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ANALYTIC TORSION FOR GROUP ACTIONS

JOHN LOTT & MEL ROTHENBERG

I. Introduction

The Reidemeister torsion is a classical topological invariant for non-
simply-connected manifolds [14]. Let M be a closed oriented smooth
manifold with the fundamental group πλ(M) nontrivial. Let p:πx{M) -•
O(N) be an orthogonal representation of nx(M). If the twisted real co-
homology H*(M, Ep) vanishes, then one can define the Reidemeister
torsion τp GR , which is a homeomorphism invariant of M. The original
interest of τp was that it is not a homotopy invariant, and so can distin-
guish spaces which are homotopy equivalent but are not homeomorphic.

Ray and Singer asked whether, as for many other topological quantities,
one can compute τp by analytic methods [17], Given a Riemannian metric
g on M, they defined an analytic torsion T' e R as a certain combination
of the eigenvalues of the Laplacian acting on twisted differential forms.
They showed that under the above acyclicity condition, T is independent
of the metric g, and they conjectured that the analytic expression T
equals the combinatorial expression τ . This conjecture was proven to be
true independently by Cheeger [4] and Mϋller [15].

One can look at the above situation in the following way. The group
nχ{M) acts freely on the universal cover M, and so one has an invariant
for free group actions. A natural question is whether the Reidemeister
torsion can be extended to an invariant for more general group actions.
For a finite group acting (not necessarily freely) on a closed oriented PL
manifold X, a Reidemeister torsion was defined algebraically by Rothen-
berg [19]. One can then ask whether there is a corresponding analytic
torsion when X is smooth, and whether the analytic torsion equals the
combinatorial torsion.

In §11 we define the analytic torsion Tp for a finite group action and
show that if the relevant cohomology groups vanish, then it is indepen-
dent of the G-invariant metric used in its definition. (This was shown
previously in unpublished work by Cheeger [5].) The analysis involved to
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prove this is similar to that of the analogous statement for the ordinary
analytic torsion, in that it involves a heat kernel analysis, but differs in that
it is necessary to use the heat kernel asymptotics off of the diagonal. We
prove some product formulas for T in §111, and compute T for special
orthogonal actions on spheres in §IV. We define the combinatorial torsion
τ , based on [19], in §V, and compute τ for special orthogonal actions
on spheres in §VI.

We were surprised to find that, in general, T does not equal τp . One
can see this for special orthogonal actions on spheres. If the sphere is
odd-dimensional then T' = τ , but if the sphere is even-dimensional then
T vanishes, whereas τ generally does not. In §VII we show that Tp

and τ coincide for all orientation-preserving finite group actions on odd-
dimensional spaces. As in the case of the ordinary analytic torsion, the
proof is done using surgery arguments, now generalized to the equivariant
case.

In §VΠI we discuss the case of even-dimensional spaces. If the space
X is even-dimensional, then T vanishes from an argument involving
the Hodge duality operator. If the action is free, then τ also vanishes.
However, if the action is not free, then one finds that the corresponding
combinatorial arguments, involving the dual cell complex, fail.

From the argument of the proof in § VII, we do derive an expression that
tells how τp changes under equivariant surgery in the even-dimensional
case. Although we first found this expression by analytic means, we later
found a purely topological proof, which we also present.

It is well known that the Reidemeister torsion has many similarities with
the Euler characteristic (see [8] for a exposition from this point of view). In
§VIII, for the even-dimensional case, we give an expression for τ in terms
of a Morse function on X, and also an expression for τ in terms of an
excision of a subspace of maximal isotropy group. Both of these relations
show a striking resemblance to the corresponding equations for the Euler
characteristic. They make the combinatorial torsion very computable in
the even-dimensional case. For example, we use them to show that for a
Zp action, the exponential of twice the torsion is the absolute value of an
element of a certain multiplicative subgroup of Q(exp(2π//p)). In §IX we
consider the torsion for orientation-reversing group actions. We show that
the analytic and combinatorial torsions agree for an orientation-preserving
group action in odd dimensions, or an orientation-reversing group action
in even dimensions. We use this to derive some results on the torsion of a
manifold with boundary by looking at the involution on the double of the
manifold.
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One can ask whether one can use the analytic methods to define invari-
ants for group actions without usual combinatorial invariants. In §X we
define the analytic torsion for discrete group actions and study its prop-
erties. In §XI we give an example of its application in proving by purely
analytic means (in the odd-dimensional case) a theorem of de Rham, stat-
ing that orthogonal group actions on spheres are smoothly equivalent if
and only if they are linearly equivalent.

An exposition of the results of this paper appeared in [12].
We would like to thank David Fried and Isadore Singer for helpful

discussions. We would like to thank Wolfgang Luck for discussions and
for pointing out a gap in our original proof of Proposition 16. He has
independently derived results for the combinatorial torsion for manifolds
with boundary which are analogous to those of §IX [13]. We would like
to thank Jeff Cheeger for informing us of his unpublished results. One of
us (J.L.) would like to thank M. Berger and the IHES for their hospitality
while part of this research was performed.

II. The analytic torsion of finite group actions

Let us recall the definition of the ordinary analytic torsion. Let M

be an n-dimensional closed smooth oriented Riemannian manifold with

metric g. Let p\πχ{M) -• O{N) be an orthogonal representation of the

fundamental group of M, which then gives a flat R^ bundle E over

M. One has the de Rham complex

(2.1) A°(M, Ep) - ^ Aι(M, Ep)±..-± ΛΠ(M, Ep)

of smooth differential forms on M with value in Ep . Using the metric one

has an inner product on Ak(M, E ) and so one has the adjoint operator

(2.2) δ:Ak(M,Ep)^Ak-\M,Ep).

Let Ak denote the Laplacian dδ + δd acting on Ak(M, Ep). The kernel

of Ak is isomorphic to the real cohomology group Hk(M, Ep), which

inherits an inner product from that of Ak(M, Ep). Let Pk denote the

projection of the Hubert space %?k(M, Ep) of L2 /c-forms onto KerΔ^ .

Let Δ^ denote Ak acting on ImΔ^ . By abuse of notation, we will write

exp(-ΓΔ^) to denote exp(-ΓΔ^) - Pk , acting on &k(M, Ep). Let F
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denote the operator on φk^
k(M, E ) , which is multiplication by k on

βfk{M, is ), and let (—)F denote the operator which is multiplication by

(-1)* on JTk(M,Ep).

Definition. The ordinary analytic torsion f is given by

where Tr denotes the trace of a trace class operator acting on
k

p

(It is understood that the derivative at s = 0 is that of a meromorphic
function in s, which is defined by analytic continuation from Res » 0,
and which is analytic around 5 = 0.)

The remarkable fact about this expression is that if @kH
k(M, E )

vanishes, then T is independent of the metric used in the definition and
equals the combinatorial Reidemeister torsion [4], [15].

One can think of the analytic torsion as being an invariant for a non-
simply-connected manifold, or, equivalently, as an^nvariant for the free
action of πχ{M) on the universal covering space M. In the special case
when M is compact, let

(2.4) a:πχ{M)^Όifί(M)

denote the covering transformations. If g is an element of π{(M), let

a(g~1)* denote the action of g on the differential forms on M:

(2.5) a{g-χ)
k

Consider the projection operator

acting on φk(^k(M) ® RN), whose range is φk^
k(M, Ep). Then we

can write

T =— —
" ds s=0Γ(s

( 2 J >

where the Tr now denotes the trace of a trace class operator acting on
k N

These considerations motivate the following generalization. Let G be
a finite group acting smoothly by orientation-preserving diffeomorphisms
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on a closed oriented smooth ^-dimensional Riemannian manifold X,
equipped with a (^-invariant metric g. Let p:G -> O(N) be an orthogo-
nal representation of G. Put

(2.8) n = ± l

1

a projection operator acting on @k{^k{X) Θ RN).
Definition.

where Tr now denotes the trace of a trace class operator acting on

(From the estimates in the proof of Proposition 2 it will follow that we
are taking the derivative at s = 0 of a meromorphic function which is
defined by analytic continuation from Res > 0, and is analytic around
s = 0.)

We will now prove two properties of Tp , which are analogous to those
of the ordinary analytic torsion [17].

Consider the rf-operator, acting on the /?-equivariant R^-valued differ-
ential forms, that is, on Π(φk(#'k(X)®RN)). Let ($kH

k(X, p) denote
the cohomology of this complex, with the induced inner product structure.
Let * denote the Hodge duality operator.

Proposition 1. If n is even, then Tp = 0.

Proof. The operator * commutes with Δ' and a(g~1)*, and satisfies

(2.10) F * + * F = n*, R F * = (-)" * (-)F.

Thus

Ίτ{-)FFa(g-ι)me-TA' = Ίr{-)F

(2.11) = Ίr*-\-)FF * a(g-ι)*e~TA'

We can consider the above trace to be on trace class operators acting on
ImΔ. Let us define the operator Q on ImΔ by

(2.12) Q = (d + δ)(A'Γι/2.

Then

(2.13) Q2 = \ and Q(-f + (-fQ = 0.
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It follows that

(2.14) Ίτ(-f α(g-') V Γ Δ ' 2f-l*

(2.15) = -Trβ 2(-) /W- 1)VΓ Δ ' = 0

Then

(2.16) Ίr{-)FFa{g-lγe-Tό! = (-)"+1 Ίr{-)F ^ ( i f 1 ) V™' = 0.

Thus the integrand for T vanishes.
Proposition 2. If n is odd, let g(ε) be a smooth l-parameter family of

G-invariant metrics on X. Then

(2.17) ^ =

Proof In the ensuing proof, we will make some manipulations which
are initially only justified when Res > 0. Because everything will be
analytically continued to s = 0, it will follow that the manipulations are
also justified around s = 0.

Let V denote ( ^ * ) *~2 Because the ^-operator is defined indepen-

dently of the metric £d = 0, but

( 2 1 8 ) TeS = Te(±*d*) = [V'δ]

Thus

(2.19) ^A = {d,[V,δ]},

where {•, •} denotes anticommutation. We also need that a(g~1)* com-
mutes with *, d, δ, and F , and that

(2.20) [F,d] = d, [F,δ] = -δ.

Then

_τ = ± _
dε P dεds 5=0 \S) Jθ

(2.21) -Ύτ\KeτA(-)FFΠ]dT.

