Automorphic Galois representations and Langlands correspondences

II. Attaching Galois representations to automorphic forms, and vice versa: recent progress

Michael Harris

Bowen Lectures, Berkeley, February 2017

・ 10~ 一日 ~ 山 ~ 山 ~ 山 ~ 山 ~ し ~

Michael Harris Automorphic Galois representations and Langlands correspondences

Outline

- Reciprocity over number fields
- Cohomology
- 2 Results of V. Lafforgue for function fields
 - Pseudocharacters
 - Vincent Lafforgue's parametrization

Open questions

- Local Langlands correspondence
- Reciprocity

・ 「 「 」 ・ 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト

Reciprocity over number fields Cohomology

Fontaine-Mazur Conjecture over Q

A geometric $\rho : Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \overline{\mathbb{Q}}_{\ell})$ gives us a collection $\{\pi_p\}$ for all prime numbers *p*. Fontaine's theory: π_{∞} of $GL(m, \mathbb{R})$.

Definition

The representation ρ is *automorphic* if the collection $(\{\pi_p\}, \pi_\infty)$ occurs as a direct summand in the space

 $L_2([\mathbf{S}(\mathbf{m})]/\sim).$

Conjecture (Fontaine-Mazur conjecture)

Any irreducible representation $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \mathbb{Q}_{\ell})$ that is geometric is automorphic.

3

590

Reciprocity over number fields Cohomology

Fontaine-Mazur Conjecture over general number fields

Let E/\mathbb{Q} be a finite extension. Let

$$\rho: Gal(\overline{\mathbb{Q}}/E) \to GL(m, \overline{\mathbb{Q}}_{\ell})$$

be a continuous irreducible representation. For every embedding $v: E \to C_v$ where C_v is either $\overline{\mathbb{Q}}_p$, \mathbb{R} , or \mathbb{C} the local Langlands correspondence provides an irreducible representation $\pi_v(\rho)$ of $GL(m, E_v)$ where E_v is the completion of E at v.

Michael Harris Automorphic Galois representations and Langlands correspondences

▲□▶▲圖▶▲≣▶▲≣▶ = のへで

Reciprocity over number fields Cohomology

Fontaine-Mazur Conjecture over general number fields

Conjecture (Fontaine-Mazur conjecture)

If ρ is geometric then the collection $\{\pi_v(\rho)\}$ is automorphic.

Automorphic: occurs as a direct summand in

 $\mathit{L}_2([S(m,E)])/\sim).$

This is actually known in most (odd) cases for $E = \mathbb{Q}$ and was proved about ten years ago (Kisin, Emerton, Khare-Wintenberger). If *E* is *totally real* or a *CM field* (i.e., a totally imaginary quadratic extension of a totally real field) then a good deal is known.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reciprocity over number fields Cohomology

Adelic symmetric spaces

Starting with a direct summand of $L_2(GL(m, E) \setminus \prod_v 'GL(m, E_v)) / \sim)$, how to construct a Galois representation? Let $GL(m, E)_{\infty} = \prod_{E_v = \mathbb{R}, \mathbb{C}} GL(m, E_v)$, X_E the symmetric space for this Lie group. Let

$$S_{m,E} = \coprod_{\alpha} \varprojlim_{\Gamma \subset GL(m,E)} \Gamma \setminus X_E.$$

Here Γ runs over arithmetic (congruence) subgroups and α runs over a profinite index set (a class group).

This is a projective limit of manifolds.

Reciprocity over number fields Cohomology

Galois representations and cohomology

Forget functions; consider

$$H^i_!(S_{m,E},\mathbb{C}) = image[H^i_c(S_{m,E},\mathbb{C}) \rightarrow H^i(S_{m,E},\mathbb{C})].$$

Fact

For each i there is a (more or less) canonical injection

$$H_!^i(S_{m,E},\mathbb{C}) \hookrightarrow L_2([\mathbf{S}(\mathbf{m},\mathbf{E})]/\sim).$$

Consider irreducible direct factors π of the image $L_2^{coh,i}(m, E) \subset L_2([\mathbf{S}(\mathbf{m}, \mathbf{E})]v/\sim)$ that are representations for $GL(m, E_v)$ for all v with $E_v \neq \mathbb{R}, \mathbb{C}$.

