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Abstract. We give sufficient conditions for a noncompact Riemannian manifold, which has
quadratic curvature decay, to have finite topological type with ends that are cones over spherical
space forms.

1. Introduction

Let M be a complete connected noncompact Riemannian manifold with a base-
point ∗. A natural condition to put on M is that of quadratic curvature decay. To
state this condition, for m ∈ M and r > 0, let Br(m) denote the open distance ball
around m of radius r and let Sr(m) = ∂Br(m) denote the distance sphere around
m of radius r . If P is a 2-plane in TmM , let K(P ) denote the sectional curvature
of P . Then M has quadratic curvature decay if for some C > 0,

lim sup
r→∞

sup
m∈Sr (�), P⊂TmM

r2 |K(P )| ≤ C. (1.1)

Note that (1.1) is scale-invariant, in that it is unchanged under a constant rescaling
of the Riemannian metric.

In itself (1.1) does not impose any topological restrictions on M , as any smooth
connected manifold admits a complete Riemannian metric satisfying (1.1) for
some C [6, p. 96], [11, Lemma 2.1]. However, with additional assumptions one
can obtain restrictions on M . For example, if

lim sup
r→∞

sup
m∈Sr (�), P⊂TmM

r2(1+ε) |K(P )| < ∞ (1.2)

for some ε > 0 then Abresch showed that M has finite topological type, i.e. is
homeomorphic to the interior of a compact manifold-with-boundary [1]. For other
results on manifolds with faster-than-quadratic curvature decay, see [1], [4]
and [14].
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If M has quadratic curvature decay and a volume growth which is slower than
that of the Euclidean space of the same dimension then topological restrictions
on the ends of M were obtained in a paper of the author with Zhongmin Shen
[11]. Along these lines, we remark that a manifold with quadratic curvature decay
and Euclidean volume growth can have infinite topological type [11, Section 2,
Example 3]. Furthermore, even if we assume finite topological type, the interior
of any connected compact manifold-with-boundary has a complete Riemannian
metric with quadratic curvature decay and Euclidean volume growth [11, Section
2, Example 1]. Hence the assumptions of quadratic curvature decay and Euclidean
volume growth do not in themselves give interesting topological restrictions.

In [11] the question was raised as to what one can say if one assumes that the
constant C in (1.1) is small enough. In this paper we give some answers to this
question. First, we show that if the constant C is small enough, if we have pinched
Euclidean volume growth and if M is noncollapsed at infinity in a suitable sense
then M has finite topological type, with ends that are cones over spherical space
forms.

Theorem 1. Given n ∈ Z
+ and c, c′ ∈ R

+, there is a constant ε ≡ ε(n, c, c′) > 0
so that if M is a complete connected n-dimensional Riemannian manifold with
basepoint � which satisfies

lim inf
r→∞ inf

m∈Sr (�)
r−n vol(Br/2(m)) ≥ c (noncollapsing), (1.3)

c′−ε≤ lim inf
r→∞ r−nvol(Br(�))≤ lim sup

r→∞
r−nvol(Br(�))≤c′+ε (Eucl. vol. growth)

(1.4)
and

lim sup
r→∞

sup
m∈Sr (�), P⊂TmM

r2 |K(P )| ≤ ε (quadratic curvature decay) (1.5)

then M has finite topological type with ends that are cones over spherical space
forms. That is, for large R, M − BR(�) is homeomorphic to (0, ∞) × Y for some
closed manifold Y which is a union of spherical space forms. Furthermore, Y

has volume n c′ and the cone over Y satisfies (1.3). In particular, there is a finite
number of topological possibilities for Y , with the number depending on c and c′.

Next, we show that there is a surface of infinite topological type which ad-
mits noncollapsing metrics of roughly Euclidean volume growth, and arbitrarily
pinched quadratic curvature decay. The existence of such metrics was pointed out
to me by Bruce Kleiner.

Theorem 2. Given ε > 0, there is a surface of infinite topological type, equipped
with a complete Riemannian metric, along with constants c, c′

1, c
′
2 > 0 such that

lim inf
r→∞ inf

m∈Sr (�)
r−2 vol(Br/2(m)) ≥ c (noncollapsing), (1.6)
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c′
1 ≤ lim inf

r→∞ r−2 vol(Br(�)) ≤ lim sup
r→∞

r−2 vol(Br(�))

≤ c′
2 (Euclidean volume growth)

(1.7)

and

lim sup
r→∞

sup
m∈Sr (�), P⊂TmM

r2 |K(P )| ≤ ε. (quadratic curvature decay) (1.8)

Finally, we give a result in which the pinched Euclidean volume growth of
Theorem 1 is replaced by a large-scale convexity assumption.

Definition 1. A complete connected Riemannian manifold M with basepoint ∗ is
large-scale pointed-convex if there is a constant C ′ > 0 such that
1. For any normalized minimizing geodesic γ : [a, b] → M and any t ∈ [0, 1],

d(γ (ta + (1 − t)b), �) ≤ t d(γ (a), �) + (1 − t) d(γ (b), �) + C ′ (1.9)

and
2. For any two normalized minimizing geodesics γ1, γ2 : [0, b] → M with
γ1(0) = γ2(0) = � and any t ∈ [0, 1],

d(γ1(tb), γ2(tb)) ≤ t d(γ1(b), γ2(b)) + C ′. (1.10)

Examples of large-scale pointed-convex manifolds are simply-connected man-
ifolds of nonpositive curvature, and Riemannian manifolds whose underlying
metric spaces are Gromov-hyperbolic [3, Chapitre 2, Pf. of Proposition 25].

