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Collapsing in the Einstein Flow

John Lott

Abstract. We consider expanding vacuum spacetimes with a CMC foli-
ation by compact spacelike hypersurfaces. Under scale-invariant a pri-
ori geometric bounds (type-III), we show that there are arbitrarily large
future time intervals that are modeled by a flat spacetime or a Kasner
spacetime. We give related results for a class of expanding vacuum space-
times that do not satisfy the a priori bounds (type-II).
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3.3. One-Dimensional Orbit Space 2272
3.4. Two-Dimensional Orbit Space 2276

4. Type-II Blowdown 2280
Appendix A: Monotonicity Formulas 2283

A.1. Curvature Formulas Under an R
N -Symmetry 2284

A.2. Monotonicity Formulas for Equivolume Foliations 2285
A.3. Two Dimensions 2286

A.3.1. Gowdy Spacetime 2286
A.3.2. Non-Gowdy Spacetime 2288

A.4. Monotonicity of Reduced Volume 2289
A.4.1. The Case n = 2 2294

References 2294

1. Introduction

This paper is about the future behavior of vacuum Einstein solutions. We make
the following assumptions:

1. We have a globally hyperbolic vacuum spacetime M with a single bound-
ary component which is an initial spacelike hypersurface.

2. There is a foliation of M by compact n-dimensional constant mean cur-
vature (CMC) spacelike hypersurfaces X.

3. The mean curvatures H of the hypersurfaces are future-increasing and
range over an interval [H0, 0), where H0 < 0.

To say a word about the assumptions, there are examples of spatially
compact globally hyperbolic vacuum spacetimes without a CMC hypersurface
[13]. Nevertheless, having a CMC foliation is generally considered to be a fair
assumption and it allows one to define a canonical time function, the Hubble
time t = − n

H . The expanding nature of the spacetime is the statement that
H < 0.

The Lorentzian metric on M can be written as g = −L2dt2 +h(t), where
h(t) is a Riemannian metric on the compact manifold X. It is well known
that the vanishing of the Ricci curvature of g can be written as a flow E ,
parametrized by time t, on triples (h,K,L) that satisfy certain constraint
equations. Here K is a covariant 2-tensor field on X that becomes the second
fundamental form of the time slices. We call E an Einstein flow.

Fischer and Moncrief found that the normalized spatial volume
(−H)n vol(X,h(t)) is monotonically nonincreasing, and constant exactly when
g describes a Lorentzian cone over a Riemannian Einstein manifold with Ein-
stein constant −(n − 1), i.e., L = 1 and h(t) = t2hEin [16] (a closely related
monotonic quantity was found by Anderson [2]). They suggested that the
monotonicity of their normalized volume should imply that for a large part
of X, in the sense of relative volume, its future development is modeled on a
Lorentzian cone of the type mentioned above.
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1.1. Results

In this subsection we state the main results of this paper in a somewhat loose
form, with references to the precise statements in the body of the paper.

1.1.1. Integral Result. We must first introduce the rescaling of an expanding
CMC Einstein flow E . Given s ≥ 1, put hs(u) = s−2h(su), Ks(u) = s−1K(su)
and Ls(u) = L(su). Then, Es = (hs,Ks, Ls) is also an expanding CMC Ein-
stein flow. Given Λ > 1, the time interval [Λ−1, Λ] for Es corresponds to the
time interval [sΛ−1, sΛ] for E . Thus, we can analyze the future behavior of E
by understanding the limit as s → ∞ of Es, on a fixed time interval. It is not
hard to see that E is scale invariant if and only if it describes a Lorentzian
cone of the type mentioned above.

There is a pointwise monotonicity statement: (−H)n dvol(X,h(t)) is
monotonically nonincreasing. Put dvol∞ = limt→∞(−H)n dvol(X,h(t)).

As a consequence of the monotonicity of normalized volume, one obtains
an integral result about future evolution.

Theorem 1.1 (Propositions 2.36 and 2.41). After rescaling, the future evolution
becomes increasingly scale invariant, in an integral sense with respect to dvol∞.

Theorem 1.1 can be considered to say that the Fischer–Moncrief sugges-
tion is true in an integral sense. If dvol∞ = 0, then Theorem 1.1 is true but
vacuous.