▲□▶▲□▶▲□▶▲□▶ = のへで

Reciprocity over number fields Cohomology

Galois representations for totally real or CM fields

Theorem (Many people)

If E is totally real or CM, then to every such π one can associate a (necessarily) automorphic Galois representation

$$\rho_{\pi,\ell}: Gal(\overline{\mathbb{Q}}/E) \to GL(m, \overline{\mathbb{Q}}_{\ell})$$

for all ℓ ; and the $\rho_{\pi,\ell}$ is geometric.

This starts with the work of Eichler and Shimura in the 1950s. In that case, $S_{2,\mathbb{Q}}$ is a (projective limit) of modular curves and the Galois representation is on the points of ℓ -power order on their Jacobians.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reciprocity over number fields Cohomology

Galois representations for totally real or CM fields

In general, one uses harmonic analysis and geometry to relate $L_2^{coh,i}(m, E)$ to cohomology of *Shimura varieties* and obtain Galois representations on their ℓ -adic étale cohomology.

One then uses methods from *p*-adic geometry to extend the list. The most recent result of this type: MH, Lan, Taylor, Thorne (2011-2016).

Remark

Scholze extended and simplified the methods of [HLTT] and obtained a much stronger result: for cohomology $H_!^i(S_{m,E}, \mathbb{Z})$, including torsion classes.

Reciprocity over number fields Cohomology

Other groups

For a general connected reductive group G/E can define an adelic symmetric space $S_{G,E}$ and spaces $L_2^{coh,i}(G,E)$ of cohomological automorphic forms. To a $\pi \subset L_2^{coh,i}(G,E)$ the Langlands reciprocity conjecture assigns a family of *Langlands parameters*

$$\rho_{\pi,\ell}: Gal(\overline{\mathbb{Q}}/E) \to {}^{C}G(\overline{\mathbb{Q}}_{\ell}) \sim {}^{L}G(\overline{\mathbb{Q}}_{\ell}).$$

In the simplest case, ${}^{L}G$ is the Langlands dual group, denoted G^{\vee} .

Reciprocity conjectures Results of V. Lafforgue for function fields Open questions	Reciprocity over number fields Cohomology
Langlands duality	

Table: Langlands dual groups

type of G	type of G^{\vee}
A_n	A_n
SL(n)	PGL(n)
PGL(n)	SL(n)
B_n	C_n
C_n	B_n
D_n	D_n
E_n	E_n
F_4	F_4
G_2	G_2

▲□▶▲□▶▲≡▶▲≡▶ ≡ め∢ぐ

Michael Harris Automorphic Galois representations and Langlands correspondences

Reciprocity over number fields Cohomology

Theorem of Kret-Shin

The next theorem concerns the red line, with *G* of type C_n , G^{\vee} of type B_n .

Theorem (Kret-Shin, 2016)

Let $\pi \subset L_2^{coh,i}(G, E)$, with G = GSp(2n), E totally real, i the middle dimension. Assume some (mild) technical hypotheses. Then for every ℓ there exists a Langlands parameter

$$\rho_{\pi,\ell}: Gal(\overline{\mathbb{Q}}/E) \to GSpin(\overline{\mathbb{Q}}_{\ell})$$

for π .

Michael Harris Automorphic Galois representations and Langlands correspondences

▲□▶▲圖▶▲屋▶▲屋▶

Reciprocity over number fields Cohomology

Local Langlands duality

Question

What does it mean for $\rho_{\pi,\ell}$ to be a Langlands parameter?

Let *v* be a place of *E*, E_v a completion. As for GL(n), for any (*p*-adic) place *v* of *E*, $\rho_{\pi,\ell}$ determines a local Langlands parameter:

$$\rho_{\pi,v}: Gal(\overline{E}_v/E_v) \to GSpin(\overline{\mathbb{Q}}_\ell).$$

Necessary condition: For every v, $\rho_{\pi,v}$ and π_v correspond under *local Langlands duality*.

For G = GL(n), and (I believe) for the representations of Kret-Shin, this suffices to characterize $\rho_{\pi,\ell}$ up to isomorphism. For general groups, it does not even for G = SL(3) [Blasius] and there is no precise conjecture.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Pseudocharacters Vincent Lafforgue's parametrization

Langlands correspondence for function fields, general G, review

X a complete curve over *k* finite; $D \subset X(\overline{k})$ an effective divisor.

$$x \in X(\overline{k}) \rightsquigarrow LG_x = G(k_x((T))), LG_x^+ = G(k_x[[T]]) (loop groups).$$

Replacing rank *m* vector bundles by principal *G*-bundles, where *G* is a split semisimple algebraic group, consider

$$L_2(S(G,X)); S(G,X) = \varprojlim_D G(k(X)) \setminus \prod_x {}^{\prime}LG_x/U(D).$$

Here $U(D) = \prod_{x} U(D)_{x}$, $U(D)_{x} = LG_{x}^{+}$, $x \notin |D|$.