Theorem 3. Given n > 2 and c ∈ R
+, there is a constant ε ≡ ε(n, c) > 0 with

the following property. Suppose that M is a complete connected n-dimensional
Riemannian manifold with basepoint which is large-scale pointed-convex and
which satisfies

lim inf
r→∞ inf

m∈Sr (�)
r−n vol(Br/2(m)) ≥ c (noncollapsing) (1.11)

and

lim sup
r→∞

sup
m∈Sr (�), P⊂TmM

r2 |K(P )| ≤ ε. (quadratic curvature decay) (1.12)

Then M has finite topological type, with ends that are cones over spherical space
forms.

The method of proof of Theorem 1 is by contradiction. Here is the rough argu-
ment. Suppose that we have a sequence of n-dimensional Riemannian manifolds
{Mi}∞i=1 which together provide a counterexample to Theorem 1. Then each Mi

has “bad” regions arbitrarily far away from the basepoint. By rescaling, we can as-
sume that the unit sphere around the basepoint in each Mi intersects a bad region.
We would like to take a convergent subsequence of the Mi’s in order to argue by
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contradiction. We may not be able to take a convergent subsequence in the pointed
Gromov-Hausdorff sense, as the curvatures may not be uniformly bounded below
at the basepoints. However, we can always take a pointed ultralimit (Xω, �ω) (see
Section 2). Then any ball in Xω away from the basepoint will be the Gromov-
Hausdorff limit of a subsequence of balls in the Mi’s. Under our assumptions,
Xω − �ω will be n-dimensional and flat with volume growth V (r) = c′ rn. Then
Xω is a cone over a closed manifold Y which is a union of spherical space forms.
It follows that for an infinite number of i’s, the “bad” region in Mi was actually
good, which is a contradiction.

To prove Theorem 3 we again form an ultralimit Xω, which will have a flat
metric on Xω − �ω and which will be pointed-convex. If C is a connected com-
ponent of Xω − �ω then its developing map gives an isometric immersion of the
universal cover C̃ into R

n. The convexity is used to show that the developing map
is an embedding, with image R

n − pt., from which the theorem follows.
The structure of the paper is as follows. In Section 2 we recall some facts

about ultralimits of metric spaces. In Section 3 we prove Theorem 1. In Section 4
we prove Theorem 2. In Section 5 we prove Theorem 3 and make some remarks
about its hypotheses.

For background information about Gromov-Hausdorff limits and convergence
results, we refer to [7] and [13].

I thank Bruce Kleiner for discussions and for providing some key ideas for
this paper. I also thank Zhongmin Shen for ongoing discussions, and the referee
for a careful reading and important comments.

2. Ultralimits

If ω is a nonprincipal ultrafilter on Z
+ and {Xi}∞i=1 is a sequence of metric spaces,

let Xω be the ω-limit of the Xi’s (see, for example, [7, Section 3.29], [9, Chapter
9] and [10, Section 2.4] for background material). It is a complete metric space.
An element of Xω has a representative {xi} ∈ ∏∞

i=1 Xi . Two such sequences {xi}
and {x ′

i} are equivalent if limω dXi
(xi, x

′
i ) = 0. The metric on Xω is

dXω
({xi}, {x ′

i}) = lim
ω

dXi
(xi, x

′
i ). (2.1)

If {(Xi, �i)}∞i=1 are pointed metric spaces then the pointed limit (Xω, �ω) is the
subset of Xω given by representatives {xi} such that {dXi

(xi, �i)}∞i=1 is a bounded
sequence. The basepoint �ω in Xω has representative {�i}. If each Xi is a length
space then Xω is a length space and minimizing geodesic segments in Xω are
ultralimits of minimizing geodesic segments in {Xi}∞i=1 [9, Proposition 9.4].

If X is a metric space then we let cone(X) denote the cone on X, a pointed
metric space.
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Example. Fix α > 1. Take (Xi, �i) = (R2, 0) with Riemannian metric

gi = i−2 (
dr2 + r2αdθ2) (2.2)

on R
2 − 0 ∼= R

+ × R

2πZ
. Then by definition, (Xω, �ω) is the asymptotic cone

of X1. To describe it, first, by a change of radial coordinate, gi is equivalent
to dr2 + i2α−2r2αdθ2. Then by a change of angular coordinate, Xi consists of
R

+ × R

iα−12πZ
equipped with the metric dr2 + r2αdθ2, along with the basepoint

�i . Put Yω = limω
R

iα−12πZ
(an unpointed limit), which is an infinite disjoint union

of real lines. (Two points in Yω, represented by sequences {yi} and {y ′
i}, lie in the

same connected component of Yω if and only if limω dYi
(yi, y

′
i ) < ∞.) Then Xω

consists of R
+ ×Y with the metric dr2 +r2αgYω

, along with the basepoint �ω. The
manifolds {Xi}∞i=1 have uniform quadratic curvature decay. Clearly the sequence
{(Xi, �i)}∞i=1 is not precompact in the pointed Gromov-Hausdorff topology. Nev-
ertheless, in a sense it has well-defined Gromov-Hausdorff limits away from the
basepoint.

For a related relevant example, take (Xi, �i) = (R2, 0) with Riemannian
metric

gi = dr2 + i2r2dθ2 (2.3)

on R
2 − 0 ∼= R

+ × R

2πZ
. Put Yω = limω

R

i2πZ
. Then Xω = cone(Yω). There is a

flat Riemannian metric on Xω − �ω.

