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REMARK ABOUT THE SPECTRUM
OF THE p-FORM LAPLACIAN UNDER A COLLAPSE

WITH CURVATURE BOUNDED BELOW

JOHN LOTT

(Communicated by Jozef Dodziuk)

Abstract. We give a lower bound on the number of small positive eigenvalues
of the p-form Laplacian in a certain type of collapse with curvature bounded
below.

1. Introduction

A general problem in spectral geometry is to estimate the eigenvalues of the
p-form Laplacian on a closed Riemannian manifold M in terms of the geometry of
M . From Hodge theory, the number of zero eigenvalues is bp(M), the p-th Betti
number of M . Hence the issue is to understand the positive eigenvalues. The
papers [2], [7] and [8] study the case when one assumes an upper bound on the
diameter of the manifold and double-sided bounds on the sectional curvatures. An
important phenomenon is the possible appearance of positive eigenvalues of the p-
form Laplacian that approach zero as a manifold collapses with bounded curvature.

The analysis of [7] and [8] uses the results of Cheeger, Fukaya and Gromov on the
geometric structure of manifolds that collapse with double-sided curvature bounds.
If one only assumes a lower sectional curvature bound, then there are some structure
results about collapsing in [4] and [12], but the theory is less developed than in the
bounded curvature case.

In this paper we look at the small positive eigenvalues of the p-form Laplacian
in an example of collapse with curvature bounded below. Namely, suppose that a
compact Lie group G acts isometrically on M on the left. Give G a left-invariant
Riemannian metric. For ε > 0, let εG denote G with its Riemannian metric
multiplied by ε2. Let Mε denote M = G\(εG ×M) equipped with the quotient
Riemannian metric gε, where G acts diagonally on εG × M on the left. If G is
connected, then limε→0Mε = G\M in the Gromov-Hausdorff topology, and as ε
goes to zero, the sectional curvatures of Mε stay uniformly bounded below [12].

For notation, if M is a smooth connected closed manifold with Riemannian
metric g, let {λp,j(M, g)}∞j=1 denote the eigenvalues (counted with multiplicity) of
the Laplacian on Im(d) ⊂ ΩpL2(M). The projection M → G\M induces a map
Hp(G\M ;R)→ Hp(M ;R).
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Theorem 1.1. If j = dim (Ker(Hp(G\M ;R)→ Hp(M ;R))), then

(1.1) lim
ε→0

λp,j(Mε, gε) = 0.

In Section 2 we prove Theorem 1.1. The main points of the proof are the use
of a certain variational expression for λp,j(M, g), due to Cheeger and Dodziuk [3],
and the avoidance of dealing with the detailed orbit structure of the group action.
We then look at the example of an S1-action on S2n, which is the suspension of
the Hopf action of S1 on S2n−1, and show that our results slightly improve those
of Takahashi [10]. In Section 3 we make some further remarks.

I thank Junya Takahashi for sending me a copy of his paper.

2. Proof of Theorem 1.1

Let g be the Lie algebra of G. It acquires an inner product from the left-invariant
Riemannian metric on G. Given x ∈ g, let X be the corresponding vector field on
M . Let iX denote interior multiplication by X.

Let Ω∗(M) denote the smooth differential forms on M . Let Ω∗L2(M) be the
L2-completion of Ω∗(M). Put

(2.1) Ω∗max(M) = {ω ∈ Ω∗L2(M) : dω ∈ Ω∗+1
L2 (M)},

where dω is originally defined distributionally.
Put

(2.2) Ω∗G(M) = {ω ∈ Ω∗(M) : g · ω = ω for all g ∈ G}
and

(2.3) Ω∗basic(M) = {ω ∈ Ω∗G(M) : iXω = 0 for all x ∈ g}.
Let Ω∗G,L2(M) and Ω∗basic,L2(M) be the L2-completions of Ω∗G(M) and Ω∗basic(M),
respectively. Put

(2.4) Ω∗basic,max(M) = {ω ∈ Ω∗basic,L2(M) : dω ∈ Ω∗+1
basic,L2(M)},

where dω is originally defined distributionally. Then Ω∗basic,max(M) is a complex.
From [6] and [11], the cohomology of the complex Ω∗basic(M) is isomorphic to

H∗(G\M ;R).

Lemma 2.1. The cohomology of the complex Ω∗basic,max(M) is also isomorphic to
H∗(G\M ;R).

