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Galois representations mod `n

What can you do with Galois theory?
You can compute the Galois group of the set of roots (in C) of the
cyclotomic polynomial

f`n(X) = X`n � 1 = 0.

Here ` is a prime number.
Denote the set of roots µ`n ; it is a cyclic group of order `n, and the
group Gal(Q/Q) acts on the group by automorphisms:

!`,n : Gal(Q/Q)! Aut(µ`n) = (Z/`nZ)⇥.
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Galois representations over Q`

A clever idea: act on all µ`n together:

!` : Gal(Q/Q)! Aut(
[

n

µ`n) = Z⇥
` ,

where Z` is the compact topological ring lim �n
Z/`nZ.

We get a 1-dimensional representation

!` : Gal(Q/Q)! GL(1,Z`) ⇢ GL(1,Q`).
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Elliptic curves

Similarly, if E is an elliptic curve over Q:

y2 = x3 + ax + b

the set of complex solutions is an abelian group (a torus)

E(C) ' C/⇤, ⇤ ' Z2.

So the elements E[`n] of order `n form a group isomorphic to
(Z/`nZ)2 on which Gal(Q/Q) acts, and we obtain

⇢E,p : Gal(Q/Q)! Aut(
[

n

E[`n]) = GL(2,Z`).
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Galois representations on cohomology

More generally, let X ⇢ PN be an algebraic variety defined by
polynomials (in N + 1 variables) with Q-coefficients.
The set X(C) of C points is a topological space, and for any positive
integer i, the theory of étale cohomology provides an action

⇢i
X,` : Gal(Q/Q)! Aut(Hi(X(C),Q)⌦Q`)

⇠�! GL(m,Q`).

for some m.
These Galois representations have special properties – they are
geometric (to be defined below).
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Two conjectures of Fontaine-Mazur

Conjecture (Vague version of one Fontaine-Mazur conjecture)

Any irreducible representation Gal(Q/Q)! GL(m,Q`) that is
geometric occurs in the cohomology of some smooth projective
variety.

Conjecture (Vague version of another Fontaine-Mazur conjecture)

Any irreducible representation Gal(Q/Q)! GL(m,Q`) that is
geometric is attached to an automorphic representation of GL(m,Q).
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Galois groups of local fields

The group Gal(Q/Q) is put together from the Galois groups of p-adic
fields.
More precisely, any polynomial f 2 Q[X] is also a polynomial in
Qp[X] for every prime p and thus Gal(Qp/Qp) acts on its roots.
The starting point of algebraic number theory is the observation that
the action of Gal(Q/Q) on the roots of f can be reconstructed from
that of Gal(Qp/Qp).
Likewise, the m-dimensional representations ⇢i

X,` of Gal(Q/Q) are
determined by representations of Gal(Qp/Qp) on the same
cohomology.
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Structure of Gal(Qp/Qp): the analogue on a complex curve

An m-dimensional representation of Gal(Q/Q) is analogous to a local
system L with Q-coefficients on a punctured algebraic curve

X0 = X \ {x1, . . . , xr}

over C. We obtain

⇡1(X0, x0)! Aut(Lx0) = GL(m,Q)

If you draw a loop from x0 that wraps once around xi you get an
element

�i 2 Aut(Lx0) = GL(m,Q).

The “local Galois group” of X0 at xi is just Z; or Ẑ = lim �i
Z/iZ if you

instead take local systems with finite or p-adic coefficients.
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Structure of Gal(Qp/Qp): the analogue on a curve over a
finite field

If instead X0 is a curve over a finite field k of characteristic p, the local
Galois group has a three-step filtration.
Even at a point x 2 X0(k0), with k0/k finite, there is a local Galois
group Gal(k̄/k0) acting on local systems.
If |k0| = `r, Gal(k̄/k0) is isomorphic to Ẑ with canonical topological
generator

Frobx : t 7! t|k
0| = t`

r
.

At a puncture xi defined over k0, there are three non-trivial steps.
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Structure of Gal(Qp/Qp): the analogue on a curve over a
finite field

At a puncture xi defined over k0, there are three non-trivial steps.