To proceed, we divide the expanding CMC Einstein flows into two types.
Using the time vector field, one can make sense of the norm |Rm |T of the
Lorentzian curvature tensor (2.46). Borrowing terminology from Ricci flow,
we say that an expanding CMC Einstein flow is type-III if |Rm |T = O(t−2),
and type-IIb otherwise.

As model spaces, we list the simply connected spatially homogeneous
solutions with a future-directed expanding homothetic Killing vector field
(LV g = 2g) and a spatially compact quotient, in the case n = 3 [15, p. 187].
They are all type-III.

1. The Milne spacetime. This is the interior of a forward light cone in the
Minkowski space R

1,3.
2. The Bianchi-III flat spacetime. This is the product of R with the interior

of a forward light cone in the Minkowski space R
1,2.

3. The Taub-flat spacetime. This is the product of R
2 with the interior of a

forward light cone in the Minkowski space R
1,1.

4. The Kasner spacetimes on (0,∞)×R
3, with metric g = −du2+u2p1dx2+

u2p2dy2 + u2p3dz2. Here p1 + p2 + p3 = p21 + p22 + p23 = 1.
The Taub-flat spacetime is also the Kasner spacetime with (p1, p2, p3) =
(1, 0, 0), but we list it separately. Only the Milne spacetime is scale invari-
ant in our earlier sense.

1.1.2. Type-III Einstein Flows. In this subsubsection we assume that the Ein-
stein flow E is type-III. Then, we can improve Theorem 1.1 to a pointwise
statement.
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Theorem 1.2 (Proposition 3.5 and Remark 3.9). Given x ∈ X, if dvol∞(x) �= 0,
then after rescaling, the future evolution near x becomes increasingly like that
of a Lorentzian cone over a Riemannian Einstein space with Einstein constant
−(n − 1).

The Riemannian Einstein space in the preceding theorem is of a gener-
alized type, as discussed below.

We say that the Einstein flow is noncollapsing if dvol∞ �= 0. Anderson
initiated the study of noncollapsing type-III Einstein flows using rescaling,
monotonicity and compactness results [2]. We recapitulate these results in
Sect. 2.3. Most of this paper is concerned with the collapsing case, i.e., when
dvol∞ vanishes. The main point of the paper is to make use of results on
Einstein flows with continuous spatial symmetries. Einstein flows with sym-
metries have long been studied in general relativity as toy models. As in [22],
our viewpoint is rather that information about Einstein flows with symmetries
can give information about all Einstein flows that satisfy an a priori curvature
bound.

The appearance of continuous symmetries in collapsing Riemannian man-
ifolds, under uniform sectional curvature bounds, is known from work of Mar-
gulis, Gromov, Cheeger, Fukaya and many others. In this paper we promote
this to type-III Einstein flows, in analogy to earlier work on type-III Ricci flows
[22]. To describe the idea, consider first a manifold X with a sequence of Rie-
mannian metrics that collapse with uniformly bounded curvature. To analyze
the geometry near a point x ∈ X, one approach is to pass to finite covers of X,
if possible, that have a noncollapsed pointed limit. This unwrapping approach
was used for the Einstein flow by Anderson in [2]. Another approach is to pull
back metrics to a ball in TxX, using the exponential map, and pass to a non-
collapsed pointed limit. Both of these methods work well for local regularity
issues in the Einstein flow. However, to obtain nonlocal results, for example
to apply monotonicity formulas, it is necessary to have a global approach. For
example, in the tangent space approach, it is necessary to glue together the
various noncollapsed limits on the balls in the tangent spaces TxX, with their
local symmetries, as one varies x. A convenient language to do this is that of
étale groupoids, as used for the Ricci flow in [21,22]. A collapsing sequence
of pointed n-dimensional Riemannian manifolds, with uniformly bounded cur-
vature, has a subsequential limit that is a pointed n-dimensional Riemannian
groupoid. The Riemannian groupoid is an object with local symmetries; its
orbit space is the Gromov–Hausdorff limit of the collapsing Riemannian man-
ifolds, and it also retains information about the limit of their universal covers.