3. Proof of Theorem 1

Suppose that the theorem is not true. Then there is a sequence of pointed complete
connected n-dimensional Riemannian manifolds {(Mi, �i)}∞i=1 such that :
1. Condition (1.3) is satisfied for each Mi .
2. On Mi , we have

c′ − 1

i
≤ lim inf

r→∞ r−n vol(Br(�i)) ≤ lim sup
r→∞

r−n vol(Br(�i)) ≤ c′ + 1

i
. (3.1)

3. On Mi , we have

lim sup
r→∞

sup
mi∈Sr (�i ), Pi⊂Tmi

Mi

r2 |K(Pi)| ≤ 1

i
. (3.2)

4.a. Mi has infinite topological type or
4.b. Mi has an end which has no neighborhood homeomorphic to (0, ∞)×N for
any closed manifold N which is a union of spherical space forms.

Define ρi ∈ C0(Mi) by ρi(mi) = d(mi, �i).



530 J. Lott

Lemma 1. For each i, there is a sequence {ri,j }∞j=1 of numbers tending toward

infinity such that for each j , there is a connected component Ci,j of B4ri,j (�i) −
Bri,j (�i) with the property that it is not true that the map Ci,j → [ri,j , 4ri,j ], given
by restriction of ρi , defines a topological fiber bundle whose fiber is a spherical
space form.

Proof. Fix i. If the lemma is false then there is a number R > 0 so that for
all r > R and for each connected component C of B4r (�i) − Br(�i), the map
ρi

∣
∣
C

: C → [r, 4r] defines a topological fiber bundle whose fiber is a spherical
space form. In particular, C is homeomorphic to [r, 4r] × N for some spherical
space form N .

Put s1 = R + 1. Then B4s1(�i) − Bs1(�i) is homeomorphic to [s1, 4s1] ×
∐

k∈K Nk, where K is an indexing set and each Nk is a spherical space form.
The restriction of ρi to B4s1(�i) − Bs1(�i) is given by projection onto the first
factor of [s1, 4s1] × ∐

k∈K Nk. As B3s1(�i) − B2s1(�i) is compact, K must be
a finite set. Let Ck be the connected component of B4s1(�i) − Bs1(�i) corre-
sponding to [s1, 4s1] × Nk. Put s2 = 3s1. There is a connected component C ′

k

of B4s2(�i) − Bs2(�i) which intersects Ck. We know that it is homeomorphic to
[s2, 4s2] × N ′ for some spherical space form N ′, with the restriction of ρi to
C ′

k given by projection onto the first factor of [s2, 4s2] × N ′. Then N ′ = Nk.
Thus Ck ∪ C ′

k is homeomorphic to [s1, 4s2] × Nk and extends Ck. As each con-
nected component of B4s2(�i) − Bs2(�i) intersects B4s1(�i) − Bs1(�i), we see that
B4s2(�i) − Bs1(�i) is homeomorphic to [s1, 4s2] × ∐

k∈K Nk. Taking s3 = 3s2

and continuing the process, we obtain that Mi − BR+1(�i) is homeomorphic to
(0, ∞) × ∐

k∈K Nk. �
With reference to Lemma 1, (1.3), (3.1) and (3.2), we can find a sequence

Ri = ri,j (i) tending towards infinity such that
1. For r > 1

i
,

inf
mi∈SRi r

(�i )
(Rir)

−n vol(BRir/2(mi)) ≥ c − 1

i
, (3.3)

c′ − 2

i
≤ (Rir)

−n vol(BRir (�i)) ≤ c′ + 2

i
, (3.4)

and

sup
mi∈SRi r

(�i ), Pi⊂Tmi
Mi

(Rir)
2 |K(Pi)| ≤ 2

i
. (3.5)

2. There is a connected component Ci of B4Ri
(�i) − BRi

(�i) ⊂ Mi with the
property that it is not true that the map Ci → [Ri, 4Ri], given by restriction of
ρi , defines a topological fiber bundle whose fiber is a spherical space form.

Let Xi be Mi with the rescaled metric gXi
= (2Ri)

−2gMi
. Define µi ∈ C0(Xi)

by µi(xi) = d(xi, �i). Let (Xω, �ω) be the ω-limit of {(Xi, �i)}∞i=1.
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Lemma 2. Xω − �ω is a flat n-dimensional manifold.

Proof. Given xω ∈ Xω − �ω, put D = d(xω, �ω). Then D > 0. Choose a repre-
sentative {xi} ∈ ∏∞

i=1 Xi of xω. For any ε > 0, there is a subset W ⊂ Z
+ of full

ω-measure such that for all i ∈ W ,

|d(xi, �i) − D| < ε. (3.6)

If i ∈ W put yi = xi and if i /∈ W , choose yi ∈ SD(�i) ⊂ Xi . Then
limω dXi

(xi, yi) = 0 and so {yi} also represents xω. Thus in replacing {xi} by {yi},
we may assume that d(xi, �i) ∈ (D − ε, D + ε) for all i ∈ Z

+. Take ε ∈ (
0, D

10

)
.

Due to the rescaling used to define Xi , for all r > 1
i
,

inf
xi∈Sr (�i )

r−n vol(Br/2(xi)) ≥ c − 1

i
(3.7)

c′ − 2

i
≤ r−n vol(Br(�i)) ≤ c′ + 2

i
, (3.8)

and

sup
xi∈Sr (�), Pi⊂Txi

Xi

r2 |K(Pi)| ≤ 2

i
. (3.9)

Equation (3.9) gives a uniform lower bound on the sectional curvatures of
{B4D/5(xi)}∞i=1. It follows that the closed balls {B3D/4(xi)}∞i=1 are precompact in
the pointed Gromov-Hausdorff topology [13, Theorem 2.2, Fact 4]. To be precise,
[13, Theorem 2.2, Fact 4] deals with pointed Gromov-Hausdorff precompactness
in the case of complete manifolds. However, in view of the definition of pointed
Gromov-Hausdorff precompactness, the same argument applies to the distance
balls.