N. As G acts by isometries on X, we have that

Let A denote the de Rham isomorphism from KerΔoR^ to H*(X)®
N. A

(2.22)
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where, on the right-hand side, a(g ι)* acts on H*{X) ® RN. However,
the action on H*(X) ® RN is clearly independent of the metric, and so
the second term of the integrand of (2.21) is independent of ε.

to mean the derivative at 5 = 0 ofFor simplicity, we will write
s=0

the analytic continuation of an expression which is defined for Re s » 0.
Then the rest of (2.21) can be written as the Γ-integral of

(2.23)

ds

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

so

(2.30)

where

(2.31)

(2.32)

Now

Ϊ=0

d_
'ds

d_
'ds

ds

Γ(s) Ίϊ

d_
ds
d_
ds
d_
ds

γ^TsΎτUV

• [{δ(-)FFd + δd(-)FF - (-f dδ - d(-)FFδ)]e

^rTsΊτΠV(-)F(δ[d,F]

±-rT>ΊτnV(-)Fte

-TΔ.

Γ Δ

5 = 0 J

- Γ Δ

i = 0

1 rτrUVi-fA'e-™'
Γ(S)

-ιττΠV(-)Fe-TA>],

B= / --T-

0 0 d_
ds

,F - ]

(2.33) B=(lim- lim) (~
s=0Γ(s
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Because everything is defined by analytic continuation from Re s > 0,
both limits vanish and B = 0.

We now have
i J i /»oo /

ίz.34) -j—i = o == ~j~ ψ=̂ —r.y / y l r i i r ί—j β di.

aε μ as s=oi {s) JQ

As l/Γ(s) is O(ί),and /fl°° T
s~ι TτΠV(-)Fe~TA' dT is holomorphic in

s for any a > 0, it follows that

ίi P P fi c

(2.36)

(2

d_
ds

5=0

1

t e r m expansion of

In order to prove the proposition, it is sufficient to show that the asymp-
F T A T° term, which will

has no T° term for

yp
totic expansion in T of ΎτΠV(-)Fe~TA has no T° term, which will
be implied if we can show that ΎτVa(g)*e~TA\

Let e~TA jj{gx, JC) denote the operator kernel for e~TA going from an
orthonormal basis τ7 of Ak(x) to an orthonormal basis τJ of Ak(gx).
Let VJJ(X) denote the matrix form of the local operator V with respect
to this basis. Then we want to look at the asymptotic expansion of

(2.38) J Γ = VIK(x)(τκ(x)9(a(g)*τj)(x))ejfA(gx,x)dvol(x).

Let us review the results on heat kernel expansions as in, for example,
[1], when generalized to the case of the Laplacian acting on differential
forms. Let η be a bump function on R with center at the origin and
support within {r e R: \r\ < (the inactivity radius of X)} . Let

(2.39) S{k\x, x') = ( 4 π 7 r u,{x, x')
1=0

be a parametrix for the heat kernel and put

(2.40) H{k\x, x) = η(x, x')S(x, x),

(2.41) ik)= (d/dτ + A)Hik).
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Let [jr ( / c )]*A denote the convolution of 5?{k) with itself λ times and put

(2.42) Qιk) = Σ{-l)M[JTιk)]*λ.

Then the heat kernel is

(2.43) e-TA = H{k)-Q{k)*H{k)

provided k > n/2 + 2, [1].

Fix T to lie in the interval (0, a) hereafter. Then for k large enough,

(2.44) Rκ ; = h Q ( , )

exists and is bounded in the sup norm on [AP(X)]* ® ΛP(Z). Now

(2.45)

~Σfχ QΆ*X ' ̂ ί Λ * > x) d VOI(JC)] rf vol(x).

For small 7\ ΣLJχQΪί(gχ>x)Hu(x,x)dvol(x) is O(Tk'n/2). (In
fact, it is asymptotic to Tk~n/2R{k](gx, x).) Thus, by choosing fc large,
we can ensure that the second part of (2.45) does not contribute to the
constant term in T of J£ , and so we can simply examine the asymptotic
expansion of H in order to determine the T° term of Z.

The first part of Z is

(2 46) Σ / Σ/
/=o JxI,

x (4πΓ) 7 e v δ " v / .T ui.jτ(gχ> x)dvol(x).
ι=o

Clearly, for any φ > 0, the points x such that d2{x, gx) > φ do not
contribute to the asyptotic expansion of Z. We know that there is a
finite number of components of FIX(a(g)) and that these components are
boundaryless submanifolds of X. It follows that it suffices to integrate the
integrand of (2.46) over the union of the tubular neighborhoods of these
connected components. Let 9 be a connected component of FIX(a(g))
of dimension c, and let {¥„} be a collection of coordinate charts on W
with {Pβ} a partition of unity subordinate to {Vβ} . By the generalized
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Morse lemma [10], we can choose coordinates (w, z) e Rc θ Rn~c on

a tubular neighborhood of Vβ such that d2(x, gx) = \z\2. Using the

partition of unity, the integral of (2.46) is a sum of terms of the form

(2.47) Tl-
/TUB NBHD

with q being a C°° function on the tubular neighborhood. (Note that

it is irrelevant whether Ψ is orientable.) We can extend q to a C£°

function q on R^ and thereby integrate over z eRn~c without changing

the asymptotics of (2.47) in T. Thus we have an integral of the form

(2.48) Tl~n/21 q(w, z)e-lzl2/4T

Pβ(w)dcwdn-cz.

Doing the w-integral gives something of the form

(2.49) Tl-n

(2.50) = τ{n-c)l2Tl-nl21 r (zΓ 1 / 2 y- | z | 2 / V" c z,

with r e C™(Rn~c). Expanding r in a Taylor's series gives an expansion

of the last integral in integer powers of T, with error of arbitrarily high

order in T. Thus, all of the powers of T in the asymptotic expansion of

Z lie in τ~c/2+z. Because a{g) is an orientation-preserving isometry,

Ψ must be of even codimension, c must be odd, and so there is no T°

term in the asymptotic expansion of Z.

III. Product formulas

Let c denote the character of the representation /?,i.e., c(g) = Tr/?(#).
Note that we can write T as

(3 1} Tp = W\
where

" s s=0Γ\S> Jθ

Let L(g) denote the Lefschetz number of g.
Proposition 3. Suppose that Xχ and X2 are closed oriented Rieman-

nian manifolds. Let XχxX2 have the product metric. If Gχ acts on Xχ by
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isometries, and G2 acts on X2 by isometries such that the product action
on X{ x X2 is orientation-preserving, then for g{ e G{ and g2eG2,

(3.2) t(g{, g2) = t{gχ)L{g2) + L(gι)t(g2).

Proof Consider the operators Δ = Δ 1 ® / + / ® Δ 2 and F = Fx® I +
I ® F2, which we will abbreviate by Δχ + Δ2 and F{ + F2 respectively,
acting on

(3.3)

Then

(3.4) t(gx ,g2) = i
5 = 0 J

x (_) i+ 2^^ + F2)e 1 + 2 dT.

Because the eigenvectors of A{ -f Δ2 with nonzero eigenvalue are of the
form v{ Θi; 2, where vχ is an eigenvector of A{, and υ2 is an eigenvector
of Δ2 such that at least one of v{ and v2 has a nonzero eigenvalue, it
follows that (3.4) equals

(3.5)

^ J-T Γ Ts~x Ίra{g;'γ(-)F'Fλe-τ^ Ίτa(g;ι)\-)F'e~τ^ dT
1 f°°

—— / Γ* Tr

s=oW)Jo
d

x (-f'e~TAι dT.

We have
1 ... 17 T A

(3.6)

(see, for example, [9]) and similarly for L(g{). Hence the proposition
follows, q.e.d.

Let χ generally denote the Euler character of the ^-complex of p-

equivariant R^-valued differential forms.
Proposition 4. Suppose that px is an orthogonal representation of Gγ,

and p2 is an orthogonal representation of G2. With the hypotheses of
Proposition 3,

(3.7) τPι9βι{xγ x x2) = τpμx)χpμ2) + TPi{x2)Xf>i{x{).
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Proof.

( 3 8 ) Tpι9Pl = i G π W l Σ Cχ(8M8iW8ι > 82)
1 l M 2 l

(3.9) = i ^ f j ^ ^ cx(gχ)c2(g2)(t(gx)L(g2) + L(gχ)t(g2))

(3.10) = Te

2 l g2

Given an action of a finite group C o n I , let pH denote the (virtual)
representation of G given by the difference of the G-module Heyen(X)
and the G-module H°άά(X). Because G preserves the inner product on
H*(X) induced from the de Rham isomorphism, pH is an orthogonal
(virtual) representation. We can derive for virtual representations p, tp,
by additivity.

Proposition 5. If G acts on Xχ and on X2, then for the diagonal action
of G on XχxX2,

(3.12) Tp{Xχ x X2) = T^X,) + T^PEI (X2).

Proof

(3.13) Tp = ±
1

(3.15) = p i Σ cig^iig)*! (S) + j^i Σ c(^)Li (8)t2(8)

Proposition 6. Suppose that G acts by orientation-preserving diffeomor-
phisms on X, H is a subgroup of G, p is an orthogonal representation
of H, and p is the induced representation of G. Then T~= T .

Proof Note that if the character of p is given by c{h), then the char-
acter of p is given by

(3.17) d{8) = W\
g',h:g'IHg'rl=g
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Then

(3.18)
1 1 c{h)t{8)

Now

(3.19)

(3.20)

(3.21)

Thus

(3.22)

(3.23)

(3.24)

d
ds

1

ί=0Γ(ί)

•{-)FFe-Ί

= ί(h).

= T .

vFe~TA

' Δ ' , Is*

{am*

dT

i τ

1 J

dT

ι)t(l

)

IV. Computations of T for orthogonal actions on spheres

We now compute the analytic torsion for certain group actions on a
sphere. Suppose that σ: G —• SO(2«) is a representation of a finite group
into the special orthogonal group, and consider the induced action on
S2n~ι. Let p:G —• O(N) be an orthogonal representation of G such
that Σ c(g) = 0, where c denotes the character of the representation
p, i.e., p has no trivial component. By equations (10) and (11) of Ray
[16], we have

1 1 y = l

Note that the g summation must be done first in this equation in order
to get a well-defined answer.

For future use, let us compute the analytic torsion for a cyclic subgroup
of G. Let g be a fixed element of G, and let us compute the contribution
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to T coming from the subgroup generated by g. Choose k such that

\G\ f k, and consider

i \G\ \G\

(4 2) *k - iπΣtoβi'2*1^1 - iιΣ*~2 π i > f c / | G l ΊW')
1 1 7=1 r=l

Suppose that the normal form for σ(g) has block matrices

/ cos2πι/7/|G| sin2πi/ //|σ|\1 1

\-sin2πι/ //|G| cos2πi///|G|y/ = 1

along the diagonal. If i/; is nonzero, define a(l) by

( 4 3 ) gcd(i/7,|G|)
= 1 mod

gcd(i/7,|G|)

Let us write gcd(/) hereafter for gcd(i//?

