Automorphic Galois representations and Langlands correspondences I. Galois representations and automorphic forms: an introduction to the Langlands program

Michael Harris

Bowen Lectures, Berkeley, February 2017

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Michael Harris Automorphic Galois representations and Langlands correspondences

Outline

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Automorphic Galois representations and Langlands correspondences

Michael Harris

Galois representations mod ℓ^n

What can you do with Galois theory?

You can compute the Galois group of the set of roots (in $\mathbb{C})$ of the cyclotomic polynomial

$$f_{\ell^n}(X) = X^{\ell^n} - 1 = 0.$$

Here ℓ is a prime number.

Denote the set of roots μ_{ℓ^n} ; it is a cyclic group of order ℓ^n , and the group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the group by automorphisms:

$$\omega_{\ell,n}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to Aut(\mu_{\ell^n}) = (\mathbb{Z}/\ell^n \mathbb{Z})^{\times}$$

▲□▶▲圖▶▲≣▶▲≣▶ = のへで

Galois representations over \mathbb{Q}_{ℓ}

A clever idea: act on all μ_{ℓ^n} together:

$$\omega_{\ell}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to Aut(\bigcup_{n} \mu_{\ell^{n}}) = \mathbb{Z}_{\ell}^{\times},$$

where \mathbb{Z}_{ℓ} is the compact topological ring $\varprojlim_n \mathbb{Z}/\ell^n \mathbb{Z}$. We get a 1-dimensional representation

 $\omega_{\ell}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(1, \mathbb{Z}_{\ell}) \subset GL(1, \mathbb{Q}_{\ell}).$

Michael Harris Automorphic Galois representations and Langlands correspondences

▲□▶▲□▶▲□▶▲□▶ = のへで

Elliptic curves

Similarly, if *E* is an elliptic curve over \mathbb{Q} :

$$y^2 = x^3 + ax + b$$

the set of complex solutions is an abelian group (a torus)

$$E(\mathbb{C}) \simeq \mathbb{C}/\Lambda, \ \Lambda \simeq \mathbb{Z}^2.$$

So the elements $E[\ell^n]$ of order ℓ^n form a group isomorphic to $(\mathbb{Z}/\ell^n\mathbb{Z})^2$ on which $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts, and we obtain

$$\rho_{E,p}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to Aut(\bigcup_n E[\ell^n]) = GL(2, \mathbb{Z}_\ell).$$

Michael Harris Automorphic Galois representations and Langlands correspondences

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Galois representations on cohomology

More generally, let $X \subset \mathbb{P}^N$ be an algebraic variety defined by polynomials (in N + 1 variables) with \mathbb{Q} -coefficients. The set $X(\mathbb{C})$ of \mathbb{C} points is a topological space, and for any positive integer *i*, the theory of étale cohomology provides an action

$$\rho_{X,\ell}^i: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to Aut(H^i(X(\mathbb{C}),\mathbb{Q}) \otimes \mathbb{Q}_\ell) \xrightarrow{\sim} GL(m,\mathbb{Q}_\ell).$$

for some *m*.

These Galois representations have special properties – they are *geometric* (to be defined below).

Two conjectures of Fontaine-Mazur

Conjecture (Vague version of one Fontaine-Mazur conjecture) Any irreducible representation $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \mathbb{Q}_{\ell})$ that is geometric occurs in the cohomology of some smooth projective variety.

Conjecture (Vague version of another Fontaine-Mazur conjecture)

Any irreducible representation $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \mathbb{Q}_{\ell})$ that is geometric is attached to an automorphic representation of $GL(m, \mathbb{Q})$.

・ (ロ) ・ 雪) ・ 雪) ・ 雪 ・ ・ 雪 ・ うへぐ

Michael Harris Automorphic Galois representations and Langlands correspondences

The group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ is put together from the Galois groups of *p*-adic fields.