Sublemma 1. B3D/4(xω) is a limit point of {B3D/4(xi)}∞i=1 in the pointed Gromov-
Hausdorff topology.

Proof. The proof is similar to that of [10, Lemma 2.4.3]. By precompactness, for
any δ > 0 there is a number J such that for each i, there is a δ-net {xi,j }Jj=1 in

B3D/4(xi), with xi,1 = xi . Let xω,j ∈ Xω be represented by the sequence {xi,j }.
In particular, xω,1 = xω. We claim that {xω,j }Jj=1 is a δ-net in B3D/4(xω). First,

dXω
(xω,j , xω) = lim

ω
dXi

(xi,j , xi) ≤ 3D/4, (3.10)

so xω,j ∈ B3D/4(xω). Next, given yω = {yi} ∈ B3D/4(xω), for j ∈ {1, . . . , J } put

Uj = {i : dXi
(xi,j , yi) ≤ δ}. (3.11)

As Z
+ = ⋃J

j=1 Uj , there is some j so that Uj has full ω-measure. Then for this

j , dXω
(xω,j , yω) = limω dXi

(xi,j , yi) ≤ δ. Thus {xω,j }Jj=1 is a δ-net in B3D/4(xω).
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From the definition of dXω
, there is a subset W ⊂ Z

+ of full ω-measure such
that for all i ∈ W and j, k ∈ {1, . . . , J },

∣
∣dXω

(xω,j , xω,k) − dXi
(xi,j , xi,k)

∣
∣ < δ. (3.12)

For any i ∈ W , it follows as in the proof of [7, Proposition 3.5(b)] that the pointed
Gromov-Hausdorff distance between B3D/4(xω) ⊂ Xω and B3D/4(xi) ⊂ Xi is at
most 2δ. This proves the sublemma. �

From (3.7), for i sufficiently large,

vol(B3D/5(xi)) ≥ vol(Bd(xi ,�i )/2(xi)) ≥ 1

2
cd(xi, �i)

n ≥ 1

2
c (9D/10)n. (3.13)

Hence we are in the noncollapsing situation and so from [13, Corollary 2.3, Lemma
3.4 and Theorem 4.1], Xω − �ω has a flat n-dimensional Riemannian metric. �

From Sublemma 1 and [13, Theorem 2.2], there is an infinite subset S ⊂ Z
+

such that B3D/5(xω) is actually the limit of {B3D/5(xi)}i∈S in the C1,σ -topology for
any σ ∈ (0, 1). Given α > 1 and r > 0, put Ai(αr, r) = Bαr(�i) − Br(�i) ⊂ Xi

and Aω(αr, r) = Bαr(�ω) − Br(�ω) ⊂ Xω. From (3.8),

lim
i→∞

vol(Ai(αr, r))

rn
= (αn − 1) c′. (3.14)

By abuse of notation, we write vol(Br(�ω)) for vol(Br(�ω) − �ω).

Lemma 3. For all r > 0,

vol(Aω(αr, r)) = (αn − 1) c′ rn (3.15)

and
inf

xω∈Sr (�ω)
r−n vol(Br/2(xω)) ≥ c. (3.16)

Proof. Given xω ∈ Aω(αr, r), let {xi}∞i=1 be as in the proof of Lemma 2. For ε > 0
sufficiently small, the method of proof of Sublemma 1 shows that Bε(xω) is the
pointed Gromov-Hausdorff limit of a sequence of ε-balls {Bε(xi)}i∈S . From the
Vitali covering theorem [12, Theorem 2.8], if vol(Aω(αr, r)) < ∞ then for any
δ > 0 there is a finite number of disjoint closed metric balls {B(xω,j , rj )}Jj=1
contained in Aω(αr, r) such that

J∑

j=1

vol(B(xω,j , rj )) ≥ vol(Aω(αr, r)) − δ, (3.17)

while if vol(Aω(αr, r)) = ∞ then for any � > 0, there is a finite number of
disjoint closed metric balls {B(xω,j , rj )}Jj=1 contained in Aω(αr, r) such that

J∑

j=1

vol(B(xω,j , rj )) ≥ �. (3.18)
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(Note that Aω(αr, r) could a priori have an infinite number of connected compo-
nents.) The C1,σ metric convergence implies that for any ε > 0 and for an infinite
number of i’s, there are disjoint closed metric balls {B(xi,j , rj )}Jj=1 contained in
Ai(αr, r) with

J∑

j=1

vol(B(xω,j , rj )) ≤
J∑

j=1

vol(B(xi,j , rj )) + ε ≤ vol(Ai(αr, r)) + ε. (3.19)

Equations (3.14), (3.18) and (3.19) imply that in fact vol(Aω(αr, r)) < ∞. Then
equations (3.14), (3.17) and (3.19) imply that vol(Aω(αr, r)) ≤ (αn − 1) c′ rn +
δ + ε. As δ and ε are arbitrary, we obtain that

vol(Aω(αr, r)) ≤ (αn − 1) c′ rn. (3.20)