Proposition 7.

1̂1

= Σ
/=i

gcd(/)|A:

We have

7=1

\G\

r=l

\G\

(4.6)

1=1

=£log|^ / | C |-l| Σ 1.
; = i /=i

)vι=±k mod|G|

Now 7*i/7 = ±A:mod|G| has a solution if and only if gcd(/)|A:, in which
case the solutions for j are

(4-7)
\G\

-gcd(/)+ Jgcd(/)/J = 0
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This gives

n \G\
t A o\ r-» x ^ v "> 1 I 2τiijI\G\ i I

(4.8) Fir=/ / log e - 1
1=1 7=1

jvι=±k mod|G|
n gcd(/)-l

(4 9) V " V^ j 2jri(j|G|±M/))/(|ί?|gαl(/))_1|

/=1 5=0

gcd(/)|*

π gcd(/)-l

(4.10) = έ Σ iogk2π/5/gcd(/) - e^^^-w/d^i^w)!
/=1 5=0

(4.11) = Σ

gcd(/)|

(4.12) = £

V. The combinatorial torsion for finite group actions

An expression for the Reidemeister torsion for actions of finite groups
on PL G-manifolds was developed by Rothenberg [19]. To make this
paper self-contained, we will summarize a simplified version of this work
which is sufficient for our purposes. This approach is based on the work
of Milnor in [14]. The reader may wish to refer to this reference for
information on the torsion of a complex.

Let G be a finite group, and let A' be a finite regular simplicial G~
complex [2]. Let p:G -» O(N) be an orthogonal representation of G.
Consider the equivariant cochain groups

(5.1) Ck(K, p) = {ωe Ck(K)®RN:for a l l * € G, p(g)a(g~ι)mω = ω},

where a(g~1)* denotes the action of g e G on Ck{K), and the complex

(5.2) C°(K, p) -X Cι{K, p)-X...-X Cn(K, p).

In order to define the torsion of the complex [14] we must give volume

forms for the cohomology groups Hk(K, p) of the complex and for the

cochain groups Ck(K, p). As in §11, when AT is a triangulation of a



446 JOHN LOTT & MEL ROTHENBERG

smooth compact oriented ^-dimensional (7-manifbld X, the de Rham

isomorphism between KerΔ^ and Hk(K, p) gives the latter the inner

product structure induced from %*k{X) ® RN.

Let us define an inner product on Ck(K, p). If we take the λ>simplices

to form a preferred basis of Ck{K), and we use the standard inner product

on R^, we obtain an inner product on Ck(K) <g> RN. Give Ck(K, p) the

inner product that is induced as a subspace of Ck(K) <S> RN. The volume

form on Ck(K, p) is that determined by this inner product.
Proposition 8. The R-torsion τ of the complex (5.2) is invariant under

equivariant subdivision of K.
Proof As the torsion of the cochain complex is the same (up to a sign)

as that of the chain complex, it suffices to prove the proposition for the
chain complex

(5.3) Cn(K, p) ± Cn_x(K, p)-*+...Λ+ co(K, p),

where Ck(K, p) denotes the /?-equivariant elements of Ck(K)®RN. The
proof is now a straightforward adaptation of the invariance proof in §7 of
[14]. We omit the details. If L is a subcomplex of K, then the same
construction goes through for K rel L. q.e.d.

One can define a more general combinatorial torsion using the inner
product

(5.4) (ηλ, η2) = Y^w{Hσ){ηχ{σ), η2(σ))RN ,
σ

where ηχ and η2 are elements of Ck(K9 p), the sum is over fc-simplices
σ, Hσ is the isotropy group of σ, and w is a fixed positive function
from the set of conjugacy classes of subgroups of G to R. The torsion
so defined is again subdivision invariant. We consider the special case of
w = 1 hereafter in order to ensure that the product formula holds for the
combinatorial torsion. This corrects the choice of w given in [12].

VI. Computation of τ for orthogonal actions on spheres

Let us first consider the case of cyclic actions on Sι.
Proposition 9. Suppose that Zp acts on Sι by

(6.1) a{r)eiθ) = ei(θ+2nrvlP),

where 0<r <p and 0 < u < p. Let gcd denote gcd(i>, p) and consider
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the character c(r) of the two-dimensional representation of Z given by

(6.2) c(r) = 2cos(2πkr/p).

Suppose that gcd \k {in order to have a nontrivial equivariant cochain com-
plex) and that p \k (in order to have an acyclic equivariant cochain com-
plex). Let a satisfy

(6.3) α-^r = l mod-^r.
gcd gcd

Then the torsion of the cochain complex is given by

(6.4) τ(p, k) = log 11 - exp(2τπfcα//?)|.

Proof Let K be the triangulation of Sι with p vertices and p edges.
The equivariant cochain complex of K is the same as that of the free
action of %p/gcά on K with action

(6.5) a(t)(ew) = eWW/**)/<*/**»; 0 < t <p/gcd,

and character

(6.6) c(t) = 2 cos(2πt(k/ gcd)/{p/ gcd)).

However, the torsion of this complex is the same as the standard Reide-
meister torsion of Sι using a flat R2 bundle whose holonomy around Sι

is given by

cos(2πa(k/ gcd)/(/?/ gcd)) sin(2πa(k/gcd)/(p/gcd)) \
- sin(2πα(A:/ gcd)/(p/ gcd)) cos(2πa(k/ gcd)/(p/ gcd)) / '

This is easily computed to be

(6.7) log|l - J*WlpΛ)HpipA)\ = l o g | 1 _ e xp ( 2 πikα/p) |.

(We have used a normalization on τ to agree with the normalization of
§IV.) q.e.d.

We will now compute τ for a cyclic group of special orthogonal actions
on a sphere.

Proposition 10. Let σ:Zp -> SO(2n) be a special orthogonal represen-

tation of the cyclic group Έp, and consider the induced action on S2n~ι.

Suppose that the normal form of σ(l) has the block matrices

cos2πi////? /I

\ - sin 2πvιjp cos 2πvιlp

along the diagonal Consider the character c(r) of the two-dimensional
representation of Zp given by

(6.8) c(r) = 2 cos(2πkr/p), 0 < r < p,
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with p f k (in order to have an acyclic complex). Let gcd(/) denote
gcά(vι, p), and for nonzero uι, define a(l) by

(6.9) α ( / ) ~ 3 d Π 7 — Ϊ Ξ 1 m o d :

Then the torsion is given by

(6.10) τ = Σ '~ 11 -2*'*βW/Ί

Proof. The key of the proof is to consider the properties of τ under the
join operation [19]. If X and Y are G-simplicial complexes, then there is
a relative isomorphism between (X#Y, XUY) and (S(X x Y), /?0 upj).
If ^ denotes the homology sequence of the pair (X#Y 9XuY), then by
Theorem 3.2 of [14], we have that

(6.11) τ(X#Y) = τ(X) + τ(Y) + τ(X#Y, XU Y) +

(6.12) =τ(X) + τ(Y) + τ(S(XxY),p0UPι

(6.13) = τ(Z) + τ(Y) - τ(X xY) + τ(JT).

If the representation is such that H*{X#Y, p), H* (X, p), and H* (Y, />)
vanish, it follows that τ ( ^ ) = 0, and so

(6.14) τ{X#Y) = τ(X) + τ(Y) - τ(X x Y).

In our case we can construct the Zp action on S2n~ι as a repeated join

of actions on Sι. As the Lefschetz number of an orientation-preserving
action on an odd-dimensional sphere vanishes, it follows from Proposi-
tions 3 and 5'(at the end of this section) that with each join,

(6.15) τ(X#Y) = τ(X) + τ(Y).

Using the result of Proposition 9, the proposition follows, q.e.d.
We now show that T and τp coincide for all special orthogonal actions

on odd-dimensional spheres. The first step is to show that τp can be
written linearly in terms of the character c of the representation p, as in
(3.1).

Proposition 11. With the hypotheses 0/§V, τp can be written in the

form

(6.16) τ

for some function t' on G.
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Proof. Let us define the adjoint δc to the dc operator using the inner
product on C*(K9 p) defined in §V. Define the combinatorial Laplacian
Δc by

(6.17) Ae = deδc + δede.

We would like to write the torsion τ as

ψΠ] / Γ Tr(-) Fe AcdT,
s=0ι \s) JO

where the trace is over endomorphisms of C*(K, p), but this is not quite
true. The expression (6.18) would give the torsion for the complex (5.2) if
we were to use the volume form v{ on Hι(K, p) that is induced from the
inner product on C\K, p), but we instead want to use the volume form
μi on Hι(K, p) that is induced from the inner product on #"(Jf, p).
In order to correct for this, we must add a factor

(6.19) £(-l)'ln(//>.)
i

to (6.18). Let A:&9(X9 p) -> Cq(K, p) be the de Rham operator, and
let A* be its dual with respect to the mentioned inner products. Then the
correction factor can be written as

(6.20) -Ίr{-)F\n{AA*)\H.{Kpy

or, equivalently,

(6.21) -Km Tr(-)Fln(ΛΛ Λ-Ac)e~T Ac\c.{Kpy

Thus we have

5=0 J

(6.22) - lim Tr(-)F ln(AA* + Δ c)e~ΓΔ c,

where the traces are over endomorphisms of C*(K, p). Note that we
have a projection operator Πc from C*(K)<8>RN to C*(K,p) given by

(6.23) Πc = ± Σ
1 ' geG

Then we can write
1 d

(6.24)
_ _

\G\ds
5=0
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where the traces are now over endomorphisms of C*(K) <g> RN. Equiva-
lently, we can write

(6.25) τ = yc

where

' ' ^ = Ίk fffi Γτs-1τrΠFFa(g-ι)*e-TKdT
(6.26) a s *=oι v> J°

- lim Ίτ(-fa(g~1)*ln(AA*+Ac)e~TA'c,

and the traces are now over endomorphisms of C*(K).
Proposition 12. Let σ: G —• SO(2n) be a special orthogonal represen-

tation of a finite group G, and consider the induced action on S2n~ι. Let
p:G -> O(N) be an orthogonal representation of G. Then Ί' = τ .

Proof Let (g) denote the subgroup of G generated by an element g
of order p. Recall that t is a function on G such that (3.1) holds. By
Propositions 7 and 10, we have that

(6.27) ±e-2πirk"'(t-t')(gr) = 0,

whenever p \ k. That is, the discrete Fourier transform of the function
r -• (ί - t')(gr) has support at k = 0. Thus (ί - t')(gr) is independent of
r, and equals ( ί - t'){e). Therefore ( ί - t')(g) = (t- t'){e) for all g eG.
Now (t-tf)(e) is the difference between the ordinary analytic torsion and
the Reidemeister torsion for the space S2n~ι. By the result of [4], [15],
we know that this vanishes, q.e.d.

