 

Let [K : K']  denote the index of K ~ in K. Let [K : K ~] R denote the disjoint union of [K : K ~] 
copies of R. Consider the finite covering V x %, [K : K ~] R --+ UM. We claim that this extends the 

. - - /  

covering m M  --+ M over UM. To see this, note that we have a diagram of fiber bundles 

Gz\Gz,  -+ V • [X : X ']  R -+ V X G ~ , [ K : K ' ] R  
$ ,1- (4.33) 

G z \ G  z, ~ V X G ~ N  -+ V X G ~ , N .  

Let V be the set of points in V whose stabilizer group is conjugate to Gz, a dense open subset of V. 
. . . .  ! 

Put UM = M fq UM = V xa~, N, a dense open subset of UM. Let U M be the pre-image Of UM 

under the covering M~ - -  --+ M. Then (4.33) restricts to 

Gz\Gz ,  --+ V XGz N 

That is, we  have a diagram of fiber bundles 

m [ K :  K'] T ~ 
$ 

Gz\Gz '  --~ V x [K : K'] C 

G z \ G  z, -+ W x (GzNN) 

- *  : x ' ]  R 

--+ V XG~, N .  

(4.34) 

m [ K :  K ~] T ~ 

-+ V xc~, [K : K' ]  R (4.35) 

UM. 

By the constructions, it follows that the right-hand column of (4.35) is the same as 

m K  XK, T ~ 

- - I  
m U  m (4.36) 

U M .  

Thus V XG~, [K : K ~] R --+ UM does extend the covering m M  z -+ M over UM. Furthermore, 

the obvious TCaction on m U  m comes from the TCaction on V x [K : K ~] C, which extends to 
the TCaction on V xG~ [K : K t] R = V x [K : K ~] C, which pushes down to a Tk-action on 
V • [K : K  ~] R. Of course, the TCaction on V XG z, [K : K  p] R may not be free. 

Repeating the process for a finite number of z"s whose G-orbits exhaust the singular G-strata 
of Z, we end up with a finite covering M ~ --+ M. The preimage of M in M z is the disjoint union 

of a finite number of copies of M~ and so has a nontrivial T ~-action. From the nature of the above 
extension procedure, we know that it extends to a TCaction on M ~. The proposition follows. [ ]  
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