From (3.7), the lower curvature bound and the Bishop-Gromov inequality [7,
Lemma 5.3.bis], for large i we obtain a lower bound on vol(Bε(xi)) in terms of
ε, α, r and c. Using the C1,σ metric convergence, we obtain a lower bound on
vol(Bε(xω)) in terms of ε, α, r and c. We then obtain an upper bound on the
number of elements in a maximal 2ε-separated net in Aω(αr, r). As the 4ε-balls
with centers at the netpoints cover Aω(αr, r), it follows that Aω(αr, r) is compact.
Then Aω(αr, r) is the Gromov-Hausdorff limit of a subsequence of {Ai(αr, r)}∞i=1.
It follows from the C1,σ metric convergence that

vol(Aω(αr, r)) = lim
i→∞

vol(Ai(αr, r)) = (αn − 1) c′ rn. (3.21)

Equation (3.16) follows from (3.7) and the C1,σ metric convergence. �
Hence vol(Br(�ω)) = c′ rn. As Aω(αr, r) is compact, we can now use the

analysis of manifolds that are flat outside of a compact set, as given in [2]. For
simplicity suppose that Xω − �ω is connected; the general case is similar. Suppose
that n > 2. From [2], the complement of some bounded set in Xω is isometric
to the complement of a bounded set in R

n/F , for some finite group F ⊂ O(n)

that acts freely on Sn−1. For r0 large, we identify Sr0(�ω) with a hypersurface in
R

n/F . Then for r < r0, Sr(�ω) is the result of (possibly) making identifications
on the equidistant set with signed distance r − r0 from Sr0(�ω). We know that

Area(Sr(�ω)) = n c′ rn−1. (3.22)

As this is analytic in r , it follows that there are in fact no identifications made, and
Sr0(�ω) is convex when lifted to R

n. If r0 is large enough, we may assume that
Sr0(�ω) is C1-smooth with measurable principal curvature functions {hj }n−1

j=1. For
r near r0, the tube formula gives

n c′ rn−1 =
∫

Sr0 (�ω)

n−1∏

j=1

(1 + hj (r − r0)) dvol. (3.23)
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By analyticity, (3.23) is true for all r . As in the proof of the Bishop-Gromov
inequality, for r ∈ (0, r0),

Area(Sr(�ω)) =
∫

Sr0 (�ω)

χr

n−1∏

j=1

(1 + hj (r − r0)) dvol, (3.24)

where χr is the characteristic function of the set of points on Sr0(�ω) whose normal
rays are distance-minimizing down to Sr(�ω). It follows from (3.22), (3.23) and
(3.24) that for all r ∈ (0, r0), χr = 1 and 1 + hj (r − r0) > 0 for all j .
Equation (3.23), for small r , now implies that for all j , hj = 1

r0
. Then for all

r > 0, Sr(�ω) can be identified with the sphere of distance r from the vertex of
R

n/F . Hence Xω − �ω is a cone over a spherical space form. If n = 2 then one
can apply a similar argument, using the results of [2] in this case.

Hence Xω is a cone over a finite union Y of spherical space forms with total
volume n c′. Let Ci ⊂ Xi be as above. Choose ci ∈ Ci ∩ S1(�i). Let cω ∈ Xω be
the point represented by {ci}. Consider the connected component C of Xω − �ω

which contains cω. Define νω ∈ C0(C) by νω(xω) = dXω
(xω, �ω).

Consider the closed annulus A = B4(�ω) − B 1
4
(�ω) in C. It is compact. Given

ε ∈ (
0, 1

100

)
, choose a finite ε-net N = {aω,j }Jj=1 in A, with aω,1 = cω. For each

j , choose a sequence {ai,j } which represents aω,j , with ai,j ∈ Xi and ai,1 = ci .
As in the proof of Lemma 2, we may assume that ai,j ∈ B4+ε(�i) − B 1

4 −ε(�i).

By the definition of dXω
, there is a subset S0 ⊂ Z

+ of full ω-measure such that if
i ∈ S0 then for all j ∈ {1, . . . , J },

∣
∣dXi

(ai,j , �i) − dXω
(aω,j , �ω)

∣
∣ < ε. (3.25)

Consider the closed subsets
{⋃J

j=1 B1/8(ai,j )
}

i∈S0

of {Xi}i∈S0 . From (3.9),

they form a precompact set in the multipointed Gromov-Hausdorff topology,
where the multibasepoint of

⋃J
j=1 B1/8(ai,j ) is the ordered set {ai,j }Jj=1 and by

“multipointed Gromov-Hausdorff topology” we mean the analog of the pointed
Gromov-Hausdorff topology, in which all of the maps in the definitions respect
the multibasepoints. Put

F =
J⋃

j=1

B1/8(aω,j ) ⊂ B10(�ω) − B 1
10

(�ω) ⊂ C. (3.26)

As in the proof of Sublemma 1, F is a limit point of
{⋃J

j=1 B1/8(ai,j )
}

i∈S0

in

the multipointed Gromov-Hausdorff topology. Then there is a subsequence of{⋃J
j=1 B1/8(ai,j )

}

i∈S0

which converges in the multipointed C1,σ -topology to F .

In particular, there is an infinite subset S1 ⊂ S0 such that if i ∈ S1 then there is a
C2,σ -regular diffeomorphism πi :

⋃J
j=1 B1/8(ai,j ) → F with πi(ai,j ) = aω,j .
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For i ∈ S1, let gi denote the corresponding Riemannian metric on F , pulled
back from Xi via π−1

i . Then {gi}i∈S1 converges to the gω

∣
∣
F

in the C1,σ -topology.