Let us note that the following analogues of Propositions 2-6 hold for

Proposition 2\ Let g(ε) be a smooth l-parameter family of G-invariant
metrics on X. Then

Propositions'. Suppose that Xχ and X2 are closed oriented manifolds.
If Gχ acts on Xχ and G2 acts on X2 such that the product action of GχxG2

on Xχ x X2 is orientation-preserving, then for gχ e G{ and g2e G2,

(3.2') t\gχ, g2) = t\gχ)L{g2) + L{gχ)t\g2).

Proposition 4'. Suppose that p{ is an orthogonal representation of Gχ

and p2 is an orthogonal representation of G2. With the hypotheses of
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Proposition 3,

' x x X2) = τpι{Xχ)χPi{X2) + τ^XJx^XJ.

Proposition 5'. If G acts on X{ and X2, then for the diagonal action
of G on Xχx X2,

(3.12') τp(X{ x X2) = τ p ^ (Xχ) +

Proposition 6'. Suppose that G acts by orientation-preserving diffeo-

morphisms on X, H is a subgroup of G, p is an orthogonal representa-

tion of H, and p is the induced representation of G. Then τp = τ~.

Note. We have shown that τ and T coincide for all special orthog-
onal group actions on odd-dimensional spheres. They definitely do not
coincide for special orthogonal actions on even-dimensional spheres. By
Proposition 1, T always vanishes in the even-dimensional case. However,
τ does not vanish even for cyclic actions. This can be seen by building a
cyclic action using joins as in Proposition 10. We will discuss the lack of
equality further in §VΠI.

VII. Equality of T and τ for odd-dimensional manifolds

We now show that T equals τ for orientation-preserving finite group
actions on odd-dimensional closed oriented manifolds by following the
method of Mϋller [15]. This consists of proving the equality for special
orthogonal actions on spheres and using cobordism methods to pass to the
general case. First let us review equivariant surgery.

Let X be as in §11 and let / be a G-Morse function (this exists by [20]).
As G is finite, / is simply an ordinary Morse function which happens to
be G-invariant, and so has a finite number of critical points. Let 38 be
an orbit of critical points of index /, and let V and W denote G-vector
bundles over 38 of dimensions n-i and / respectively. Let V{\) and
W{\) denote the unit disk bundles of V and W, and call V(l)φW(l)
a handle-bundle of index /. If c is a critical value of / , then for small
e> f~\(-oo,c-\-ε)) differs from f~ι((-oo, c-ε)) by the addition of a
finite number of handle-bundles in a way analogous to the case of ordinary
Morse theory [20].

In order to obtain a G-cobordism between X u (-X) and a disjoint
union of spheres, let us consider the space X xl and the function F: X x
I -> E given by F(x, t) = 4^(1 — t)(l + f(x)). As in [4], decomposing
X x I via the handle-bundle additions specified by F corresponds to
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building X U {-X) from Sn 's by an iterative process, each step of which
consists of removing a region of the form dV{\)®W{\) and attaching
V(\)®dW(\). The only point to check is that the group acts orthogonally
on the Sn 's in the decomposition. The Sn 's are in 1-1 correspondence
with the cricial points of F of index n+1, which are the points (1/2, x.),
where x. e X is a critical point for / of index n . The sphere Sn is given
as the component of F"ι(ί+f(χ.)-e), for ε small, which is located near
(1/2, x(). We can use the Morse lemma to write F as a quadratic form
in a neighborhood of (1/2, x.), which will be invariant under the action
of the isotropy subgroup Gx . As the Sn is a component of a level surface
of F, it follows that Gγ acts orthogonally on the sphere. By choosing
ε small enough, we can ensure that the subgroup of G which maps the
sphere to itself is simply Gγ .

xi

In the following proof, we will need a technical proposition to the effect
that the surgery can be done so that not only does the group action pre-
serve the orientation of F ( l ) θ f Γ ( l ) , but the isotropy groups preserve the
individual orientations of the connected components of V(\) and W(\).
We will show slightly more, namely,

Proposition 13. X U (-X) can be equivariantly surgered to a disjoint
union of spheres in such a way that at each surgery step, the isotropy group
of a component of V{\) θ W(\) fixes one of the factors in the product

Proof We will prove the proposition for continuous surgery; the con-
struction can be smoothed out. To fix notation, let Dk(ε) denote {v e
Rk:\υ\ < ε} and let Dk denote Dk{\). Then a solid (k + 1, n - k)
G-handle Ao is defined to be

ε

(7.1) Aε = GxH(Dk+l(ε)xDn-k),

and A is defined by

(7.2) A = GxH(DM xDn~k),

where H acts by a diagonal action on Dk+ι(ε) x Dn~k , and orthogonally
on each factor. H will be called the isotropy group of A. Define d+A by

(7.3) d+A = GxH (Sk x Dn~k).

Suppose that B is an (n + l)-dimensional G-manifold and that d^B is
an w-dimensional submanifold of dB. Given an embedding of d+A in
dB - d^B, a solid (k + 1, n - k) G-handle extension B1 of B (reld^B)
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is defined by

(7.4) B' = B\jA.
d+A

Because d^B is embedded in dB1, it makes sense to talk about a sequence
of G-handle extensions of B (vέld^B).

Suppose that Bo is an (« + l)-dimensionalsubmanifoldof B and takes
d^B0 to be d/?0Π/ί,an «-dimensionalsubmanifoldofboth dBQ and dB.
Then a Morse theory argument shows that B is given by a sequence of
G-handle extensions of Bo (τQld^B0). For example, our total surgery is
given by taking B = X x / and Bo = \JDn+ι. Giving a representation of
B as a sequence of G-handle extensions of Bo (τeld^B0) is equivalent to
giving a sequence of G-surgeries from dB to dBQ, which do not touch

Definition. A (k + 1, n - k) G-handle A is nice if the isotropy group

H acts trivially on Sk .

We wish to show that a sequence of G-handle extensions can be done
by a sequence of nice G-handle extensions. It suffices to show this for a
single G-handle extension, Bf = Bl)d AA. (See Figure 1, next page, where
we illustrate the case of n = 2, k = 1.) We will do this by induction on
\H\. For H trivial, there is nothing to show. Let us write A as

(7.5) A

Let B" be a disjoint union of B and Aχjl (Figure 2). Then B" is a nice

(0, n + 1) G-handle extension of B. Thus it suffices to show that B' is a
nice G-handle extension of B" . This will be true if for small ε, [1/2, l]x
d+A is given by a sequence of nice G-handle extensions of ([1/2, l/2+ε]U

[1 - ε, 1]) x d+A, which in turn will be true if [1/2, 1] x (Sk x Dn~k) is

given by a sequence of nice //-handle extensions of ([1/2, 1/2 + ε] U

[1 - ε, 1]) x (Sk x Dn~k). For notational simplicity, we will reparametrize

and show that C' = [-ε, 1 + ε] x (Sk x /)*"*) is given by a sequence

of nice //-handle extensions of C = ([-ε, 0] U [1, 1 + ε]) x {Sk x Dn~k)

(Figure 3).

The idea will be to do an explicit nice //-handle extension which in-

cludes the //-fixed point set and then to argue that the other extensions

can be done with isotropy groups which are proper subgroups of H. Let

Sj denote (Sk)H, the points of Sk which are fixed by //. Write Sj as

a union of two hemispheres: Sj = DJ

+ U DJ_ . Let SJ x Z)*"7 be an //-

invariant tubular neighborhood of Sj in 5 fc (Figure 4, which illustrates
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A =
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the case j = 0). Put A! to be [0, 1] x (DJ

+ x Dk~j) x Dn~k (Figure 5),

which has a natural embedding in [0, 1] x Sk x Dn~k . Then CuAf is a

nice (1, ή) //-handle extension of C, which embeds in C' (Figure 6).

As a set, d(Cu A1) can be written as a disjoint union by

d(CuAf) = ( { - β } x Sk x I ) " " * ) U ( ( - β , 0)xSkx S n ~ k ~ l )

U ({0} x (Sk - (D{ x z/" 7 )) x Dn~k

(7.6) U ((0, 1) x d{Dj

+ x z / " 7 x Dn'k))

U ({1} x (Sk - (DJ

+ x z/~7)) x Dn~k)

U ( ( l , l + ε ) x S f c x Sn~k~ι) U({l+ε}xSk x Dn~k).

In particular, ({0} x Dj_) U ((0, 1) x Sj~ι) U ({1} x Dj__) is a -sphere Γ7

which is embedded in d(C\JA') — dC and is pointwise fixed by H (Figure

7). There is a tubular neighborhood of Tj of the form Tj x Dk~J x Dn~k

in d(Cϋ A1) -dC' (Figure 8). This tubular neighborhood can be written

in the form d+A", where A" = Dj+ι x Dk~j x Dn'k is embedded in

C', with DJ+ι = [0, 1] x DJ_ (Figure 9). Thus, C u / u A" is a nice

C/+1, Λ-./) //-handle extension of C u ^ ' , which embeds in C' (Figure

10, next page).

Now

CUA'UA"

(7.7) = ([-ε , 0 ] x ^ x Dn~k) U ( [ 0 , l ] x S ; ' x Dk~j x Dn~k)

U([l, l+e]xSk xDn~k).

Thus,

(7.8) C'-(CUA'UA") = (0, l)x(Sk-(SjxDk~J))xDn~k (Figure 11)

is uniformly bounded away from the fixed point set

(7.9) (C'f = [-e, 1 + ε] x Sj x (Dn~kf (Figure 12).

That is, there exists a δ > 0 such that for all x e C' - (C U Af U A") and
all h e H, d(x, hx) > δ. Consider constructing C' from C u / u Λ "
by a sequence of //-handle extensions. Because the handles can be chosen
to be arbitrarily small, it follows that we can choose them small enough
that the isotropy group of a handle is a proper subgroup of H. Then, by
induction, C' can be constructed from CΌA! UA" by a sequence of nice
//-handle extensions, q.e.d.
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In order to show that T equals τ in the case of a free action, the
method used by Mϋller was to first show that for two representations pχ

and p2, one has that

This reduces the problem to the case of trivial p, which is then handled by
surgery methods. In our case, this first step is problematic. The difference
of the zeta functions corresponding to pχ and p2 is not a priori finite, as in
the case of free actions. This is because any element of G can have a fixed
point in its action on X, unlike the case of a free action. Thus we will skip
the step of reducing to a trivial p and instead do surgery directly for any
p. The reduction to a trivial representation is used in [15] because there
one was effectively dealing with a free action on a possibly noncompact
space, with compact quotient. Here we only consider actions on compact
spaces.