More precisely, any polynomial $f \in \mathbb{Q}[X]$ is also a polynomial in $\mathbb{Q}_p[X]$ for every prime p and thus $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ acts on its roots. The starting point of algebraic number theory is the observation that the action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on the roots of f can be reconstructed from that of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

Likewise, the *m*-dimensional representations $\rho_{X,\ell}^i$ of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ are determined by representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ on the same cohomology.

Michael Harris

Structure of $Gal(\mathbb{Q}_p/\mathbb{Q}_p)$: the analogue on a complex curve

An *m*-dimensional representation of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ is analogous to a local system *L* with \mathbb{Q} -coefficients on a punctured algebraic curve

$$X_0 = X \setminus \{x_1, \ldots, x_r\}$$

over \mathbb{C} . We obtain

$$\pi_1(X_0, x_0) \to Aut(L_{x_0}) = GL(m, \mathbb{Q})$$

If you draw a loop from x_0 that wraps once around x_i you get an element

$$\gamma_i \in Aut(L_{x_0}) = GL(m, \mathbb{Q}).$$

The "local Galois group" of X_0 at x_i is just \mathbb{Z} ; or $\hat{\mathbb{Z}} = \varprojlim_i \mathbb{Z}/i\mathbb{Z}$ if you instead take local systems with finite or *p*-adic coefficients.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Structure of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$: the analogue on a curve over a finite field

If instead X_0 is a curve over a finite field k of characteristic p, the local Galois group has a three-step filtration.

Even at a point $x \in X_0(k')$, with k'/k finite, there is a local Galois group $Gal(\bar{k}/k')$ acting on local systems.

If $|k'| = \ell^r$, $Gal(\bar{k}/k')$ is isomorphic to $\hat{\mathbb{Z}}$ with canonical topological generator

$$Frob_x: t \mapsto t^{|k'|} = t^{\ell^r}.$$

At a puncture x_i defined over k', there are three non-trivial steps.

Structure of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$: the analogue on a curve over a finite field

At a puncture x_i defined over k', there are three non-trivial steps.

$$1 \to I_{x_i} \to \Gamma_{x_i} \to Gal(\bar{k}/k') = \hat{\mathbb{Z}} \to 1$$

And then the *inertia group* I_{x_i} itself has a two step filtration

$$1 \to I^{wild} \to I_{x_i} \to I^{tame} \simeq \prod_{\ell \neq p} \mathbb{Z}_{\ell} \to 1.$$

The middle stage I^{tame} is exactly analogous to the loop that winds about the point x_i in the complex curve.

The top stage $Gal(\bar{k}/k')$ is there because k' is not algebraically closed. The bottom stage I^{wild} is a pro-p group and is thus pronilpotent, but its structure does not have a simple description.

▲ロ▶▲冊▶▲≣▶▲≣▶ = の��

Structure of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$

The group $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ has the same structure:

$$1 \to I_p \to Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p) = \hat{\mathbb{Z}} \to 1$$
$$1 \to I^{wild} \to I_p \to I^{tame} \simeq \prod_{\ell \neq p} \mathbb{Z}_\ell \to 1.$$

The group $Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is topologically generated by

$$Frob_p: t \mapsto t^p$$
.

The *local Langlands correspondence* classifies *m*-dimensional continuous representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ in terms of analysis on the locally compact topological group $GL(m, \mathbb{Q}_p)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Abelian representations

A 1-dimensional ℓ -adic representation of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is a homomorphism

$$Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{ab} \to GL(1,\mathbb{Q}_\ell).$$

Theorem (Local class field theory)

There is a canonical homomorphism

$${\mathbb{Q}_p}^{\times} \hookrightarrow Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{ab}$$

with dense image containing the inertia group I_p , such that $p \in \mathbb{Q}_p^{\times}$ maps to $Frob_p^{-1}$.