Taking ε ∈ Z
+

100 and doing a diagonal argument, we obtain a sequence paramet-
rized by k ∈ Z

+ of
1. 1

100k
-nets Nk = {aω,j }Jk

j=1 in A,

2. Sets Fk = ⋃Jk

j=1 B1/8(aω,j ) and

3. C2,σ -regular diffeomorphisms πk :
⋃Jk

j=1 B1/8(aik,j ) → Fk with πk(aik,j ) =
aω,j

such that
4. limk→∞ gk

∣
∣
A

= gω

∣
∣
A

in the C1,σ -topology and
5.

sup
y∈Nk

∣
∣νk(y) − νω(y)

∣
∣ <

1

k
, (3.27)

where νk =µik◦π−1
k ∈ C0(Fk). Here gk is the pullback of the Riemannian metric

from Xik , using π−1
k . By theArzela-Ascoli theorem, it follows from 4. that there is a

subsequence of {νk

∣
∣
A
}∞k=1 which converges in the Lipschitz topology. Relabelling

this subsequence as {νk

∣
∣
A
}∞k=1, it follows from (3.27) that limk→∞ νk

∣
∣
A

= νω

∣
∣
A

.
For large k, we will identifyCik with the connected component ofν−1

k

([
1
2 , 2

]) ⊂ A

containing cω.
Let r be the coordinate on C given by the distance from �ω and let Z = − d

dr

be the corresponding (smooth) vector field on C. Clearly Z is transversal to νω in
the sense of [5]. Then for large k, Z

∣
∣
A

is transversal to νk

∣
∣
A

. By flowing along Z

from ν−1
k (2) to ν−1

k

(
1
2

)
and using the arguments of [5], it follows that the map

νk : ν−1
k

([
1
2 , 2

]) → [
1
2 , 2

]
defines a topological fiber bundle. By further flowing

along Z down to S1/100(�ω) ⊂ C, it follows that the fiber of the bundle is homeo-
morphic to a connected component of Y . Then Cik is the total space of this fiber
bundle, which contradicts the construction of {Ci}∞i=1.

For given c and c′, Y has volume n c′ and cone(Y ) satisfies the lower local
volume bound (3.16). It follows that there is an upper bound in terms of c and c′ on
the number of components of Y , and a finite number of possible diffeomorphism
types for each component. �

4. Proof of Theorem 2

The underlying basis for the result is the fact that for β ∈ (0, 1), there is a flat
2-dimensional cone surface with one cone point, of total angle 2π(1 + β), and
one open end, with cone angle 2π(1 − β). Because of this fact, it is plausible
that one can construct a sequence of surfaces as in the statement of the theorem
with the property that when one takes an ultralimit as ε → 0, one obtains this flat
cone surface.
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This suggests constructing the surface of the theorem to have a self-similar
structure of the form

M = D2 ∪S1 P ∪S1 (C · P) ∪S1 . . . ∪S1 (Ck · P) ∪S1 . . . (4.1)

Here P , the basic building block, is the gluing N1 ∪S1 N2 of two compact sur-
faces-with-boundary N1 and N2 along a circle. The surface N1 will be the above
cone surface truncated both near the cone point and near infinity. Topologically
N1 will be a torus with two balls removed, equipped with a flat metric. Then the
surface N2 will be an annulus that attaches N1 and a rescaled version C · N1, for
an appropriate constant C.

To write this in detail, let T 2 denote the 2-torus equipped with an arbitrary
but fixed complex structure with local complex coordinate z, and flat Riemannian
metric |dz|2. Let f be a meromorphic function on T 2 with one zero, at p0 ∈ T 2,
and one pole, at p∞ ∈ T 2. Fix β ∈ (0, 1) and put g = |f (z)|2β |dz|2, a
Riemannian metric on T 2 − {p0, p∞}. In general, a metric e2φ |dz|2 has Gaussian
curvature − e−2φ (∂2

x + ∂2
y )φ. As ln |f | is harmonic, it follows that g is flat.

As a metric on T 2, it has a cone point at p0 with total angle 2π(1 + β) (i.e.
angle excess 2πβ) and an open cone near p∞ with cone angle 2π(1 − β). The
end of T 2 − {p0, p∞} approaching p0 has a neighborhood U0 with the metric
ds2 + (1 + β)2 s2 dθ2 for s ∈ (0, δ0), and the end of T 2 − {p0, p∞} approaching
p∞ has a neighborhood U∞ with the metric dt2 + (1−β)2 t2dθ2 for t ∈ (δ∞, ∞).
We take δ∞ > 1. Put N1 = (T 2 − {p0, p∞}) − U0 − U∞. It is a compact
surface-with-boundary whose boundary circles ∂0(N1) and ∂∞(N1) have lengths
2π(1 + β)δ0 and 2π(1 − β)δ∞, respectively. If C is a positive constant, we
denote by C ·N1 the Riemannian manifold obtained by rescaling the Riemannian
metric on N1 by C2, i.e. multiplying the lengths by C.

For ε a small positive number, we now wish to construct a metric

ds2 = dr2 + f 2(r) dθ2 (4.2)

on an annulus N2 = [0, R] × S1 with

f (r) = c1 (1 + r)−ε + c2 (1 + r)1 + ε, (4.3)

so that N1 glues isometrically to N2 to first order, with {0}×S1 gluing to ∂∞(N1),
and N2 glues isometrically to C ·N1 to first order, with {R}×S1 gluing to C ·∂0(N1),
for some C > 1. These conditions become

c1 + c2 = (1 − β) δ∞,

− ε c1 + (1 + ε) c2 = 1 − β,

c1 (1 + R)−ε + c2 (1 + R)1 + ε = C (1 + β) δ0,

− ε c1 (1 + R)−ε−1 + (1 + ε) c2 (1 + R)ε = 1 + β.