The second step of [15] is to form a combinatorial torsion τc, defined
using a triangulation. One then shows that under surgery, as the triangula-
tion becomes infinitely fine, τ-τc jumps by the same amount as T - τc.
This reduces the problem to a computation on spheres.

More specifically, define an inner product on C*(K, p) by (a, a) =
fx Wa Λ Wa , there W is the Whitney operator. Define δc to be the
adjoint of dc, and put

(7.11) Ac = δcdc + dcδc.

Definition.

(7.12)
c d

τ =dl \S)
where the prime denotes the omission of zero eigenvalues.

In order to describe the surgery operation, we use the notation of §10
of [15], but with everything generalized to the G-equivariant setting. The
reader may wish to refer to that paper for details. For completeness, we
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will recall the basic setup. X is a closed ^-dimensional (7-manifold,

and Wx, W2, and W3 are /2-dimensional G-submanifolds such that X =

WXUW2, W3 = Wχ Π W2. Furthermore, W2 is (j-diffeomorphic to a <?-

bundle of the form d V(\) Θ W(l), which is topologically a disjoint union

of 5^ x Dq+ι 's, and Ŵ  is topologically a disjoint union of Sp x Sq x

/'s, where / = [-1, 1], Thus W2 is a G-handle, and W3 is a tubular

neighborhood of d W2. X' is obtained surgically from X by gluing to

^ = Wχ a ίz-handle H^ which is a disjoint union of Z/ + 1 x S* 's.

W3 = Wj' Π W^ is a tubular neighborhood of d W'2 , and is again a disjoint

union of Sp x Sg x I's. Thus X' is obtained from X by removing a

(/-handle W2 and gluing in a (7-handle ^ . Let Mx and M2 denote the

doubles of W2 and W^, so that M is a disjoint union of 5 P x Sq*1 %

and M 2 is a disjoint union of Sp+ι x Sq 's.

First, let us show that the de Rham map

(7.13) A:Aq{X) 0 1 ^ Cq{K)

and the Whitney map

(7.14) W\ Cq{K) Θ RN ->

can be restricted to maps between Aq(X, p) and C^(^, /?).

Proposition 14. a(g~1)* commutes with A and W.

Proof. Recall that for all / € Aq(X) ® RN, ^ / = X)(/σ / ) σ , where
the sum runs over #-simplices α of I , and σ is also considered as an
element of Cq{K). Then

(7.15) = ^

For the Whitney map, let us recall that for a ^-simplex σ = [p. , p ,

p, ] of Λ:, W is defined by

where /î  is the barycentric coordinate corresponding to the vertex

For an element c = X) σ ® ί;σ of C* (A") ® R^, we define

(7.17) ίFc = Σ W{σ) ®vσe /\{X) Θ R*.
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Then

(7.18)

(7.19) a(

Thus, it suffices to show that

However, the simplex a(g)σ is simply [a(g)p, , , a(g)p. ], and the
0 q

barycentric coordinate for the vertex a(g)pi is a(g~ι)*μi , from which

the lemma follows, q.e.d.
One can now check that each equation and estimate of § 1-5 of [15] goes

through to our situation provided that one makes the following replace-
ments:

1. Every Cq(K, Lp) or Cq(K) of [15] is replaced by Cq(K, p).

2. Every Aq{X, Lp) or Aq{X) of [15] is replaced by Aq{X9 p).

3. Every trace over Cq or Λ^ of [15] is replaced by a trace over

Cq(K,p) or Aq(X,p).

Note. If we had the special case of a free action of G on I , then
the space "X" considered in [15] would be the space X/G of the present
paper. However, all of the estimates for "X" also work for X.

As the last tool of machinery to prove the equality of τ and T, we
need the equivariant generalization of the parametrices of [15]. Let {Ua}
be a (/-covering of X by open sets with smooth boundary, i.e., for each
a and each g e G, gUa is also an open set in the covering. Let {φa} be
a partition of unity subordinate to {Ua} such that for each a and each
g e G, a(g~ι)*φa is also in the set of partition functions. Let {Ψα}
be an equivariant set of functions satisfying φa

xίβ

a = φa . Let Δ^ be the
Laplacian acting on R^ valued #-forms on Ua with absolute boundary
conditions. Let Hq be the projection over KerΔ^ , and put

Finally, define the analytic parametrix to be

(7-22) ^ ω

a parametrix on Aq(x) <g> RN .
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For the combinatorial parametrix, let K be a smooth G-triangulation
of X, and let {Ua} be a G-covering of X such that for each α, K
induces a smooth triangulation (Ka, La) of (Ua, dUa). Let Wα be the
Whitney map with respect to Ka , let Aq

a{c) be the combinatorial Laplacian

on Cq(Ka) ®RN, let Hq

a{c) be the projection onto the kernel of Δ* ( c ), put

(7-23) »l(c)=K(c) + K(cy

and define the combinatorial parametrix to be

(7.24) <*)<*)

acting on Aq(X)®ΈΓ .
One can now check that every equation and estimate of §8 of [15] goes

through provided that the replacements (*) are made.
As said above, we will not need the first comparison theorem of [15],

which involves the difference of torsions for two different representations.
We will show that under surgery (and as the size of the mesh goes to zero)

(7.25) Tγ - Ty, - \τM + \τM
Δ 1 L 2

equals

/*7 ^r\ C C 1 C 1 C

( 7 26) *χ ~ *χ> ~ 2τM, + 2 T ^ '

and that this in turn equals

(7-27) ϊx-V-J^ + J^

As the Riemannian metric on X varies, we know how T varies from
Proposition 2. The only way that τp varies is through the volume forms
on the cohomology groups H*(K, p). This variation is given in Proposi-
tion 2', and one has that τ varies in the same way as T . Thus Tp - τ
is independent of the G-invariant Riemannian metric on X. Choose
Riemannian metrics on X and X1 so that Wχ c X and W[ c X1 are
isometric, and W3 and W^ are isometric to a disjoint union of standard
Sp x Sq x I's. Using an open covering adapted to the handle-bundle ad-
dition as in [15], we have

(7.28)

(7.29)
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The analogue of 8.44 of [15] is that ζc

q(s) - TτEc

q(s) converges uniformly
on compact subsets of C to ζ (s) — TτE (s) as the mesh size goes to zero.
It follows that

(7.30) £ - £ , - i τ ^ + iτS,a

converges to

as the mesh size goes to zero.
By the Mayer-Vietoris sequence for the decomposition of X as Wχ U

W2 , it follows as in [15] that

(7.32)

converges to

(7.33)

as the mesh size
We now have

goes to
that

τx~

zero.

τχ,

τχ,

--τc

1

1 c
1 + 2 T j l / 2

1

(7.34) (T -τ)(X) -(T- τ')(X') = I(Γ - τ)(M{) - ±(Γ - τ)(M2).

In order to show that T - τ is invariant under a nice surgery, it suffices
to show that it vanishes for a standard G-action on a disjoint union of
odd-dimensional Sp x Sq 's. Finally, to show that (T - τ)(X) vanishes,
by the handle-body decomposition it suffices to show that T-τ vanishes
for a standard G-action on a disjoint union of odd-dimensional spheres.
Both of these will follow from

Proposition 15. Suppose that G acts on X = \J^LX Pr where each Pt

is a product Sp x Sq of odd dimension. Let Hi denote the subgroup which
maps Pi to itself. Suppose that for each element h of Hi the action of h
on Sp x Sq is given by a product of special orthogonal group actions. Then
for all representations p:G -> O(N), Tp{X) = τp(X).

Proof. Let p{ denote p restricted to Hi. Because the heat kernel
vanishes between P.- and P. when / φ j , we have Tp(X) = Σi τ

p.{
Pi) >

and similarly for τp . Without loss of generality, suppose that p is odd and
q is even. For any h e Hn we have that the Lefschetz number of h acting
on Sp vanishes. Then it follows from Proposition 3 and Proposition 5
that
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and similarly for τp . Thus it suffices to check the equality of T and τ
for special orthogonal actions on odd-dimensional spheres. This was done
in Proposition 12. q.e.d.

We have now proved
Proposition 16. Suppose that a finite group G acts by orientation-

preserving diffeomorphisms on an odd-dimensional closed oriented mani-
fold X. Then for any orthogonal representation p of G, T = τ .

VIII. Nonequality of T and τ for even-dimensional manifolds

By Proposition 1, if X is even-dimensional, then T = 0. On the
other hand, the calculations of §VI show that even for special orthogonal
actions on spheres, τ is generally nonzero. For example, if Sp is an even-
dimensional sphere, Sq is an odd-dimensional sphere, and p is an acyclic
representation, then from (6.13) we have

(8.1) τp(Sp#Sq) = τp(Sp) + τp(Sq) - τp(Sp x S9).

Because the Lefschetz number of a special orthogonal action on Sp is two,
and vanishes for a special orthogonal action on Sg , it follows that

τp(Sp#Sq) = τp(Sp) + τp(Sq) - (2τp(Sq) + 0τp(Sp))
( ' -t,(S )-τ,(ί >.

The action on Sq and the representation p can clearly be chosen in order

to make τ(Sp#Sq) nonzero.

One can understand the nonequality in the following way. The proof of

Proposition 1 involves using the Hodge duality operator. The analogous

method in the combinatorial case would involve comparing the torsion of

a G-simplicial complex with that of its dual cell complex.

One can define the combinatorial torsion for a G-cell complex, but the

problem is that given a triangularization K of X, if the group action

is such that the isotropy groups are not all the same, then the dual cell

complex K* will not be a (7-cell complex. One can see this in the following

way: Suppose that σ(α) and σ^ are an α-simplex and a ^-simplex in

K, with σ{a) c σ{b), and that a < b. Suppose that σ{a) and σ{b) have

isotropy groups H{ and H2 with H{ Φ H2. Now cr(c) is also a vertex

in the dual triangularization Έ of K, and it lies in the interior of the

dual cell σ^ . However, the simplex s of Έ consisting of the chain

[σ ( α ), σ{b)] meets σ(α) in Έ and has an isotropy group different from
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that of σ ( α ). This is impossible if the dual cell complex is to form a G-
cell complex [2]. Thus K* can only be a (7-cell complex if all of the
isotropy subgroups of G are equal.