Theorem 1.3 (Corollary 2.54). Given a type-III Einstein flow E on a pointed
n-dimensional manifold, if {ti}∞

i=1 is a sequence tending to infinity, then after
passing to a subsequence, the rescalings Eti

converge to a type-III Einstein flow
E∞ on a pointed n-dimensional étale groupoid.

The convergence in Theorem 1.3 is in the weak W 2,p-topology for any
p < ∞, and in the C1,α-topology for any α ∈ (0, 1).
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In the rest of this subsubsection, we assume that n = 3 and X is aspher-
ical, i.e., has contractible universal cover. Then, the limit Einstein flow E∞

is of the type that occurs in dimensional reduction. It lives on an orbifold
X∞, which is the orbit space of E∞. When X∞ is not a point, the fields on
X∞ consist of a quintuple (h∞,K∞, L∞, G∞, A∞) where h∞ is a Riemannian
metric, K∞ is a covariant 2-tensor field, L∞ is a function, G∞ is locally an
N × N positive definite matrix and A∞ is locally an R

N -valued 1-form. Here
N = 3 − dim(X∞).

Thus, we are reduced to understanding the future behavior of E∞. To do
so, we again use monotonic quantities. We need to assume that there is some
D < ∞ so that the original flow E has diam(X,h(t)) ≤ Dt. This ensures that
X∞ is compact.

We now list the results about type-III Einstein flows in order of increasing
dimension of X∞. All of the results have consequences for the pointed future
behavior of the lift of the Einstein flow E to the universal cover ˜X, that do not
invoke groupoids (Corollaries 3.16, 3.33 and 3.53). We say that an Einstein
flow on an étale groupoid is of Kasner type if it is locally isometric to a Kasner
solution, and similarly for the other model solutions. We first consider the case
when the orbit space X∞ is a point.

Theorem 1.4 (Corollary 3.15). Suppose that the original Einstein flow E is
such that lim inft→∞ t−1 diam(X,h(t)) = 0. Then there is a sequence {ti}∞

i=1

going to infinity such that the rescaled solutions Eti
approach an Einstein flow

of Kasner type.

We now assume that we are not in the situation covered by Theorem 1.4,
and consider the case when the orbit space X∞ is one dimensional. To analyze
the future behavior of the limit flow E∞, we use monotonic quantities from
“Appendix A.” To do so, we need to make an assumption about the existence
of an equiareal foliation.

Theorem 1.5 (Proposition 3.29). Suppose that any limit Einstein flow has an
orbit space of positive dimension, and there is a limit Einstein flow E∞ whose
orbit space is one dimensional. Suppose that there is a time function û for
the limit flow E∞ that is comparable to the time function u for E∞, with the
property that det(G) is constant on level sets of û (Assumption 3.26). Then,
there is a sequence {ti}∞

i=1 going to infinity such that the rescaled solutions Eti

approach an Einstein flow of Taub-flat type.

Next, we assume that we are not in the situations covered by Theo-
rems 1.4 and 1.5, and consider the case when the orbit space X∞ is two
dimensional. To analyze the future behavior of the limit flow E∞, we again use
monotonic quantities from “Appendix A.” We now need to make an assump-
tion about the existence of a CMC foliation on a conformally related three-
dimensional Lorentzian metric.

Theorem 1.6 (Proposition 3.49). Suppose that any limit Einstein flow has an
orbit space of dimension at least two, and there is a limit Einstein flow E∞

whose orbit space is two dimensional. Suppose that there is a time function
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û for the limit flow E∞ that is comparable to the time function u for E∞,
so that the level sets of û have constant mean curvature for the conformally
modified Lorentzian metric ĝ of (3.37) (Assumption 3.46). Then there is a
sequence {ti}∞

i=1 going to infinity such that the rescaled solutions Eti
approach

an Einstein flow of Bianchi-III flat type.

Finally, if a limit flow has an orbit space of dimension three then the
rescalings of E approach a spatially compact quotient of the Milne spacetime
(Proposition 2.56).

We made some additional assumptions in Theorems 1.5 and 1.6. There is
some flexibility in the precise assumptions to make. Under weaker assump-
tions, one can prove integral convergence results (Propositions 3.23, 3.41
and 3.44). We need some assumptions to apply the monotonicity results of
“Appendix A,” which are an ingredient in our description of the future behav-
ior of E∞. Any other way to describe the future behavior would also work.