Abelian representations

Thus a representation $\rho : Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to GL(m, \mathbb{Q}_\ell)$ that factors through $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{ab}$ corresponds to an *m*-tuple of characters

$$\chi = (\chi_i : \mathbb{Q}_p^{\times} \to \mathbb{Q}_\ell^{\times}) \ i = 1, \dots, m.$$

Define a representation $I(\chi)$ of $G = GL(m, \mathbb{Q}_p)$ as follows. Let $B \subset G$ be the upper triangular subgroup, $a = (a_1, \ldots, a_m) : B \to GL(1)^m$ the projection on the diagonal elements. Define

$$\chi: B \to \mathbb{Q}_{\ell}^{\times}; \ \chi(a_1(b), \ldots, a_m(b)) = \prod_i \chi_i(a_i(b)).$$

$$I(\chi) = \{ f : G \to \mathbb{Q}_{\ell} \mid f(bg) = \delta^{\frac{1}{2}}\chi(b)f(g) \forall b \in B, g \in G \}.$$

(Ignore the normalizing factor $\delta^{\frac{1}{2}}$.)

▲□▶▲□▶▲□▶▲□▶ □ のへで

About coefficients

The Langlands correspondence for abelian representations assigns $I(\chi)$ to $\rho = \bigoplus_i \chi_i$.

It is more natural to replace the coefficient field \mathbb{Q}_{ℓ} by its algebraic closure $\overline{\mathbb{Q}}_{\ell}$.

An ℓ -adic representation is then a homomorphism to $GL(m, \overline{\mathbb{Q}}_{\ell})$. But we can also replace $\overline{\mathbb{Q}}_{\ell}$ by \mathbb{C} .

Michael Harris

Since the theory is purely algebraic, the difference is inconsequential.

Automorphic Galois representations and Langlands correspondences

Irreducible representations

At the other extreme, we have

Theorem (H-Taylor, Henniart)

Suppose $\ell \neq p$. There is a canonical bijection between irreducible (continuous) *m*-dimensional ℓ -adic representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and irreducible supercuspidal representations of $GL(m, \mathbb{Q}_p)$, preserving natural invariants of both sides.

Remark

Supercuspidal representations are the building blocks of the theory.

In between, there are irreducible representations of $GL(m, \mathbb{Q}_p)$ corresponding to any *m*-dimensional (continuous!) ℓ -adic representation of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, provided $\ell \neq p$.

The correspondence becomes a canonical bijection if one expands the class of representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ to include more general objects (Weil-Deligne parameter).

Moreover, the theorem is proved when \mathbb{Q}_p is replaced by any finite extension of \mathbb{Q}_p ; or (Laumon-Rapoport-Stuhler) by the local field $\mathbb{F}_q((T))$ (any finite field \mathbb{F}_q).

Finally, there is a version of the correspondence when \mathbb{Q}_p is replaced by \mathbb{R} or \mathbb{C} .

Adelic representations

Now suppose we have a continuous representation

$$\rho: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \overline{\mathbb{Q}}_{\ell}).$$

Recall that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ is built out of the $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ for primes p. Concretely, we have embeddings

$$Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \hookrightarrow Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$

so by restriction ρ defines $\rho_p : Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to GL(m, \overline{\mathbb{Q}}_\ell)$. For $p \neq \ell$ we have the local Langlands correspondence, hence an irreducible representation $\pi(\rho_p)$ of $GL(m, \mathbb{Q}_p)$. For $p = \ell$ we need to assume ρ_ℓ is of *de Rham type* (Fontaine).

Geometric representations

Theorem (Fontaine)

If ρ_{ℓ} is of de Rham type then ℓ -adic Hodge theory attaches a Weil-Deligne parameter to ρ_{ℓ} , and thus an irreducible representation $\pi(\rho_{\ell})$ of $GL(m, \mathbb{Q}_{\ell})$.

Definition

The representation ρ is *geometric* if (a) ρ_{ℓ} is of de Rham type and (b) for all but finitely many p, ρ_p is trivial on the inertia group I_p .

Now a geometric ρ gives us a collection $\{\pi_p\}$ for all prime numbers p. Also (Fontaine) get a representation π_{∞} of $GL(m, \mathbb{R})$.

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automorphic representations

Let $[\mathbf{S}(\mathbf{m})] = GL(m, \mathbb{Q}) \setminus GL(m, \mathbb{R}) \times \prod_{p} GL(m, \mathbb{Q}_p))$. It has simultaneous actions of $GL(m, \mathbb{R})$ and $GL(m, \mathbb{Q}_p)$ for all p.