Recall that if H*(K, p) is nonvanishing, then we define the combina-
torial torsion τ using the harmonic forms to give the volume forms on
{Hk(K, p)}. We will first show that in the even-dimensional case, τ is
actually independent of the Riemannian metric used in the definition, even
if H*(K, p) is nonvanishing.

Proposition 17. Let X be an n-dimensional closed oriented smooth
manifold, with n even, on which the finite group G acts by orientation-
preserving diffeomorphisms. Let K be a G-triangulation of X. Let />:<?-•
O(N) be an orthogonal representation of G. Then the combinatorial tor-
sion τp is independent of the Riemannian metric g used to define the
volume forms on the cohomology groups {H*(K, p)}.

Proof Let g(ε) be a smooth 1-parameter family of (/-invariant met-
rics on X. From Proposition 2', we have

*~\

where the notation is that of §11. Because n is even, we have that

(8.4) *H / Γ *" 1 = (-!)"{-)* = (-)F

Also,

Then

* *

(8.9) = T r L Λ Π * ( - ) * _ * *

(8.10) = T r L Λ Π(-) r ί ^ - * ) * " 1

(8.11) = 0 . q.e.d.

Following the method of proof of Proposition 16, we can now give an
equation for τp in the even-dimensional case in terms of an equivariant
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surgical decomposition of X U (-X), as, for example, one obtains from a
G-invariant Morse function on X.

Proposition 18. Let X be an n-dimensional closed oriented smooth
manifold, with n even, on which the finite group G acts by orientation-
preserving diffeomorphisms. Let p:G -> O(N) be an orthogonal represen-
tation of G. Let f be a G-invariant Morse function on X. For each
integer i satisfying 0 < i < n, let {xt .} denote the critical points of f
with index i. Using the notation of § VII, suppose that the action of G
preserves the orientations on V(\) and W(\). Then

(8.12) . '°dd

ieven j

where p{ denotes the restriction of the representation p to the isotropy
group of the point xt •. (Note that the torsion of a product can be computed

by Proposition 5'.)
Proof By §VΠ, we have in general that under surgery

(8.13) (τχ, - Tχ.) = (τx - Tχ) - \{τMχ -TM) + \{τMi - T^).

As all of these spaces are even-dimensional, T vanishes and so

- - -

If we now consider building X U (-X) by surgery from a disjoint union
of spheres, then initially one has the following torsion of the spheres:

Upon doing surgery on an orbit of critical points with index i, one has

that Mχ is a disjoint union of S"~'~ι x S'+ι 's and that M2 is a disjoint

union of Sn~' x 5' 's. Thus

-5ΣΣv
(8.16) 2 j Pn ' 2 i j '•'
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As the Lefschetz number vanishes for an orientation-preserving action on
a closed oriented odd-dimensional manifold, Proposition 3' implies that
the sum in the second term is effectively over / odd. Similarly, the sum
in the third term is effectively over i even. Hence the proposition fol-
lows.

Proposition 19. Let \0\ denote the orders of the elements of G.

(i) Let Jt denote the multiplicative subgroup of Q({exp(2πif#j)}) gen-
j

erated by the exponentials of the torsions for the actions of Z# on S and

Sι. With the hypotheses of Proposition 18, exp(2|G|τ) is the absolute value
of an element of Jt.

(ii) Suppose that G is the cyclic group %p . Let Jt1 be the multiplicative
subgroup of Q(exp(2π///?)) generated by {I - exp(2πik/p): 0 < k < p}.
With the hypotheses of Proposition 18, ifH*(X, p) vanishes, then exp(2τ )
is the absolute value of an element of Jt.

Proof (i) By a theorem of Artin, if c denotes the character of the rep-
resentation p, we have that \G\c is an integer sum of characters of repre-
sentations induced from cyclic subgroups of G [11]. From the results of
Propositions 18 and 5', the fact that the Lefschetz number of a special or-
thogonal action on an even dimensional sphere is 2, and the fact that τp is
linear in the character of p, it suffices to prove that for a cyclic Zp special
orthogonal action on a sphere, the exponential of the torsion is the absolute
value of an element of Jt. As in Proposition 10, we can write the action
as a join of actions on Sι and S°. (6.13) now applies. Unlike in the
proof of Proposition 10, we must take some care in considering the pos-
sible occurrence of nontrivial real cohomology groups. The same volume
forms for the cohomology groups H*{X#Y, p), H*(X,p), H*(Y,p),
a n d H * ( X # Y , X u Y , p ) * H * ( S ( X χ Y ) , p 0 U p x , p ) * H * ~ \ x x Ϋ , p )
are used to define the torsions τp(X#Y), τp(X), τ (Y), and τp(X x Y),
and the torsion τ ( ^ ) of the cohomology exact sequence. Let us pick Rie-
mannian metrics on X#Y, X, Y, and 1 x 7 so that under the de Rham
isomorphism, the generators of the integer cohomology of these spaces give
an orthonormal basis for the real cohomology; because all of these spaces
are spheres or products of spheres, this can be done. By Proposition 17,
the result for τp(X#Y) can be computed using these metrics without loss
of generality. It follows from (1.4) of [4] that τ(Jf) = 0.

(ii) Using the arguments of the proof of (i), it suffices to show that a Zp

action on S 1 or S with a nontrivial representation, τ is the absolute

value of an element of Jί1. This follows from Proposition 9. q.e.d.
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As the result of Proposition 18 is purely topological, one would expect
that there is also a proof which does not involve the analysis of §VI. We
now give such a proof.

Proof of Proposition 18 (#2). Let us start with a general framework for
defining torsion. Let

(8.17) ^C.^Co^C^...

be a complex of real finite-dimensional vector spaces, each with a preferred
basis. Suppose that there exists a positive integer k such that if \n\ > k,
then Cn = 0. We also assume that there is a preferred basis for {Hn(C)}.

The isomorphism classes of such complexes form an abelian monoid
under direct sum. We will turn this into an abelian group in the usual
way, which we refer to as J / .

There are four basic operations on sf:H, - , 5 , and *, which are
defined as follows:

(H(C))n = Hn(C)9 with the zero boundary map, and the
' ' ' given preferred basis for Hn(C),

{-C)n = Cn, with the boundary map -d and the
^ ' same preferred bases for Cn and Hn(C),

(R ?m ( S'(C7))Λ = Cn_ι, with the induced boundary map and
" preferred bases, and

(*C)Π = Hom(C_n, R), with boundary map being the
dual of d , and the dual bases

( 8 ' 2 1 ) for Hom(C_n, R) and H{*C)n

= Hom(fLπ(C),R).

These operations satisfy the relations

- 2 = *2 = Identity, H2 = H, -H = H-, -S = S-,

- * = * - , HS = SH, H* = *H, 5* = *(5 ).

Let 38 denote the algebra of operators on si generated by the operations.
The torsion [14] of a complex gives a homomorphism ZΓ\ J / -> R (we

are using the logarithmic form of the torsion). We have that

( 8 ' 2 3 )

If we define a homomorphism λ\3S ̂  End(R) by putting

(8.24) λ(H) = 0, λ(-) = 1, λ(*) = λ(S) = -1,

then & is a Λ-homomorphism.
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Given a chain map / : C -• C, let us define a new complex C(f) by
putting

(8.25) C(f)n = Cn®Cn_l9

with boundary operator

(8.26) d(c,c) = (dc,f(c)-dc).

There are preferred bases for {C(f)n} , although there are no preferrred
bases for H^(C(f)). We have an exact sequence

(8.27) 0 -> -S(C) -> C(/) ^ C ̂  0

and the connecting map in the corresponding homology exact sequence is
Hm(f). Thus H^f) is an isomorphism if and only if the complex C(f)
is acyclic, in which case C{f) e srf .

Let us assume hereafter that H^(f) is an isomorphism. From Theorem
3.2 of [14], we have

(8.28) ^(C(/)) = F{C) - 9-{C) + &-{*),

where X is the homology sequence arising from the exact sequence (8.27).
Note that because the preferred basis of C(f) only depends on those of C
and C, the dependences of ^ ( C ) , &~(C), and &~(J?) on the preferred
bases of H^(C) and H^(C) cancel out on the right-hand side of (8.28).

Definition. A homology embedding is a chain map j : H(C) -» C such
that

(8.29) H,U):Ht(H(C)) (= H.(Q) - HΦ(C)

is the identity map.
For a homology embedding, we have

(8.30) &~(C(j)) = Γ(H(C)) - y(C) + T{X\

As the connecting map in & is the identity map on HΦ(C), y ( ^ ) = 0.
We know that ^{H{C)) = 0, and so F(C{j)) = - ^ ( C ) . _

Definition. Given C, C βJ& and a chain map f:C -+ C which is a
homology isomorphism, define <T(f) to be &*{C{f)).

Given / , there are induced chain maps

H(C), -f: -C -^ - C ,
(8 31)

5(/) 5(C) 5 ( C ) * / : *C -> *C.
These have torsions
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Furthermore, if / : C -* C and g:C —• C are homology isomorphisms,

Now let us consider the case where we have a Poincare duality map.
Definition. A fc-dimensional Poincare duality map is a chain map

P:C —• Sk(*C) which induces a homology isomorphism HP:H(C) —•
Sk(*H(C)). Note that P need not be an isomorphism of based chain
complexes.

Let j:H(C) -> C be a homology embedding. Then we can define a
homology embedding

(8.33)

by requiring that the diagram

H(C) -££-> Sk{*H(C))

(8.34) , | | r

C - ^ - > S*(*C)

commute. It follows that

(8.35)

Also

(8.36)

and

(8.37)

Thus,

(8.38)

If k is odd, then we conclude that ^(P) = 0. On the other hand, if k
is even, then

Let us apply these equations to the setup of §IV, where C is the complex
of p-twisted (absolute or relative) cochains of a simplicial complex K.
Suppose that K is the triangulation of a closed oriented manifold X of
dimensional k with a (/-action, and that K = Kχ u K2, where Kχ and
K2 are of codimension zero, and with boundary. Suppose that Kχ n K2 =
5x7,where B = dK{ =dK2. If we put W. = K-K.9ihen W{nW2 = 0,
and there are excision maps (X, W)) — (-JΓf ,
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We have a commutative diagram

0 — C(BxI) — C(KX)ΘC(K2) — C(K) — 0
J P 3 ],/»! ®P2 lP4

0 — Sk(*C(BxI,d)) — 5Λ(*C(Λ:1,d))θ5Λ(*C(A:2,d)) — 5*(*C(J«:)) — 0,

where the horizontal lines are exact. It follows that

We also have a commutative diagram

0 -+ C(B) -> C(BxI) ->

(8.41) } Λ
0 -> 5/c"1(*C(5)) -+ Sk(*C(BxI,d)) -+ 0

which gives that ^(P3) = ̂ "(i^). Thus

(8.42)

If k (= dim^) is odd, then &~(P4) = 0 and so

(8.43) &'(Pι)+&'(P2)=&*(Ps).

