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Reciprocity conjectures . .
p y con Reciprocity over number fields

Cohomology

Fontaine-Mazur Conjecture over Q

A geometric p : Gal(Q/Q) — GL(m, Q) gives us a collection {7, }
for all prime numbers p. Fontaine’s theory: 7w, of GL(m,R).

Definition

The representation p is automorphic if the collection ({7, }, 7o)
occurs as a direct summand in the space

Ly([S(m)]/ ~).

Conjecture (Fontaine-Mazur conjecture)

Any irreducible representation Gal(Q/Q) — GL(m, Qy) that is
geometric is automorphic.
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Reciprocity conjectures . .
p y con Reciprocity over number fields

Cohomology

Fontaine-Mazur Conjecture over general number fields

Let E/Q be a finite extension. Let

p: Gal(Q/E) — GL(m, Q,)

be a continuous irreducible representation. For every embedding
v: E — C, where C, is either @p, R, or C the local Langlands
correspondence provides an irreducible representation 7, (p) of
GL(m, E,) where E, is the completion of E at v.
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Reciprocity conjectures . .
p y con Reciprocity over number fields

Cohomology

Fontaine-Mazur Conjecture over general number fields

Conjecture (Fontaine-Mazur conjecture) J

If p is geometric then the collection {m,(p)} is automorphic.

Automorphic: occurs as a direct summand in

Ly([S(m, E)])/ ~).

This is actually known in most (odd) cases for E = (Q and was proved
about ten years ago (Kisin, Emerton, Khare-Wintenberger). If E is
totally real or a CM field (i.e., a totally imaginary quadratic extension
of a totally real field) then a good deal is known.

Michael Harris Automorphic Galois representations and Langlands correspondences



Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Adelic symmetric spaces

Starting with a direct summand of

Lr(GL(m,E)\[[,'GL(m,E,))/ ~), how to construct a Galois
representation?

Let GL(m, E)oo = | |5, —g ¢ GL(m, E}) , Xg the symmetric space for
this Lie group. Let

Sme =] lim  D\Xg.
a T'CGL(m,E)

Here I runs over arithmetic (congruence) subgroups and « runs over
a profinite index set (a class group).
This is a projective limit of manifolds.
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Galois representations and cohomology

Forget functions; consider

H{(S,.g,C) = image[H.(S.g,C) — H' (S, C)].

Fact

For each i there is a (more or less) canonical injection

Hi(Sm,,C) = La([S(m, E)]/ ~).

Consider irreducible direct factors 7 of the image

LS (m, E) C Ly([S(m, E)]v/ ~) that are representations for

GL(m, E,) for all v with E, # R, C.
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Galois representations for totally real or CM fields

Theorem (Many people)

If E is totally real or CM, then to every such m one can associate a
(necessarily) automorphic Galois representation

pre : Gal(Q/E) — GL(m, Q)

for all t; and the pr g is geometric.

This starts with the work of Eichler and Shimura in the 1950s. In that
case, S @ 18 a (projective limit) of modular curves and the Galois
representation is on the points of /-power order on their Jacobians.
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Galois representations for totally real or CM fields

In general, one uses harmonic analysis and geometry to relate
L™ (m, E) to cohomology of Shimura varieties and obtain Galois
representations on their /-adic étale cohomology.

One then uses methods from p-adic geometry to extend the list. The

most recent result of this type: MH, Lan, Taylor, Thorne (2011-2016).

Remark

Scholze extended and simplified the methods of [HLTT| and obtained
a much stronger result: for cohomology H ,’ (Sm.e» Z), including torsion
classes.

4
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Other groups

For a general connected reductive group G/E can define an adelic
symmetric space Sg g and spaces LCO (G, E) of cohomological
automorphic forms.

Toanw C L;Oh’l(G, E) the Langlands reciprocity conjecture assigns a
family of Langlands parameters

pre : Gal(Q/E) = “G(Qy) ~ "G(Qy).