1.1.3. Type-II Einstein Flows. The type-III condition is generally not stable
under perturbation [25,26]. Hence, it is relevant to obtain information about
expanding CMC Einstein flows that are not type-III. Following Ricci flow
terminology, we call them type-IIb Einstein flows. Given such an Einstein flow
E and a time ̂t, let x

̂t be a point on the time-̂t slice where |Rm |T is maximized.
One can rescale the Einstein flow by |Rm |T (x

̂t,̂t) and shift the time parameter
so that the new flow has |Rm |T maximized by one on the time-0 slice. With
an appropriate choice of parameters {̂ti}∞

i=1 tending to infinity, these pointed
rescaled flows converge to an Einstein flow E∞. It exists for all times u ∈ R,
possibly on an étale groupoid.

Theorem 1.7 (Corollary 4.6). When n = 3, if the type-IIb Einstein flow E has
its second fundamental form K controlled by the mean curvature H, then E∞

is a static flat Einstein flow.

Theorem 1.7 applies to the locally homogeneous examples in [25]. The
theorem may sound paradoxical, because the rescaled flows have |Rm |T equal
to one at their basepoints, whereas the limit flow is flat. The point is that
the metrics converge in the weak W 2,p-topology. This is not enough to give
pointwise convergence of the curvature norm, even in the locally homogeneous
case. The interpretation is that the type-IIb Einstein solution has increasing
fluctuations of the curvature tensor, at least near points of maximal curvature,
that average it out to zero; c.f. Corollary 4.7. We do however have convergence
to the flat metric in the C1,α-topology for any α ∈ (0, 1).

1.2. Comparison with Ricci Flow

One can compare expanding CMC Einstein flows, on compact three-
dimensional manifolds, to immortal Ricci flows on compact three-dimensional
manifolds (a Ricci flow is immortal if it exists for t ∈ [0,∞)). There are some
common features.

1. There is a natural rescaling, and hence notions of type-III and type-IIb
solutions.
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2. There is a notion of a self-similar solution. For Ricci flow, this is a Ricci
soliton. For Einstein flow, this is a Lorentzian metric with a timelike
homothetic vector field.

3. There is a classification of homogeneous self-similar solutions for the con-
tractible Thurston geometries. The geometries R

3, H3, H2 × R, Nil and
Sol admit self-similar Ricci flow solutions. The geometries R

3, H3 and
H2 × R admit self-similar Einstein flow solutions.

4. The normalized volume form is nonincreasing.
5. Type-III Ricci flows with a scale-invariant a priori diameter bound

become increasingly homogeneous [22]. The same is true for type-III Ein-
stein flows with a scale-invariant a priori diameter bound, at least to the
extent proven in this paper.

On the other hand, there are important differences.

1. As a weakly parabolic flow, the Ricci flow is smoothing (in the right
coordinates), as seen by Shi’s local derivative estimates. In particular,
this allows one to take smooth limits. On the other hand, when taking
limits of Einstein flows, one cannot expect the limits to be much better
than W 2,p-regular.

2. An immortal three-dimensional Ricci flow is always type-III [4]. Expand-
ing CMC Einstein flows need not be type-III.

3. Given a Thurston type, if there is a homogeneous expanding Ricci soliton
with that geometry, then it is unique. The analogous statement is not true
for Einstein flows, as the Kasner solutions all have Thurston type R

3.
4. Considering immortal homogeneous Ricci flows, there is a single trans-

mutation: under the Ricci flow, a homogeneous ˜SL(2, R) geometry has a
rescaling limit with H2 × R geometry [21]. On the other hand, there are
three transmutations for type-III homogeneous Einstein flows: a homo-
geneous ˜SL(2, R) geometry has a rescaling limit with H2 × R geometry,
and a homogeneous Nil or Sol geometry has a rescaling limit with R

3

geometry.