On the other hand, if k is even, then ^(P5) = 0 and

(8.44) y ( P j ) + y (P 2 ) = y (P 4 ) .

Let us now restrict to the case of k even. In order to do a surgery
operation, let us consider the case where K2 is a G-invariant disjoint

union of Sm x Dm 's, and another pair of simplicial complexes is given
by putting K2 = \JDm x Sm>, Kf = K{uKf

2. Let us also put K" to be
the double of K2 and K1" to be the double of K2 , with duality maps P4

;

and P™. Then

(8.45)

(8.46)

(8.47)

(8.48)

Thus,

(8.49)

It follows that

(8.50)
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Once we have this formula for how ίΓ changes under surgery, the rest of
the proof of Proposition 18 follows as before, q.e.d.

Using (8.44) for the behavior of τ under unions, we can also give an
inductive procedure to calculate τ in terms of fixed point sets, and the
behavior of the group action in neighborhoods of these sets.

Proposition 20, Assume the hypotheses of Proposition 18. Let H be a
maximal isotropy subgroup of G. Let F denote \Jg Fix(gHg~ι), which is
the union of the fixed point sets of the conjugates of H, n(i) the dimension
of a component Fi of F, N a G-invariant normal neighborhood of F,
D(N) the double of N, and D(X\N) the double of the complement of N.
Then over Ft, D(N) is an Sn~n{ι) bundle. Let ρt denote the restriction
of the representation p to Isotr(/^.). Then

(8.51) τp(X) = ΣχiFJτ^S"-"^) + \τp(D(X\N)).
i

Proof From (8.44), we have that

(8.52) τp(X) = \τp{D{N)) + ±τp(D(X\N)).

We will compute τp(D(N)) using Proposition 18. It suffices to do this
separately for each component of F, and so we may assume that F is
connected. Let f2 be a function on D(N) whose restriction to any fiber
is the standard height function on the sphere, with critical points at where
the sphere intersects the two copies of F that lie in D(N). (Because G
acts orthogonally on the fibers of N, f2 can be defined globally on D(N).)
Let / 3 be a Morse function on F, let π denote the projection of D(N)
to F, and set fx to be f2 + π * / 3 . Then fχ is a Morse function on D(iV),
and to each critical point of f3 of index i, there corresponds two critical
points of fx, with indices i and iΛ n-n'.

First, let us consider the case that n is even. From Proposition 18, we
have
(8.53)

τp(D(N))

zodd j

i even j

where the sum on i is from 0 to n . (Recall that τ denotes the torsion

for the action of the isotropy group Hi of x y.) As H{ . fixes the
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component of F containing x. . and the torsion vanishes for a trivial

action in even dimensions, the product formula gives

(8.54) τp(D(N)) = - ±
/odd

/even j

By (8.2), each torsion in the above equation is the same as the torsion of

the //-action on Sn~n'. Thus,

(8.55) τp(D(N)) = - £ £ V^""') + £ Σ V < Γ ' )
/odd 7 /even 7

(8.56) V

Now let us suppose that «' is odd. Then by the same arguments,

(8.57)

X./ v./
/odd 7

/oΛ-/ r»/\ / riH — ί— 1

x 5 ) τ ( 54 . V Λ
i even 7

(8.58) = - 5 Σ Σ X . / 5 " " ' " 1 ) " τΛ,/5""n'+')]

/odd 7

/even 7

which equals, in consequence of (8.2),

( 8 5 9 ) - 5 Σ Σtv(5"
/ odd 7

2 *
i even j

(8.60) = 0.

Because χ(F) = 0 in this case, the proposition is still true.

IX. Orientation-reversing actions, manifolds with boundary

Suppose that G is a finite group that acts on a smooth oriented closed
manifold X and that some of the group elements reverse the orientation.
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Instead of trying to compare τp and T directly, we will instead compare
the functions t and t' on G. We have already seen that if a group ele-
ment G preserves orientation, then t(g) = t'(g) for odd-dimensional X,
while t{g) can differ from t\g) for even-dimensional X. The following
propositions give what happens if g reverses orientation.

Proposition 21. Suppose that the action of a group element g reverses
orientation. If X is even-dimensional then t(g) = t'{g).

Proof Consider the action of Z2 = {1, r} on Sι, where r(eιθ) =
e~ιθ . Then (g, r) e G x Z2 acts on the odd-dimensional manifold X x Sι

in an orientation-preserving way. It is straightforward to see that product
equation (3.2) for t(g, r) continues to hold, along with the equation (3.2')
for t\g, r). We know that t(g, r) equals t\g, r), and so

(9.1) O=(t-t')(g)L(r) + L(g)(t-tf)(r).

However, L(g) is zero and L{r) = 2. Thus t(g) = t'(g).
Proposition 22. Suppose Z2 = { l , r } acts on an even-dimensional

manifold in such a way that r reverses orientation. Then for any orthogonal
representation p of Z 2 , T' = τ .

Proof From Proposition 21, t(r) = t'(r). From the Cheeger-Mϋller
equality of the standard analytic torsion with the Reidemeister torsion, it
follows that ί( l ) = ί '( l ) . Thus Tp equals τp. q.e.d.

Let us note that in [6] the equality of Tp and τ was verified compu-

tationally for certain Z2 actions on Riemann surfaces.

Proposition 23. Suppose that the action of a group element g reverses
orientation. If X is odd-dimensional, then t(g) = 0.

Proof The proof is the same as that of Proposition 1. The only
difference is that now a(g~1)* anticommutes with the Hodge duality
operator *.

Proposition 24. There exist finite group actions on odd-dimensional
closed orientable manifolds with elements g that reverse orientation and
satisfy t{g) φ t\g).

Proof Using the join operation, one can construct cyclic group actions
on spheres with elements g satisfying t'{g) Φ 0. q.e.d.

Let us apply the above results on orientation-reversing actions to discuss
the torsion of a manifold with boundary. (See [13] for similar results.)
Let X be an oriented compact smooth manifold with boundary, with a
Riemannian metric which is isometrically a product near the boundary.
Let DX denote the double of X, equipped with a Riemannian metric
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for which the involution R acts by an isometry. Suppose that a finite
group G acts on X by orientation-preserving diffeomorphisms. Then
there is an induced action of G x Z2 on DX. Let tx{g) denote the
analytic torsion of the group element g, defined using differential forms
on X satisfying absolute boundary conditions [9]. Let tχ dX{g) denote
the analytic torsion of the group element g, defined using differential
forms on X satisfying relative boundary conditions [15]. Define Tp(X)
and Tp(X,dX) similarly.

Proposition 25. Suppose p:G -> O(N) is a representation such that
the twisted cochains are acyclic on X, (X, d X), and dX. If X is even-
dimensional then Tp(X) = -Tp(X, dX) = Tp(dX)/2.

Proof. Note that in the equation defining the analytic torsion of DX,
we can separate the differential forms into those which are even under the
involution R and those which are odd under R. This gives

(9.2) tDX(g, l) = tχ(g) + tXdχ(g),

(9.3) tDχ(S,R) = tχ{g)-tχdχ{g).

From Proposition 1, we have that tDX(g, 1) vanishes, and so

(9.4) tχ,eχ(8) = -tχ(8)

(This can also be seen from Hodge duality.) The analogues of (9.2) and
(9.3) for τ are [13]

(9.5) t'DX(g, l) = t'x(g) + t'XidX(g) + cχdX(g),

(9.6) t'DX(g, R) = t'x{g) - t'XidX{g) + cχdX(g)

for some constant c, whose exact value will not be important for us. From
Proposition 21, it follows that

(9.7) tDX{g9R) = t'DX{g9R).

Thus,

(9.8) 2tχ(g) = t'x{g) - t'XdX{g) + cχdX{g),

and so

(9.9) 2Tp(X) = τp(X)-τp(X,dX).

From the equation for the torsion of an exact sequence of chain complexes
[14], we have

(9.10)
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and so

(9.11) 2Tp(X) = τp(dX).

By Proposition 16, τ AdX) = TΛβX), which proves the proposition.

Proposition 26. Suppose p:G -> O(N) is a representation such that

the twisted cochains are acyclic on X, (X9dX), and dX. If X is odd-

dimensional, then

Tp(X) = τp(X) - τp(dX)/2 = Tp(X, dX) = τp(X, dX) + τp(dX)/2.

Proof. Since now tDX(g, i?) vanishes, we have

(9.12) <x,w(S) = '*(*)•

From Proposition 16, it follows that

(9.13) tDX{g,l) = t'DX(g,l).

Then (9.2), (9.5), (9.12), and (9.13) give

(9.14) 2tχ(g) = t'x(g) + t'x 9X{g) + cχdX(g),

and so

(9.15) 2Tp(X) = τp(X) + τp(X,dX).

Using (9.10) we obtain

(9.16) 2Tp(X) = 2τp(X)-τp(dX)

and

(9.17) 2Tp(X, dX) = 2Tp(X) = 2τp(X, dX) + τp(dX).

X. Analytic torsion of infinite group actions

If one has a compact Lie group acting on a closed oriented manifold X,
one may try to define an analytic torsion as in §11. That is, if p: G —> O(N)
is an orthogonal representation of G, then let

denote the projection onto /^-invariant R^-valued differential forms, and
put

(10.2) T=-A
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The problem is that it is easy to see that even when p gives an acyclic
complex of equivariant differential forms, the torsion T may depend on
the G-invariant Riemannian metric used in its definition.

Example. Consider the metric on Sι with total length 2πi?,the (7(1)
action on Sι given by a(ew)(eiφ) = ei{θ+φ), and the character c{eiθ) =
2cos(/:0), k Φ 0. Then the Laplacian acting on equivariant 1-forms has
only k2/R2 as an eigenvalue (with multiplicity two), and so T will have
a term proportionate to In R.

In terms of the proof of invariance for finite group actions, which was
used in Proposition 2, what goes wrong is that for the map Φ:G x X ^
GxX given by Φ(g, x) = (g, gx) we need to have a fixed point set which
is a smooth submanifold of G x X of even codimension. In general, the
fixed point set of Φ will have singularities [3].