Proof. The proof is essentially the same as that of [11]. For U an open subset of
G\M , let Û be its preimage in M . For p ≥ 0, put Sp(U) = Ωpbasic,max(Û).
If V is an open subset of U , then there is an obvious restriction homomorphism
Sp(U)→ Sp(V ). We obtain a fine sheaf Sp over G\M . If R denotes the constant
sheaf on G\M with fiber R, then we have a complex of sheaves

(2.5) R −→ S0 −→ S1 −→ S2 −→ . . . .

From sheaf cohomology theory, it suffices to prove that (2.5) is a resolution of R. As
in [11], one can use the slice theorem to reduce this to proving the middle exactness
of the complex

(2.6) Ωp−1
basic,max(N) −→ Ωpbasic,max(N) −→ Ωp+1

basic,max(N).

Here N is a Euclidean space and “basic” refers to a Lie group H that acts linearly
and isometrically on N . As in [11], one can use a homotopy operator A to prove
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the exactness. The only point to note is that the homotopy operator A used in [11]
sends Ω∗basic,max to itself. �

The quotient map p : εG × M → Mε defines a principal G-bundle. Pullback
gives an isomorphism p∗ : Ω∗(Mε) ∼= Ω∗basic(εG × M). The parallelism of G gives
an isomorphism

(2.7) Ω∗(εG × M) ∼= C∞(G) ⊗ Λ∗(g∗) ⊗ Ω∗(M).

Taking G-invariants gives isomorphisms

(2.8) Ω∗G(εG × M) → (C∞(G) ⊗ Λ∗(g∗) ⊗ Ω∗(M))G
β→ Λ∗(g∗) ⊗ Ω∗(M),

where β comes from the map that sends
∑

k fk⊗ηk⊗ωk ∈ C∞(G)⊗Λ∗(g∗)⊗Ω∗(M)
to
∑

i fk(e) ηk ⊗ ωk ∈ Λ∗(g∗) ⊗ Ω∗(M).
Let {xj}dim(G)

j=1 be a basis of g. For x ∈ g, let e(x∗) denote exterior multiplication
by x∗ on Λ∗(g∗).

Lemma 2.2. There is an isomorphism of complexes I : Ω∗(M) → Ω∗basic(εG ×
M) ⊂ Λ∗(g∗) ⊗ Ω∗(M) given by

I(σ) =

dim(G)∏
j=1

(
1 − e(x∗j ) ⊗ iXj

) (1 ⊗ σ)

=
dim(G)∑
k=0

(−1)k
∑

1≤ j1 < ... < jk≤dim(G)

(x∗jk ∧ . . . ∧ x∗j1) ⊗ iXj1 . . . iXjkσ.(2.9)

Proof. If
∑

k fk ⊗ ηk ⊗ ωk ∈ (C∞(G) ⊗ Λ∗(g∗) ⊗ Ω∗(M))G is G-basic, then for
x ∈ g, we also have

(2.10)
∑
k

(
fk ⊗ ixηk ⊗ ωk + (−1)|ηk| fk ⊗ ηk ⊗ iXωk

)
= 0.

Then

(2.11)
∑
k

(
fk(e) ixηk ⊗ ωk + (−1)|ηk| fk(e) ηk ⊗ iXωk

)
= 0,

i.e., if
∑
k ηk ⊗ ωk lies in the image of β restricted to Ω∗basic(εG × M), then

(2.12)
∑
k

(
ixηk ⊗ ωk + (−1)|ηk| ηk ⊗ iXωk

)
= 0.

It follows that
∑

k ηk ⊗ ωk can be written as I(σ) for some σ ∈ Ω∗(M). Thus I is
surjective. It is clearly injective.

It remains to show that I is a morphism of complexes. Let dinv denote the (finite-
dimensional) differential on Λ∗(g∗). If an element of Ω∗G(εG × M) is represented
as
∑

k fk ⊗ ηk ⊗ ωk ∈ C∞(G) ⊗ Λ∗(g∗) ⊗ Ω∗(M), then the G-invariance implies
that for x ∈ g,

(2.13)
∑
k

(xfk ⊗ ηk ⊗ ωk + fk ⊗ ηk ⊗ LXωk) = 0.
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The differential of
∑
k fk ⊗ ηk ⊗ ωk is represented by

∑
k

( dim(G)∑
j=1

xjfk ⊗ e(x∗j )ηk ⊗ ωk + fk ⊗ dinvηk ⊗ ωk(2.14)

+ (−1)|ηk| fk ⊗ ηk ⊗ dωk

)
.

From (2.13), this equals

∑
k

(
−

dim(G)∑
j=1

fk ⊗ e(x∗j )ηk ⊗ LXjωk + fk ⊗ dinvηk ⊗ ωk(2.15)

+ (−1)|ηk| fk ⊗ ηk ⊗ dωk

)
.