(4.4)
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(The third equation in (4.4) says that the sizes of the circles {R}×S1 and C ·∂0(N1)

are the same, while the fourth equation in (4.4) says that the cone angles along
the circles are the same.) The solution to the first two equations in (4.4) is

c1 = 1 − β

1 + 2ε
((1 + ε) δ∞ − 1) ,

c2 = 1 − β

1 + 2ε
(ε δ∞ + 1) .

(4.5)

For small ε and large R, the dominant term on the left-hand-side of the last equa-
tion in (4.4) is (1 + ε) c2 (1 + R)ε . Hence for small ε, there is a solution for R

with the asymptotics

R ∼
(

1 + β

1 − β

) 1
ε

. (4.6)

Substituting into the third equation of (4.4) gives

C ∼ δ−1
0

(
1 + β

1 − β

) 1
ε

. (4.7)

Put P = N1 ∪S1 N2, where the gluing identifies ∂∞N1 with {0} × S1 ⊂ N2.
Then P has a C1-smooth Riemannian metric which is flat on N1 and has curvature
− f ′′

f
= − ε (1 + ε)

(1+r)2 on N2. By smoothing the metric on P and slightly moving
the boundary curve between N1 and N2 into N2, we can construct a Riemannian
metric on P which is flat on N1, which satisfies |K| ≤ 2 ε (1 + ε)

(1+r)2 on N2 and

for which P glues isometrically onto C · P by identifying {R} × S1 ⊂ P with
C · ∂0N1 ⊂ C · P . Let D2 be a 2-disk which caps P at ∂0N1. Put

M = D2 ∪S1 P ∪S1 (C · P) ∪S1 . . . ∪S1 (Ck · P) ∪S1 . . . , (4.8)

with basepoint � ∈ D2. There is an obvious Riemannian metric on M − D2,
which we extend over M . We claim that this Riemannian metric satisfies the con-
ditions of the theorem. First, M has infinite topological type. By the self-similar
nature of the Riemannian metric, equations (1.6) and (1.7) are satisfied for some
c, c′

1, c
′
2 > 0. In order to check (1.8) on (Ck · P) ⊂ M , we can use the scale

invariance to instead check it on the subset P of

C−k ·M = (C−k ·D2) ∪S1 (C−k ·P) ∪S1 (C−k+1 ·P)∪S1 . . .∪S1 P ∪S1 . . . (4.9)

As the metric is flat on N1 ⊂ P , it is enough to just consider a point m ∈ N2, say
with coordinates (r, θ) ∈ [0, R] × S1. Put

a1 = max
z1∈∂0N1,z2∈∂∞N1

d(z1, z2) (4.10)

and
a2 = max

z∈∂D2
d(�, z). (4.11)
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Then we can construct a path from � to m with length at most

C−k a2 + C−k(a1 + R) + . . . + C−1(a1 + R) + a1 + r. (4.12)

Thus

d(m, �) ≤ a2 + a1 + R

C − 1
+ a1 + r ≤ r + const., (4.13)

where const. is independent of ε. It follows that

|K(m)| · d(m, �)2 ≤ 2 ε (1 + ε)

(
r + const.

r + 1

)2

, (4.14)

which proves the theorem.

Remark. It should be fairly clear that by using building blocks consisting of
appropriate (rescaled) flat metrics on T 2 − (D2 ∪ D2), S2 − (D2 ∪ D2 ∪ D2)

and RP 2 − (D2 ∪ D2), along with the classification of surfaces in [15], we
can construct a complete Riemannian metric on any connected surface so as to
satisfy (1.6), (1.7) and (1.8) for any ε > 0 and for some c, c′

1 and c′
2.

5. Proof of Theorem 3

We follow the method of proof of Theorem 1, which is a proof by contradiction.
Hence we obtain a pointed length space (Xω, �ω) along with a flat n-dimensional
Riemannian metric on Xω − �ω. By using appropriate rescalings in the construc-
tion of Xω, we obtain the analog of equations (1.9) and (1.10) for Xω, but with
C ′ = 0. That is, the distance function dXω

(·, �ω) is convex on Xω and for any two
normalized minimizing geodesics γ1, γ2 : [0, b] → Xω with γ1(0) = γ2(0) = �ω

and any t ∈ [0, 1],

dXω
(γ1(tb), γ2(tb)) ≤ t dXω

(γ1(b), γ2(b)) (5.1)

Let cω ∈ Xω and C ⊂ Xω−�ω be as in the proof of Theorem 1. Let C̃ denote the
universal cover of C, defined with the basepoint cω, with projection π : C̃ → C.
As C is flat, there is a developing map D : C̃ → R

n and a homomorphism
π1(C, cω) → Isom(Rn) with respect to which D is equivariant.

From the convexity of d(·, �ω), for any r > 0 the ball Br(�ω) is geodesically
convex in C. Then Sr(�ω) is locally convex in the sense that for each xω ∈ Sr(�ω),
there is a neighborhood of xω in Sr(�ω) which is contained in the boundary of a
convex set. Given x̃ω ∈ π−1(Sr(�ω)), using a local isometry between a neighbor-
hood of x̃ω and a neighborhood of π(̃xω), it follows that there is a neighborhood
of x̃ω in π−1(Sr(�ω)) which is contained in the boundary of a convex set. That is,
π−1(Sr(�ω)) is locally convex. From [8], for each r > 0,
1. π−1(Sr(�ω)) is embedded by D as the boundary of a convex subset of R

n, or
2. π−1(Sr(�ω)) is isometric to S1 × R

n−2 and D is the product α × IdRn−2 of an
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immersed convex curve α : S1 → R
2 with the identity map on R

n−2, or
3. π−1(Sr(�ω)) is isometric to R × R

n−2 and D is the product α × IdRn−2 of an
immersed convex curve α : R → R

2 with the identity map on R
n−2.