In order to define an invariant for the case of infinite group actions, let
us forget any smooth or continuous structure that G may have, and simply
consider the case of a discrete group G acting by smooth orientation-
preserving diffeomorphisms on X such that closure of G in ΌiS{X) is
compact, i.e., there are metrics on X so that G acts by isometries. We
can define a function on G by

(10.3) t(g) = ±

where Δ' acts on Λ*(ΛΓ). Under a change of the (/-invariant metric, the
proof of Proposition 2 shows that

F (JU) *-' a(g-ι)\(10.4) ±g{t) = -Tr|KerΔ(-)F (JU) *-' a(g-ι)\

Let / be a complex function on G, which is zero on all but a finite
number of group elements, and consider

(10.5) Cf = Σf(g)t(g).
g

Then

(10.6) £c, = -Tr|K e r Δ(-) f (*

Now a(g~1)* commutes with the de Rham isomorphism from KerΔ to

H*(X), and so Σ<τf(g)a(g~1)* is z e r o o n KerΔ if and only if it is

zero on H*(X). Thus for all / such that Σgf(g)a(g~1)* vanishes on

H*(X), Cj- is metric independent.
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In other words, we have constructed a smooth invariant / which lies in
the dual space to

(10.7) F{G) = {feCG: /has finite support and

g

I is defined by

(10.8) </,
8

If G happens to be a connected Lie group acting smoothly on X, then for

all g e G, a{g~1)* is the identity on H*(X) and so ^{G) = {f e CG:f

has finite support and Σg f(g) = 0} . We can identify y ( σ ) as

(10.9) &-{Gr *{heCG:h(e) = 0}

via the pairing (*,/) = Σgh(g)f(g).
We have the following analogues of the propositions of §§II and III:
Proposition 27. If X has even dimension, then Cf = 0.

Proposition 28. Suppose that Gχ acts on X{ by orientation-preserving
isometries and that G2 acts on X2 by orientation-preserving isometries.
Then for fχ £^(GX) and f2e^(G2),

(10.10)

where

(10.11)

and L(g) denotes the Lefschetz number of the g-action.
Proposition 29. Suppose that Gx c G2 and that G2 acts on X by

orientation-preserving isometries. Let i be the inclusion of &{GX) into
&{G2). Then for all f e ^(G{), tf = ti{f).

Proposition 30. Given γ e ^(G), define f{g) = f{γgγ~ι). Then
tf,=tf.

XI. Computations of /

We will need:
Proposition 31. For a e [0, 1), put L(a,s) =

Then
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(11.1) (i) L ( α , 0 ) = - l ,

(11.2) (ii)

d Γ -21n2π ifa = 0,

ds s=0 ' \ - (21n2π + 2γ + Ψ(α) + ^(1 -α)) ifaφO

where γ is the Euler-Mascheroni constant, and ψ(a) = Γ/(α)/Γ(α).
Proo/ For a = 0, L(0, s) = 2ζ{2s) and so

(11.3) L(0,0) = - l , ir-
d S 5=0

For a Φ 0 , put

(11.4) Φ ( α f α , j ) = ^ - 2 π / Λ α

Then

(11.5) L(a,s) = e2πiaΦ(a, 1, 2s) + £>2 π ( 1~α )Φ(l - a, 1, 2^).

By the well-known Lerch relation,

(11.6) Φ(α, 1 , 1 - 5 )

= Γ(s)(2π)-s[eπi{s/2-2a)ζ(s, a) + eπi{-s/2-2a)ζ(s, 1 - a)].

(The statement of this is essentially exercise 8 on p. 280 of [21]. However,
as a < 1 in the exercise, it does not cover the range of variables that we
need. One can prove the needed identity directly by forming the contour
integral as in 13.15 of [21] and adding the residues of the poles.)

Thus,

(11.7) L(a,s) = (2π)25"1Γ(l - 2s)i[e'πisζ{l -2s, a)

-e'πisζ(l-2s, l-a) + e~πisζ(l-2s, 1-α)

-e*/ JC(l-2j,α)]

(11.8) =2(2π)2s~lΓ(l-2s)(sinπs)[ζ(l-2s, a)

Because

(11.9) ζ(z, v) = (z - If1 - ψ(v) + o(z - I), [7]

and

(11.10) Γ(z) = l - y ( z - l ) + o(z- I) 2,
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we have that

(11.11) L(a,s) = -1- (21n2π + 2γ + ψ{a) + ψ{\ - a))s + O(s2).

Example 1. Z acts on 5 1 . For n e Z , suppose that the action of n
on Sι is given by

(11.12) a(n)(eW) = e

i{θ+2πna), 0 < a < 1.

Using the standard metric on Sι, we obtain

(11.13) Trtf(-«)*(Δ'Γ* (acting on Λ 1 ^ 1 ) ) = L(na - [na],s)

and

(11-14) M—£s ^=0

L(no: - [na], s)
U O 5=0

21n2π i f n α e Z ,

(11.15)

(11.16)

- na + [na]) if

Thus,

0 if na e Z
1 2γ + ψ(na-[na]) + ψ{l -na + [nά]) iΐna(£Z.

Because any orientation-preserving diffeomorphism of Sι, which preserves
some metric, is conjugate to a rotation, Proposition 32 will show that the
invariant / classifies such a diffeomorphism up to conjugacy.

Example 2. Z acts on a sphere by special orthogonal transformations.
If the sphere is even-dimensional, then by Proposition 1, T vanishes.
Assume that Z acts on S2N~ι specially orthogonally. By putting the
action into normal form, we can assume that n € Z acts by

(11.18)

where Σf=ι \zA2 = 1, and each a(j) lies in [0, 1). From the results of
Ray [16], it follows that if £ / ( « ) = 0, then

(11.19) Σf(n)Tτa(-n)*(-)FF(A'Γs = -£>(<*(;), s).
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Thus,

N ί 0 if na(j)eZ,

(11.20) I(n) = £ I 2γ + ψ(na(j) - [na(j)])

( if nα(;) £ Z.

Proposition 32. Two special orthogonal actions on S2N ι are smoothly
equivalent if and only if they are linearly equivalent.

Note. This theorem is due to de Rham, who proved it using the ordinary
Reidemeister torsion, along with a geometric argument [18]. We will prove
it analytically, using the invariant I.)

For the proof of the proposition, we must first state and prove the fol-
lowing.

Lemma. The function

(11.21) f(z) = 2γ + ψ(z) + ψ(l - z)

is monotonically increasing on the interval (0, \).
Proof We have that

(11.22) ψ(z) = -γ +

[7], and so

(11.23) ψ'(z) =

and

(11.24) /(z) = ψ\z) - ψ\\ - z) = T\{n - (1 - z))"2 - (it - z)"2].

But for z e (0, \) and n e Z+, (n - z)~2 < (n - (1 - z))"2 and hence
the lemma follows.

Proof of Proposition 32. Note that f{\) = 2γ + 2ψ{\) = - 4 In 2. Thus
we can immediately determine the number of irrational a(j) 's for a given
rotation by computing irr = (supn€Z/(«))/(-41n2). If irr > 0, let us
define a function on the torus T1TT by

ir

(11.25) g({e2πiθU)}) = Σ \ ly +
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Note that supg = -4irrln2 < - 2 . For any real ε, define a function gε

on Γ irr by

(11.26) ge(

Choose e so that the average value of g on Γ1ΓΓ is - 2 . (By the above
bound on sup#, this can be done.) For any integer h > 0, compute

M

(11.27) av(Λ) = lim M~ι Γmax(/(A/i), e).
M—κx> ^—•*

n = l

By the uniform distribution of an irrational angle flow on a torus, we
know that supΛ av(A) = -2 irr. If irr Φ N, then there will be a smallest A
such that av(A) = - 2 irr, and this A will be the order of the cyclic group
generated by the rational part of the rotation. Thus this order, which we
will denote by p, is determined by the invariant /.

Let us now consider two rotations with the same number irr of ir-
rational α(j) 's and the same order p of the finite part. We wish to
show that the invariant / determines the irrational α(j) 's up to order
and signs. For a given rotation, define J(n) = I(pή). If R denotes the
transformation on Tm which is a translation by the angles 2πpα(j), then
J(n) = g(Rn{l}). Thus it suffices to show that if we have two transforma-
tions Rχ and R2 of Tm which are both translations by irrational angles,
and g(R"({l})) = g{Rn

2{{\})) for all n, then Rχ and R2 are conjugate
by the action on Γ1ΓΓ of a matrix in O(irr, Z).

Let Uδ c Γirτ denote ^ ( - o o , ^ ) . Then the Uδ 's form decreasing
neighborhoods of the point {1} G Γ i r r. Let zχ = R{{{1}) be thought of
as an element of the group Γ1ΓΓ, and similarly for z2 = i?2({l}). Then
for any integer m, z™ e Uδ if and only if z™ e Us. Consider the map
φ which sends z™ to z™ for all m £ Z. As {z™} is dense in Γ1ΓΓ, and
φ is uniformly continuous, it follows that φ extends to a homomorphism
from Tm to T1TT, and so φ is induced from the action of an element M
of gl(irr, Z) on Rirr. Furthermore, for all δ, φ(Uδ) = Uδ. By taking δ
sufficiently small, we see that M must preserve the l) norm on R1ΓΓ, and
so must lie in O(irr, Z). Thus the invariant / determines the irrational
part of a rotation uniquely, up to order and signs.

We can now subtract off the contributions to / of the irrational rota-
tions to obtain the invariant for a cyclic action of order p. Suppose that
we have two such actions, which are rotations by angles {2πi^1(/)/p}/

n

=1

and {2πu2(l)/p}"=zl respectively. Then by Proposition 7, we know that
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the discrete Fourier transform of / is given by

(11.28) Fk= £ log |-* 2 ** a ( / ) / p | ,

«cd(/)|*

provided that p \ k. Here gcd(/) = %cά{vι, p), and α(/) is defined by

(11.29) <*(l)—τr-—τ = l mod

We want to show that if two rotations have the same such transform, then
their indices {^(/)}"=1 and {^2(0}/Li coincide up to order and signs.

By induction, we may assume that this is true for the actions of all
proper subgroups of Zp . Because the transform on a proper subgroup of
Zp is determined by the transform on Zp , we may assume that our two
rotations have the same vι 's which have a nontrivial common divisor with
p, up to order and signs. We can then subtract the contribution of these
vι 's from τ, and hereafter assume that for all /, gcd(/) = 1.

We now have two rotations such that

(11.30) Fkι

and

(11.31) Fk2

i

coincide whenever p \ k. Furthermore, we have that %oά{μx{l), p) =
gcd(α2(/),p) = 1 for each /. It follows from Franz's lemma [14] that
the indices {aλ{l)} and {a2(l)} coincide up to order and signs. Thus the
indices {u{(l)} and {^2(0} coincide up to order and signs.
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