▲□▶▲□▶▲□▶▲□▶ = のへで

Pseudocharacters Vincent Lafforgue's parametrization

Langlands correspondence for function fields, general G, review

VL: $\pi \subset L_2(S(G, X))$ (level *D*) \rightsquigarrow its *Langlands parameter*: a (semisimple) homomorphism

 $\rho_{\pi,\ell}: \pi_1(X \setminus |D|, x_0) \to G^{\vee}(\overline{\mathbb{Q}}_{\ell}).$

 イロトイ団トイミト イミト ミ クへへ

 Michael Harris

 Automorphic Galois representations and Langlands correspondences

Pseudocharacters Vincent Lafforgue's parametrization

Pseudorepresentations of GL(m)

If G = GL(m) (not semisimple . . .) then $\rho = \rho_{\pi,\ell}$ is completely determined by its *character*:

$$g \mapsto tr(\rho(g)).$$

In fact, $\rho_{\pi,\ell}$ can be reconstructed from the function $tr(\rho)$ by geometric invariant theory.

Let Γ be a profinite topological group, A a topological ring.

Michael Harris

Pseudocharacters Vincent Lafforgue's parametrization

Pseudorepresentations of GL(d)

Definition

A *d*-dimensional pseudocharacter of Γ with values in *A* is a continuous function $T : \Gamma \to A$ satisfying

(1)
$$T(1) = d$$

(2)
$$T(gh) = T(hg)$$

(3) The integer $d \ge 0$ is the smallest with the following property. Let $sgn : \mathfrak{S}_{d+1} \to \pm 1$ the sign character. Then for all $g_1, \ldots, g_{d+1} \in G$, the following sum equals zero:

$$\sum_{\sigma\in\mathfrak{S}_{d+1}}sgn(\sigma)T_{\sigma}(g_1,\ldots,g_{d+1})=0.$$

Michael Harris Automorphic Galois representations and Langlands correspondences

▲□▶▲圖▶▲屋▶▲屋▶

= 9QQ

Recipi	rocity conjectures
Results of V. Lafforgue f	for function fields
	Open questions

Pseudocharacters Vincent Lafforgue's parametrization

Pseudocharacters

Theorem (Taylor, Rouquier)

(a) Suppose ρ is a continuous d-dimensional representation. Then $Tr\rho$ is a pseudocharacter of dimension d.

(b) Conversely, if A is an algebraically closed field of characteristic 0 or of characteristic > d, then any d-dimensional pseudocharacter of G with values in A is the trace of a semisimple representation of dimension d.

VL applied results of Richardson to prove an analogue for any G^{\vee} .

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pseudocharacters Vincent Lafforgue's parametrization

Pseudocharacters of general G

For any finite set *I* let $X_I(G^{\vee}) = G^{\vee} \setminus G^{\vee,I}/G^{\vee}$ (GIT quotient) and $R_I = \mathcal{O}(X_I(G^{\vee}))$. If $\zeta : I \to J$ we define a projection

$$i_{\zeta}: X_J(G^{\vee}) \to X_I(G^{\vee})$$

and a pullback

$$\zeta^*: R_I \to R_J; \ f \mapsto f \circ i_{\zeta}$$

For $I = [n] = \{1, ..., n\}, J = [n + 1]$, define

$$m_n: X_{[n+1]}(G) \to X_{[n]}(G); \ (g_1, \ldots, g_n, g_{n+1}) \mapsto (g_1, \ldots, g_n \cdot g_{n+1})$$

and

$$m_n^*: R_{[n]} \to R_{[n+1]}$$

Michael Harris Automorphic Galois representations and Langlands correspondences

Pseudocharacters Vincent Lafforgue's parametrization

Pseudocharacters of general G

A G^{\vee} -pseudocharacter Θ of Γ with values in A is the following data:

- For each *I*-tuple $(\gamma_i) \in \Gamma^I$, a homomorphism $\Theta((\gamma_i)) : R_I \to A$, such that $(\gamma_i) \mapsto \Theta((\gamma_i))(f)$ is continuous $\forall f \in R_I$.
- For each map $\zeta : I \to J$ identities

$$\Theta(\gamma_{\zeta(i)}) = \Theta((\gamma_j)) \circ \zeta^* : R_I \to A.$$

• For $n \ge 1$ identities

$$\Theta(\gamma_1,\ldots,\gamma_n,\gamma_{n+1})\circ m_n^*=S(\gamma_1,\ldots,\gamma_n\gamma_{n+1}):R_{[n]}\to A.$$

Formally, an A-valued point of $Map(B\Gamma^{\bullet}, B(G^{\vee})^{\bullet}//Ad(G^{\vee}))$.