Suppose first that for each r > 0, D embeds π−1(Sr(�ω)) into R
n as the

boundary of a convex subset. Then D is an embedding of C̃ into R
n. Identifying

C̃ with its image under D, convexity implies that C̃ is the complement of a closed
convex subset Z ⊂ R

n. Letting R
n/Z denote the collapsing of Z to a point,

there is a continuous map R
n → R

n/Z → C which sends Z to �ω. Now Z is
invariant under the isometric action of π1(C, cω) on R

n. Given xω ∈ Cω and a
lift x̃ω ∈ π−1(xω), the convexity of Z implies that there is a unique minimizing
geodesic from xω to �ω, which coincides with the projection of the minimizing
segment from x̃ω to Z.

Suppose that Z contains more than one point. Then we can find two distinct
points {zi}i=1,2 in ∂Z and support planes Hi containing zi so that the normalized
rays {γ̃i}i=1,2 from zi orthogonal to Hi , which point away from Z, have the prop-
erty that γ̃1 eventually lies on the same side of H2 as γ̃2, and γ̃2 eventually lies on
the same side of H1 as γ̃1. Put γi = π ◦ γ̃i . For t sufficiently small, we will have
dXω

(γ1(t), γ2(t)) = 2t , as the shortest way to get from γ̃1(t) to γ̃2(t) in R
n/Z will

be to follow γ̃1 from γ̃1(t) to z1 and then follow γ̃2 from z2 to γ̃2(t). (Note that Z

gets collapsed to �ω.) Then from (5.1), it follows that dXω
(γ1(t), γ2(t)) = 2t for

all t > 0. Thus d(γ̃1(t), γ̃2(t)) = 2t for all t > 0, where the distance is measured
in the length metric on R

n/Z, which is a contradiction to the construction of γ̃1

and γ̃2.
Thus Z is a point, which we can assume without loss of generality to be the

origin in R
n. Then π1(C, cω) acts on R

n − {0} by elements of O(n) and C is a
cone over a spherical space form. The rest of the proof proceeds as in the proof
of Theorem 1.

Now suppose that for some r0 > 0, D immerses π−1(Sr0(�ω)) as αr0 × IdRn−2 ,
where αr0 is an immersed convex curve αr0 : S1 → R

2. Then for all r > 0,
D immerses π−1(Sr(�ω)) as αr × IdRn−2 , where αr is an immersed convex curve
αr : S1 → R

2 which is the curve of distance r − r0 from αr0 . (Recall that D

is a local isometry.) It follows that C̃ = (0, ∞) × S1 × R
n−2, which contradicts

the fact that C̃ is simply-connected.
Finally, suppose that for some r0 >0, D immerses π−1(Sr0(�ω)) as αr0 ×IdRn−2 ,

where αr0 is an immersed convex curve αr0 : R → R
2. Then for all r > 0,

D immerses π−1(Sr(�ω)) as αr × IdRn−2 , where αr is an immersed convex
curve αr : R → R

2 which is the curve of distance r − r0 from αr0 . In par-
ticular, C̃ splits isometrically as a product A × R

n−2, where A is diffeomor-
phic to (0, ∞) × R, with C̃ having the flat metric which pulls back from D.
Put A = ([0, ∞) × R)/({0} × R), the union of A with a point. Similarly, put

C̃ = ([0, ∞) × R × R
n−2)/({0} × R × R

n−2), the union of C̃ with a point.

There is a continuous map from C̃ to C which restricts to the covering map on
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C̃, and an obvious embedding A → C̃. Let γ̃ : [0, ∞) → A be a normalized
ray. Choose distinct points b1, b2 ∈ R

n−2. Then (t ∈ R
+) → γ̃ (t) × {b1} and

(t ∈ R
+) → γ̃ (t) × {b2} extend to rays ri : [0, ∞) → C̃, with ri(0) being the

basepoint. As before, we have d(r1(t), r2(t)) = 2t for t small, where d is the

length metric on C̃. Then (5.1) implies that d(r1(t), r2(t)) = 2t for all t , which
is a contradiction.

Remark.. To see where the hypotheses of Theorem 3 enter into the proof, note
that the method of proof is to show that C is a cone over a spherical space form.
If n = 2 then C could a priori be a cone over R, as in the example of Sec-
tion 2. To see where the assumption of large-scale pointed-convexity enters, let
Mi be the effect of attaching a wormhole between two points of distance 2i

in R
n. More precisely, give [−1/2, 1/2] × Sn−1 a metric whose restrictions to

[−1/2, −1/4]×Sn−1 and [1/4, 1/2]×Sn−1 are isometric to B1/2(0)−B1/4(0) ⊂
R

n. Put Mi = (Rn −B1/2(p1)−B1/2(p2))∪Sn−1∪Sn−1 [−1/2, 1/2]×Sn−1, where
p1, p2 ∈ R

n have distance 2i. It is flat outside of a compact set. Put the basepoint
of Mi somewhere on the component [−1/2, 1/2] × Sn−1. Then the limit space
Xω = limω

1
i

· Mi is the result of identifying two points in R
n of distance 2,

with its basepoint at the identification point. Clearly Xω is not a cone. Without the
assumption of large-scale pointed-convexity, or some such assumption, it could
a priori arise in a rescaling limit as in the proof of Theorem 3. One can find similar
examples with Xω = R

n/K , where K is any closed subset of R
n. The large-scale

pointed-convexity assumption is used to show first that K is convex and then to
show that K is a point.

References

[1] Abresch, U.: Lower Curvature Bounds, Toponogov’s Theorem and Bounded Topology I.
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