Definition

The representation ρ is *automorphic* if the collection $(\{\pi_p\}, \pi_\infty)$ occurs as a direct summand in the space

 $L_2([\mathbf{S}(\mathbf{m})]/\sim).$

Conjecture (Fontaine-Mazur conjecture)

Any irreducible representation $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \mathbb{Q}_{\ell})$ that is geometric is automorphic.

The promanifold $[\mathbf{S}(\mathbf{m})]/\sim$ is homogeneous for the action of $G(\mathbf{A}) = GL(m, \mathbb{R}) \times \prod_{p} GL(m, \mathbb{Q}_p)).$

An analogue of the space of functions on (infinitely many copies of) the circle, a representation of the compact group U(1).

Decomposition of the latter under the U(1)-action is the (easy part of) the theory of Fourier series.

Decomposition of $L_2([\mathbf{S}(\mathbf{m})]/\sim)$ under the action of the group $G(\mathbf{A})$ is analogous.

▲□▶▲圖▶▲≣▶▲≣▶ = のへで

Langlands reciprocity, in two sentences

To each integer *m* we assign a promanifold $[\mathbf{S}(\mathbf{m})]/\sim$ that is homogenous for a very large group.

The theory of (geometric) Galois representations is – conjecturally – encompassed by non-abelian Fourier analysis on these homogeneous promanifolds.

(There is also a large part of the L_2 space that is irrelevant to Galois representations; we disregard all of this.)

Automorphic forms on function fields

Let $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_r\}$ be the punctured projective line over the finite field \mathbb{F}_p .

The field $k(X) = \mathbb{F}_p(T)$ is a global field. Choose $\ell \neq p$. Replace $\rho : Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(m, \overline{\mathbb{Q}}_\ell)$ by an irreducible *m*-dimensional ℓ -adic local system Λ on X; in other words, a representation ρ of $Gal(\overline{\mathbb{F}_p(T)}/\mathbb{F}_p(T))$ with values in $GL(m, \overline{\mathbb{Q}}_\ell)$, ramified only at $\{x_1, \ldots, x_r\}$. (The analogue for $\mathbb{P}^1(\mathbb{C}) \setminus \{x_1, \ldots, x_r\}$ is a linear system of differential equations with singularities only at the punctures.)

・ロト・日本・日本・日本・日本・日本

Langlands correspondence for function fields

As before, to such a Λ one attaches a representation π_x of $GL(m, k_x((T)))$ for each $x \in \mathbb{P}^1(\overline{\mathbb{F}}_p)$ (including the singularities x_i) with coordinates in the finite field k_x .

The collection $\{\pi_x\}$ is *automorphic* if it occurs in $L_2(S(m, X))$ where

$$S(m,X) = GL(m,k(X)) \setminus \prod_{x} 'GL(m,k_{x}((T))) / \sim .$$

The space S(m, X) is totally disconnected and in bijection with the set $Bun_m(X)(\mathbb{F}_p)$ of *rank m vector bundles* on *X* defined over \mathbb{F}_p (with trivializations at all points).

Langlands correspondence for function fields

Theorem (Laurent Lafforgue)

Every such Λ is automorphic.

In this theorem the punctured projective line over \mathbb{F}_p can be replaced by *any* algebraic curve over any finite field.

Michael Harris Automorphic Galois representations and Langlands correspondences

Langlands correspondence for function fields, general G

Replacing rank m vector bundles by principal G-bundles, where G is a reductive algebraic group, one gets an analogous space of automorphic forms

$$L_2(Bun_G(X)(k)); Bun_G(X)(k) = S(G,X) = G(k(X)) \setminus \prod_x {}^{\prime}G(k_x((T))) / \sim$$

This is the subject of the work of Vincent Lafforgue. The *m*-dimensional local system Λ is replaced by a *Langlands* parameter: a homomorphism from the fundamental group to the *Langlands dual group*.