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Pseudocharacters Vincent Lafforgue's parametrization

Automorphic pseudocharacters

Theorem (VL)

(i)[Easy] If $\rho : \Gamma \to G^{\vee}(A)$ is continuous then one canonically defines a G^{\vee} -pseudocharacter Θ_{ρ} with values in A. (ii) Conversely, if A is an algebraically closed field then any G^{\vee} -pseudocharacter Θ with values in A is of the form Θ_{ρ} for a unique completely reducible ρ up to equivalence.

Theorem (VL)

(i) To each $\pi \subset L_2(S(G,X))$ of level D, there is a G^{\vee} -pseudocharacter $\Theta_{\pi,\ell}$ on $\Gamma = \pi_1(X \setminus |D|, x_0)$ with values in $\overline{\mathbb{Q}}_{\ell}$. (ii) The $\rho = \rho_{\pi,\ell}$ such that $\Theta_{\pi,\ell} = \Theta_{\rho}$ is compatible with the local Langlands correspondence for $x \notin |D|$.

Pseudocharacters Vincent Lafforgue's parametrization

Unramified local Langlands correspondence

An irreducible representation σ of G(k((t))) is *unramified* if $\sigma^{G(k[[t]])} \neq 0$.

If π as above is of level *D* then $\pi \xrightarrow{\sim} \prod_{x} \pi_{x}$ and π_{x} is unramified for $x \notin |D|$.

Here is the explanation of Lafforgue's condition (ii):

Theorem (Satake)

The unramified representations of G(k((t))) are in bijection with local Langlands parameters

$$\rho: Gal(\overline{k((t))}/k((t)))$$

trivial on the inertia group.

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少えぐ

Local Langlands correspondence Reciprocity

Open questions, 1. The local Langlands correspondence

V. Lafforgue's correspondence is compatible with the local Langlands correspondence at unramified places.

At ramified places, it *defines* a local correspondence (work of Genestier-Lafforgue).

Question

Is the Genestier-Lafforgue correspondence surjective?

Compare with other constructions: Scholze, Kaletha-Weinstein (in progress): no information about Galois parameters. Gan-Lomelí (stability of Langlands-Shahidi γ -factors), Kaletha (proposed partial local parametrization).

Reciprocity conjectures Results of V. Lafforgue for function fields Open questions	Local Langlands correspondence Reciprocity	
Open questions, 2. Reciprocity		

We have seen that, when G = GL(m), L. Lafforgue had already constructed the parametrization by very different methods and proved it defined a *bijective correspondence* between *cuspidal* $\pi \subset L_2(S(m, X))$ and *irreducible* Langlands parameters.

In other words, every irreducible GL(m)-pseudocharacter on Γ is automorphic.

Question

What about reciprocity for other groups?

Local Langlands correspondence Reciprocity

Some answers

Theorem (Böckle, MH, Khare, Thorne)

Let G be a split semisimple group over X and let $\rho : \pi_1(X) \to G^{\vee}(\overline{\mathbb{Q}}_{\ell})$ be a representation with Zariski dense image (and a few other conditions).

Then ρ is **potentially automorphic**. That is, there are infinitely many Galois coverings X_i/X such that the pullback of ρ to $\pi_1(X_i)$ becomes automorphic.

▲□▶▲@▶▲≣▶▲≣▶ ≣ め∢ぐ

Michael Harris Automorphic Galois representations and Langlands correspondences

Reciprocity conjectures Results of V. Lafforgue for function fields Open questions	Local Langlands correspondence Reciprocity
Some answers	

- There is also work in progress on local surjectivity but there are also serious obstacles.
- For classical groups, there is the work of Arthur (for *p*-adic fields), plus Ganapathy-Varma (application of Deligne-Kazhdan theory of close local fields).

・ロト・雪・・雪・・雪・ しゃくしゃ