In the simplest case, “G is the Langlands dual group, denoted G" .
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Langlands duality

Table: Langlands dual groups

type of G type of GV
A, A,
SL(n) PGL(n)
PGL(n) SL(n)
B, Cn
Cy, B,
D, D,
E, E,
Fy Fy
Gy Gy
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Theorem of Kret-Shin

The next theorem concerns the red line, with G of type C,, G" of type
B,.

Theorem (Kret-Shin, 2016)

Let m C LSOh’i(G, E), with G = GSp(2n), E totally real, i the middle
dimension. Assume some (mild) technical hypotheses. Then for every
¢ there exists a Langlands parameter

pre : Gal(Q/E) — GSpin(Qy)

for .
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Reciprocity conjectures . . .
p y con] Reciprocity over number fields

Cohomology

Local Langlands duality

What does it mean for p, 4 to be a Langlands parameter?

Question J

Let v be a place of E, E, a completion. As for GL(n), for any (p-adic)
place v of E, p, o determines a local Langlands parameter:

pryv : Gal(E,/E,) — GSpin(Qy).

Necessary condition: For every v, pr , and , correspond under local
Langlands duality.

For G = GL(n), and (I believe) for the representations of Kret-Shin,
this suffices to characterize p, » up to isomorphism . For general
groups, it does not even for G = SL(3) [Blasius] and there is no
precise conjecture.
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. - N LT Pseudocharacters
Results of V. Lafforgue for function fields . . . .
© Vincent Lafforgue’s parametrization

[Langlands correspondence for function fields, general G,
review

X a complete curve over k finite; D C X(k) an effective divisor.

x € X(k) ~ LGy = G(k;((T))), LG = G(k,[[T]]) (loop groups).

Replacing rank m vector bundles by principal G-bundles, where G is a
split semisimple algebraic group, consider

L,(S(G,X)); S(G,X) = \f 'LG,/U(D).

Here U(D) = [, U(D)x, U(D)x = LG} ,x ¢ |D|.
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Pseudocharacters

Results of V. Lafforgue for function fields . . .
© Vincent Lafforgue’s parametrization

[Langlands correspondence for function fields, general G,
review

VL: 7 C L,(S(G, X)) (level D) ~~ its Langlands parameter:
a (semisimple) homomorphism

P s T1(X\ |D], x0) = G¥(Qy).
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Pseudocharacters

Results of V. Lafforgue for function fields : : .
© Vincent Lafforgue’s parametrization

Pseudorepresentations of GL(m)

If G = GL(m) (not semisimple . .. ) then p = p, ¢ is completely
determined by its character:

g — tr(p(g))-

In fact, p, ¢ can be reconstructed from the function tr(p) by geometric
invariant theory.
Let I be a profinite topological group, A a topological ring.
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Pseudocharacters

Results of V. Lafforgue for function fields : . .
© Vincent Lafforgue’s parametrization

Pseudorepresentations of GL(d)

Definition
A d-dimensional pseudocharacter of I' with values in A 1s a
continuous function 7 : I' — A satisfying

(1) T(1)=d

(2) T(gh) = T(hg)

(3) The integer d > 0 is the smallest with the following property.

Let sgn : G441 — £ 1 the sign character. Then for all
g1,---,84a+1 € G, the following sum equals zero:

Z sgn(o)Ts(g1,- -+ 8a+1) = 0.
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Pseudocharacters

Results of V. Lafforgue for function fields : : .
© Vincent Lafforgue’s parametrization

Pseudocharacters

Theorem (Taylor, Rouquier)

(a) Suppose p is a continuous d-dimensional representation. Then Trp
is a pseudocharacter of dimension d.

(b) Conversely, if A is an algebraically closed field of characteristic O
or of characteristic > d, then any d-dimensional pseudocharacter of

G with values in A is the trace of a semisimple representation of
dimension d.