Using β, it follows that the induced differential on Λ∗(g∗)⊗Ω∗(M) sends
∑

k ηk⊗ωk
to

(2.16)
∑
k

− dim(G)∑
j=1

e(x∗j )ηk ⊗ LXjωk + dinvηk ⊗ ωk + (−1)|ηk| ηk ⊗ dωk

 .

One can check that when this acts on I(σ), the result is I(dσ). Thus I is an
isomorphism of complexes. �

In fact, under our identifications, I is the same as p∗.
Let M reg be the union of the principal orbits for the G-action on M . It is a

dense open subset of M with full measure. If m ∈M reg, let H ⊂ G be its isotropy
subgroup, with Lie algebra h. Define α : g → TmM by α(x) = Xm. It passes to
an injection α : g/h→ TmM . For ε ≥ 0, put ρε(m) = det1/2(ε2 Id.

∣∣
g/h

+ α∗ α).

If m /∈M reg, put ρε(m) = 0. Note that for ε > 0, ρ−1
ε (m) < ρ−1

0 (m).

Lemma 2.3. ρ−1
0 ∈ L1(M,dvol).

Proof. If m ∈M reg, then up to an overall constant, ρ0(m) is the volume of the orbit
G · m. Then

∫
Mreg ρ

−1
0 (m) dvol(m) is proportionate to the volume of G\M reg ⊂

G\M , which is seen to be finite. �

Let {xj}dim(G)
j=1 be an orthonormal basis of g.

Lemma 2.4. For ε > 0, there is a positive constant C(ε) such that Ω∗(Mε) is
isometrically isomorphic to Ω∗(M) with the new norm

‖ ω ‖2ε = C(ε)
∫
M

ρ−1
ε (m)

(
|ω(m)|2M

(2.17)

+
dim(G)∑
k = 1

ε− 2k
∑

1≤ j1 < ... < jk≤dim(G)

|iXj1 . . . iXjkω(m)|2M
)
dvol(m).

Proof. We can compute the norm squared of ω ∈ Ω∗(Mε) by taking the local
norm squared of p∗ω on εG × M reg, dividing by the function that assigns to
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(g,m) ∈ εG×M reg the volume of the orbitG·(g,m), and integrating over εG×M reg.
If m ∈M reg, then the relative volume of G · (g,m) is

(2.18) det1/2(ε2 Id.
∣∣
g

+ α∗α) = εdim(H) ρε(m).

The map β of (2.8) is an isometry, up to a constant. Since {ε−1 xj}dim(G)
j=1 is an

orthonormal basis for Te(εG), the lemma follows from Lemma 2.2. �

Proof of Theorem 1.1. Put λp,j(ε) = λp,j(Mε, gε). From [3],

(2.19) λp,j(ε) = inf
V

sup
η∈V−0

sup
θ∈d−1(η)

‖ η ‖2ε
‖ θ ‖2ε

,

where V ranges over the j-dimensional subspaces of Im
(
d : Ωp−1(M)→ Ωp(M)

)
,

and θ ∈ d−1(η) ⊂ Ωp−1(M).
Take j = dim (Ker(Hp(G\M ;R)→ Hp(M ;R))). From Lemma 2.1, the inclusion

of complexes Ω∗basic(M)→ Ω∗basic,max(M) induces an isomorphism on cohomology.
Then there is a j-dimensional subspace V of

(2.20) Ker
(
d : Ωpbasic(M)→ Ωp+1

basic(M)
)
∩ Im

(
d : Ωp−1(M)→ Ωp(M)

)
such that if η ∈ V − 0, then η /∈ Im

(
d : Ωp−1

basic,max(M)→ Ωpbasic,L2(M)
)

. We
claim that

(2.21) lim
ε→0

sup
η∈V−0

sup
θ∈d−1(η)

‖ η ‖2ε
‖ θ ‖2ε

= 0.

This will suffice to prove the theorem.
Suppose that (2.21) is not true. Then there are a constant c > 0, a sequence

{εr}∞r=1 in R+ approaching zero, a sequence {ηr}∞r=1 in V −0 and a sequence {θr}∞r=1

in Ωp−1(M) such that for all r, dθr = ηr and

(2.22)
‖ ηr ‖2εr
‖ θr ‖2εr

≥ c.

Doing a Fourier decomposition of θr with respect to G, the ratio in (2.22) does not
decrease if we replace θr by its G-invariant component. Thus we may assume that
θr is G-invariant.