1! Ixi ! �xi ! Gal(k̄/k0) = Ẑ! 1

And then the inertia group Ixi itself has a two step filtration

1! Iwild ! Ixi ! Itame '
Y

` 6=p

Z`! 1.

The middle stage Itame is exactly analogous to the loop that winds
about the point xi in the complex curve.
The top stage Gal(k̄/k0) is there because k0 is not algebraically closed.
The bottom stage Iwild is a pro-p group and is thus pronilpotent, but its
structure does not have a simple description.
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Structure of Gal(Qp/Qp)

The group Gal(Qp/Qp) has the same structure:

1! Ip! Gal(Qp/Qp)! Gal(F̄p/Fp) = Ẑ! 1

1! Iwild ! Ip! Itame '
Y

6̀=p

Z`! 1.

The group Gal(F̄p/Fp) is topologically generated by

Frobp : t 7! tp.

The local Langlands correspondence classifies m-dimensional
continuous representations of Gal(Qp/Qp) in terms of analysis on the
locally compact topological group GL(m,Qp).
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Abelian representations

A 1-dimensional `-adic representation of Gal(Qp/Qp) is a
homomorphism

Gal(Qp/Qp)! Gal(Qp/Qp)
ab! GL(1,Q`).

Theorem (Local class field theory)
There is a canonical homomorphism

Qp
⇥ ,! Gal(Qp/Qp)

ab

with dense image containing the inertia group Ip, such that p 2 Qp
⇥

maps to Frob�1
p .
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Abelian representations

Thus a representation ⇢ : Gal(Qp/Qp)! GL(m,Q`) that factors
through Gal(Qp/Qp)ab corresponds to an m-tuple of characters

� = (�i : Qp
⇥! Q⇥

` ) i = 1, . . . ,m.

Define a representation I(�) of G = GL(m,Qp) as follows. Let B ⇢ G
be the upper triangular subgroup, a = (a1, . . . , am) : B! GL(1)m the
projection on the diagonal elements.
Define

� : B! Q⇥
` ; �(a1(b), . . . , am(b)) =

Y

i

�i(ai(b)).

I(�) = {f : G! Q` | f (bg) = �
1
2�(b)f (g)8b 2 B, g 2 G}.

(Ignore the normalizing factor �
1
2 .)
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About coefficients

The Langlands correspondence for abelian representations assigns
I(�) to ⇢ = �i�i.
It is more natural to replace the coefficient field Q` by its algebraic
closure Q̄`.
An `-adic representation is then a homomorphism to GL(m,Q`).
But we can also replace Q` by C.

Since the theory is purely algebraic, the difference is inconsequential.
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Irreducible representations

At the other extreme, we have

Theorem (H-Taylor, Henniart)
Suppose ` 6= p. There is a canonical bijection between irreducible
(continuous) m-dimensional `-adic representations of Gal(Qp/Qp)
and irreducible supercuspidal representations of GL(m,Qp),
preserving natural invariants of both sides.

Remark
Supercuspidal representations are the building blocks of the theory.
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The local Langlands correspondence

In between, there are irreducible representations of GL(m,Qp)
corresponding to any m-dimensional (continuous!) `-adic
representation of Gal(Qp/Qp), provided ` 6= p.
The correspondence becomes a canonical bijection if one expands the
class of representations of Gal(Qp/Qp) to include more general
objects (Weil-Deligne parameter).
Moreover, the theorem is proved when Qp is replaced by any finite
extension of Qp; or (Laumon-Rapoport-Stuhler) by the local field
Fq((T)) (any finite field Fq).

Finally, there is a version of the correspondence when Qp is replaced
by R or C.
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Adelic representations

Now suppose we have a continuous representation

⇢ : Gal(Q/Q)! GL(m,Q`).