VL applied results of Richardson to prove an analogue for any GV.
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Pseudocharacters

Results of V. Lafforgue for function fields : : .
© Vincent Lafforgue’s parametrization

Pseudocharacters of general G

For any finite set I let X;(G") = GY\G" /G" (GIT quotient) and
R; = O(X;(GY)).
If ( : I — J we define a projection

l.g :XJ(GV) %X](Gv)
and a pullback
C* :R1—>R]; fl—)fOiC
ForI = [n]| ={1,...,n},J = [n+ 1], define

My Xy (G) = X (G); (8155 8n>8nt1) ¥ (8155 8n " 8nt1)

and

*
mn

: R[n] — R[n—l—l]
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Pseudocharacters

Results of V. Lafforgue for function fields : : .
© Vincent Lafforgue’s parametrization

Pseudocharacters of general G

A G"-pseudocharacter © of I" with values in A is the following data:

e For each I-tuple (7;) € I'Y, a homomorphism O((¥;)) : R; — A,
such that (7;) — ©((~;))(f) is continuous Vf € Ry.

@ For each map ( : I — J identities
O(vcw) =O((7) o " - R — A.
@ For n > 1 identities

O(Y15 -+ Yn> Vntr1) 0 My = S(V15 -+ s Y Vnt1) & Ry — A.

Formally, an A-valued point of Map(BT'*,B(GY)*//Ad(G")).
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Pseudocharacters

Results of V. Lafforgue for function fields . . ..
© Vincent Lafforgue’s parametrization

Automorphic pseudocharacters

Theorem (VL)

(i)[Easy] If p : T'— GV (A) is continuous then one canonically defines
a G -pseudocharacter © p With values in A.

(ii) Conversely, if A is an algebraically closed field then any

GV -pseudocharacter © with values in A is of the form © p Jor a unique
completely reducible p up to equivalence.

y

Theorem (VL)

(i) To each m C Ly(S(G, X)) of level D, there is a
GY-pseudocharacter O g on T = 71(X \ |D|, xo) with values in Q.
(ii) The p = pg ¢ such that O y = O, is compatible with the local
Langlands correspondence for x ¢ |D|.
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Pseudocharacters

Results of V. Lafforgue for function fields . . ..
© Vincent Lafforgue’s parametrization

Unramified local Langlands correspondence

An irreducible representation o of G(k((¢))) is unramified if

o O K[[A]) )

If 7 as above is of level D then 7 — 11, ‘7. and 7, is unramified for
x ¢ |D|.

Here is the explanation of Lafforgue’s condition (ii):

Theorem (Satake)

The unramified representations of G(k((t))) are in bijection with local
Langlands parameters

p: Gal(k((1))/k((z)))

trivial on the inertia group.
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Local Langlands correspondence

. Reciproci
Open questions eciprocity

Open questions, 1. The local Langlands correspondence

V. Lafforgue’s correspondence is compatible with the local Langlands
correspondence at unramified places.

At ramified places, it defines a local correspondence (work of
Genestier-Lafforgue).

Is the Genestier-Lafforgue correspondence surjective?

Question }

Compare with other constructions: Scholze, Kaletha-Weinstein (in
progress): no information about Galois parameters.

Gan-Lomeli (stability of Langlands-Shahidi v-factors) , Kaletha
(proposed partial local parametrization).
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Local Langlands correspondence

Open questions R R

Open questions, 2. Reciprocity

We have seen that, when G = GL(m), L. Lafforgue had already
constructed the parametrization by very different methods and proved
it defined a bijective correspondence between cuspidal

7w C Ly(S(m, X)) and irreducible Langlands parameters.

In other words, every irreducible GL(m)-pseudocharacter on I" is
automorphic.

Question J

What about reciprocity for other groups?
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Local Langlands correspondence

Open questions R R

Some answers

Theorem (Bockle, MH, Khare, Thorne)

Let G be a split semisimple group over X and let p : 71 (X) — GV (Qy)
be a representation with Zariski dense image (and a few other
conditions).

Then p is potentially automorphic. That is, there are infinitely many
Galois coverings X; /X such that the pullback of p to w1 (X;) becomes
automorphic.
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Local Langlands correspondence

Open questions R R

Some answers

There 1s also work in progress on local surjectivity but there are also
serious obstacles.

For classical groups, there is the work of Arthur (for p-adic fields),
plus Ganapathy-Varma (application of Deligne-Kazhdan theory of
close local fields).
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