Without loss of generality, we can replace the norm ‖ · ‖ε of (2.17) by the same
norm divided by C(ε), which we again denote by ‖ · ‖ε. Since ηr is smooth on M ,
it follows from Lemma 2.3 that the function ρ−1

0 (m) |ηr(m)|2M is integrable on M .
Without loss of generality, we may assume that

(2.23)
∫
M

ρ−1
0 (m) |ηr(m)|2M dvol(m) = 1.

Since {ηr}∞r=1 lies in the sphere of a finite-dimensional space, there will be a subse-
quence, which we relabel as {ηr}∞r=1, that converges smoothly to some η∞ ∈ V − 0.

From (2.22),

‖ θr ‖2εr ≤ c−1 ‖ ηr ‖2εr = c−1

∫
M

ρ−1
εr (m) |ηr(m)|2M dvol(m)

≤ c−1

∫
M

ρ−1
0 (m) |ηr(m)|2M dvol(m) = c−1.(2.24)
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For large r,∫
M

|θr(m)|2M dvol(m) ≤ (inf
M
ρ−1
εr )−1

∫
M

ρ−1
εr (m) |θr(m)|2M dvol(m)(2.25)

≤ (inf
M
ρ−1

1 )−1 c−1.

We now work with respect to the metric g on M . By weak-compactness of the
unit ball in L2, there is a subsequence of {θr}∞r=1, which we relabel as {θr}∞r=1, that
converges weakly in L2 to some θ∞ ∈ Ωp−1

G,L2(M). Then for σ ∈ Ωp(M),

〈σ, η∞〉M − 〈d∗σ, θ∞〉M = lim
r→∞

(〈σ, ηr〉M − 〈d∗σ, θr〉M )(2.26)

= lim
r→∞
〈σ, ηr − dθr〉M = 0.

Thus θ∞ ∈ Ωp−1
max(M) and dθ∞ = η∞.

From (2.24), we also obtain that for each 1 ≤ j ≤ dim(G),∫
M

|iXjθr(m)|2M dvol(m) ≤ (inf
M
ρ−1
εr )−1

∫
M

ρ−1
εr (m) |iXjηr(m)|2M dvol(m)(2.27)

≤ (inf
M
ρ−1

1 )−1 c−1 ε2r.

Then for all σ ∈ Ωp−2(M),
(2.28)
〈σ, iXjθ∞〉M = 〈(iXj )∗σ, θ∞〉M = lim

r→∞
〈(iXj )∗σ, θr〉M = lim

r→∞
〈σ, iXjθr〉M = 0.

Thus iXjθ∞ = 0 and θ∞ ∈ Ωp−1
basic,max(M). Hence

(2.29) η∞ ∈ Im
(
d : Ωp−1

basic,max(M)→ Ωpbasic,L2(M)
)
,

which is a contradiction. �
Example. Let G = U(1) act on M = S2n by the suspension of the Hopf action
of U(1) on S2n−1. Then G\M = U(1)\S2n is the suspension of CPn−1. One finds
that Ker(Hp(G\M ;R)→ Hp(M ;R)) is nonzero if and only if p ∈ {3, 5, . . . , 2n−1}.
From Theorem 1.1, as ε → 0, there are small eigenvalues of the p-form Laplacian
on Im(d) ⊂ ΩpL2(Mε) for p ∈ {3, 5, . . . , 2n − 1}. From the Hodge decomposition,
there will also be small eigenvalues of the p-form Laplacian on Im(d∗) ⊂ ΩpL2(Mε)
for p ∈ {2, 4, . . . , 2n− 2}. Then using Hodge duality, one concludes that there are
small eigenvalues on

1. Im(d∗) ⊂ Ω1
L2(Mε),

2. Im(d) ⊂ ΩpL2(Mε) and Im(d∗) ⊂ ΩpL2(Mε) for p ∈ {2, 3, 4, . . . , 2n− 3, 2n− 2},
and

3. Im(d) ⊂ Ω2n−1
L2 (Mε).

This slightly sharpens [10, Theorem 1.2]. Note that from eigenvalue estimates
for the scalar Laplacian [1], there are no small eigenvalues on Im(d∗) ⊂ Ω0

L2(Mε),
Im(d) ⊂ Ω1

L2(Mε), Im(d∗) ⊂ Ω2n−1
L2 (Mε) or Im(d) ⊂ Ω2n

L2(Mε).