Recall that Gal(Q/Q) is built out of the Gal(Qp/Qp) for primes p.
Concretely, we have embeddings

Gal(Qp/Qp) ,! Gal(Q/Q)

so by restriction ⇢ defines ⇢p : Gal(Qp/Qp)! GL(m,Q`).
For p 6= ` we have the local Langlands correspondence, hence an
irreducible representation ⇡(⇢p) of GL(m,Qp).
For p = ` we need to assume ⇢` is of de Rham type (Fontaine).
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Geometric representations

Theorem (Fontaine)
If ⇢` is of de Rham type then `-adic Hodge theory attaches a
Weil-Deligne parameter to ⇢`, and thus an irreducible representation
⇡(⇢`) of GL(m,Q`).

Definition
The representation ⇢ is geometric if (a) ⇢` is of de Rham type and (b)
for all but finitely many p, ⇢p is trivial on the inertia group Ip.

Now a geometric ⇢ gives us a collection {⇡p} for all prime numbers p.
Also (Fontaine) get a representation ⇡1 of GL(m,R).
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Automorphic representations

Let [S(m)] = GL(m,Q)\GL(m,R)⇥
Q 0

pGL(m,Qp)). It has
simultaneous actions of GL(m,R) and GL(m,Qp) for all p.

Definition
The representation ⇢ is automorphic if the collection ({⇡p},⇡1)
occurs as a direct summand in the space

L2([S(m)]/ ⇠).

Conjecture (Fontaine-Mazur conjecture)

Any irreducible representation Gal(Q/Q)! GL(m,Q`) that is
geometric is automorphic.
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Fourier analysis on GL(n)

The promanifold [S(m)]/ ⇠ is homogeneous for the action of
G(A) = GL(m,R)⇥

Q 0
pGL(m,Qp)).

An analogue of the space of functions on (infinitely many copies of)
the circle, a representation of the compact group U(1).

Decomposition of the latter under the U(1)-action is the (easy part of)
the theory of Fourier series.

Decomposition of L2([S(m)]/ ⇠) under the action of the group G(A)
is analogous.
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Langlands reciprocity, in two sentences

To each integer m we assign a promanifold [S(m)]/ ⇠ that is
homogenous for a very large group.
The theory of (geometric) Galois representations is – conjecturally –
encompassed by non-abelian Fourier analysis on these homogeneous
promanifolds.

(There is also a large part of the L2 space that is irrelevant to Galois
representations; we disregard all of this.)
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Automorphic forms on function fields

Let X = P1 \ {x1, . . . , xr} be the punctured projective line over the
finite field Fp.
The field k(X) = Fp(T) is a global field. Choose ` 6= p.
Replace ⇢ : Gal(Q/Q)! GL(m,Q`) by an irreducible
m-dimensional `-adic local system ⇤ on X; in other words, a
representation ⇢ of Gal(Fp(T)/Fp(T)) with values in GL(m,Q`),
ramified only at {x1, . . . , xr}.
(The analogue for P1(C) \ {x1, . . . , xr} is a linear system of
differential equations with singularities only at the punctures.)
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Langlands correspondence for function fields

As before, to such a ⇤ one attaches a representation ⇡x of
GL(m, kx((T)) for each x 2 P1(F̄p) (including the singularities xi)
with coordinates in the finite field kx.
The collection {⇡x} is automorphic if it occurs in L2(S(m,X)) where

S(m,X) = GL(m, k(X))\
Y

x

0GL(m, kx((T)))/ ⇠ .

The space S(m,X) is totally disconnected and in bijection with the set
Bunm(X)(Fp) of rank m vector bundles on X defined over Fp (with
trivializations at all points).
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Langlands correspondence for function fields

Theorem (Laurent Lafforgue)
Every such ⇤ is automorphic.

In this theorem the punctured projective line over Fp can be replaced
by any algebraic curve over any finite field.
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Langlands correspondence for function fields, general G

Replacing rank m vector bundles by principal G-bundles, where G is a
reductive algebraic group, one gets an analogous space of
automorphic forms

L2(BunG(X)(k)); BunG(X)(k) = S(G,X) = G(k(X))\
Y

x

0G(kx((T)))/ ⇠

This is the subject of the work of Vincent Lafforgue.
The m-dimensional local system ⇤ is replaced by a Langlands
parameter: a homomorphism from the fundamental group to the
Langlands dual group.
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