3. Remarks

1. In the case of a locally-free torus action, there is some intersection between
Theorem 1.1 and the results of [2], [7] and [8]. In [8] one deals with the cohomology
of a certain Z-graded sheaf H∗(A′[0]) on the limit space X . In the case of a collapsing
coming from a locally-free torus action, Theorem 1.1 is a statement about the case
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∗ = 0, when the sheaf H0(A′[0]) is the constant R-sheaf on X . Of course, the result
of Theorem 1.1 will generally not give all of the small positive eigenvalues that arise
in a collapse. As seen in the Example, one can obtain more small eigenvalues just
from Hodge duality.

2. Theorem 1.1 indicates that the relevant cohomology of the limit space is
the ordinary cohomology, as opposed for example to the L2-cohomology. This is
consistent with the results of [8] in the bounded curvature case.

3. If G has positive dimension and acts effectively on M , then Theorem 1.1
describes small positive eigenvalues in a collapsing situation. In some noncollapsing
situations, one can show that small eigenvalues do not exist. Here is one such
criterion.

Proposition 1. Let M be a collection of closed n-dimensional Riemannian man-
ifolds, with n > 0. Give M the Lipschitz metric, coming from bi-Lipschitz home-
omorphisms. Suppose that M can be covered by a finite number of metric balls.
For p ∈ Z ∩ [0, n] and j ≥ 0, there are positive numbers ap,j and Ap,j so that if
(M, g) ∈M, then ap,j ≤ λp,j(M, g) ≤ Ap,j, and limj→∞ ap,j = ∞.

Proof. Suppose first that for some p and j, there is no upper bound on λp,j(M, g)
as (M, g) ranges over M. Then there is a sequence {(Mi, gi)}∞i=1 in M with the
property that limi→∞ λp,j(Mi, gi) = ∞. A subsequence of {(Mi, gi)}∞i=1, which
we relabel as {(Mi, gi)}∞i=1, will have finite distance from some (M∞, g∞) ∈ M.
Then there are a number ε ≥ 0 and a sequence of bi-Lipschitz homeomorphisms
hi : M∞ →Mi so that for all i,

(3.1) e− ε g∞ ≤ h∗i gi ≤ eε g∞.

Here h∗i gi is a Lipschitz metric on M∞. From Hodge theory,

(3.2) λp,j(Mi, gi) = inf
V

sup
η∈V−0

sup
θ∈d−1(η)

‖ η ‖2Mi

‖ θ ‖2Mi

,

where V ranges over the j-dimensional subspaces of Im
(
d : Ωp−1

max(Mi)→ ΩpL2(Mi)
)
,

and θ ∈ d−1(η) ⊂ Ωp−1
max(Mi). By naturality,

(3.3) λp,j(Mi, gi) = inf
V

sup
η∈V−0

sup
θ∈d−1(η)

‖ η ‖2h∗i gi
‖ θ ‖2h∗i gi

,

where V ranges over the j-dimensional subspaces of Im(d : Ωp−1
max(M∞) →

ΩpL2(M∞)), and θ ∈ d−1(η) ⊂ Ωp−1
max(M∞).

As in [3], it follows from (3.1) and (3.3) that there is a positive integer J which
only depends on n so that

(3.4) e−Jε λp,j(M∞, g∞) ≤ λp,j(Mi, gi) ≤ eJε λp,j(M∞, g∞).

This contradicts the assumption that limi→∞ λp,j(Mi, gi) = ∞.
Now suppose that it is not true that there is a uniform lower bound ap,j on

{λp,j(M, g)}(M,g)∈M with the property that limj→∞ ap,j = ∞. Then there are a
number C > 0, a sequence {(Mi, gi)}∞i=1 in M and a sequence of integers {ji}∞i=1

such that limi→∞ ji = ∞ and for each i, λp,ji(Mi, gi) ≤ C. Take a subsequence
{(Mi, gi)}∞i=1 and an (M∞, g∞) as before. Then for each j,

(3.5) λp,j(M∞, g∞) ≤ sup
i→∞

λp,ji (M∞, g∞) ≤ sup
i→∞

eJε λp,ji (Mi, gi) ≤ eJε C.
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This contradicts the fact that the spectrum of the p-form Laplacian on (M∞, g∞)
is discrete. �

Proposition 1 shows that in a certain sense, one has uniform eigenvalue bounds in
the noncollapsing case. It seems possible that for a given n ∈ Z+, K ∈ R and v,D >
0, the collectionM of connected n-dimensional Riemannian manifolds (M, g) with
sectional curvatures greater than K, volume greater than v and diameter less than
D satisfies the hypotheses of Proposition 1. It is known that there is a finite
number of homeomorphism types in M [5]. On the other hand, the analogous
space of metrics defined with Ricci curvature, instead of sectional curvature, will
generally not satisfy the hypotheses of Proposition 1 [9].
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