On a technical level, in [22] we showed that any type-III Ricci flow, with
a scale-invariant a priori diameter bound, becomes increasingly homogeneous
as time increases. In the present paper we only show that there are large future
time intervals on which the Einstein flow becomes increasingly homogeneous.
The reason for the stronger conclusion in [22] is that we had unconditional
results for the long-time behavior of the limit Ricci flows, and hence could
apply contradiction arguments to get uniform statements about the long-time
behavior of the original Ricci flow. In the present paper, Assumptions 3.26
and 3.46 are needed in order to characterize the future behavior of the limit
Einstein flows. Because of this, we cannot apply contradiction arguments to
get uniform statements about the future behavior of the original Einstein flow.
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1.3. Structure of the Paper

Section 2 is about noncollapsed expanding CMC Einstein flows, first without
any a priori curvature assumptions and then with a type-III curvature assump-
tion. Section 3 concerns collapsing type-III Einstein flows. Section 4 is about
type-IIb Einstein flows. More detailed descriptions are at the beginnings of the
sections.

“Appendix A” has monotonicity formulas for expanding CMC n-
dimensional Einstein flows with a local R

N -symmetry. When n = 3, the mono-
tonic quantities largely reduce to those considered in [5,10,11]. We work in the
more general setting partly because, in our opinion, the derivations become
clearer and simpler there.

I thank Mike Anderson and Jim Isenberg for helpful discussions. I also
thank Mike for comments on an earlier version of this paper.

1.4. Conventions

Convergence in W k,p will mean convergence for all p < ∞. Convergence in Ck,α

will mean convergence for all α ∈ (0, 1). We will use the Einstein summation
convention freely.

2. Noncollapsed Einstein Flows

In this section we give results about Einstein flows with a scale invariant lower
volume bound. Section 2.1 gives the definitions of Einstein flow, CMC Einstein
flow and expanding CMC Einstein flow. We then recall the monotonicity of
normalized volume from [16].

In Sect. 2.2 we consider expanding CMC Einstein flows with compact
spacelike hypersurfaces, but no a priori curvature bounds. We show that in an
integral sense, relative to the limiting normalized volume form, for large time
the rescaled flow is asymptotically scale invariant.

Section 2.3 is about long-time results for noncollapsed type-III expanding
CMC Einstein flows, due largely to Anderson [2]. We give relevant notions of
convergence of a sequence of Einstein flows. We define the type-III condition
and show that with a lower volume bound and an upper diameter bound,
one gets convergence (after rescaling) to the space of Lorentzian cones over
Riemannian Einstein manifolds with Einstein constant −(n − 1). The rest of
the subsection is devoted to what one can say without the upper diameter
bound.

More detailed descriptions are at the beginnings of the subsections.

2.1. Volume Monotonicity

Definition 2.1. Let I be an interval in R. An Einstein flow E on an
n-dimensional manifold X is given by a family of nonnegative functions
{L(t)}t∈I on X, a family of Riemannian metrics {h(t)}t∈I on X, and a family
of symmetric covariant 2-tensor fields {K(t)}t∈I on X, so that if H = hijKij

and K0 = K − H
n h, then the constraint equations
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R − |K0|2 +
(

1 − 1
n

)

H2 = 0 (2.2)

and

∇iK
i
j − ∇jH = 0, (2.3)

are satisfied, along with the evolution equations
∂hij

∂t
= −2LKij (2.4)

and
∂Kij

∂t
= LHKij − 2LhklKikKlj − L;ij + LRij . (2.5)

For now, we will assume that X is compact and connected, and that all of
the data is smooth. At the moment, L is unconstrained; it will be determined
by the elliptic Eq. (2.13) below. We will generally want L(t) to be positive.

An Einstein flow gives rise to a Ricci-flat Lorentzian metric

g = −L2dt2 + h(t) (2.6)

on I × X, for which the second fundamental form of the time-t slice is K(t).
Conversely, given a Lorentzian metric g on a manifold with a proper time
function t, we can write it in the form (2.6) by using the flow of ∇t

|∇t|2 to
identify nearby leaves. Letting K(t) be the second fundamental form of the
time-t slice, the metric g is Ricci-flat if and only if (L, h,K) is an Einstein
flow.

Definition 2.7. A CMC Einstein flow is an Einstein flow for which H only
depends on t. It is expanding if I = [t0,∞) (or I = (t0,∞)), H is monotoni-
cally increasing in t and takes all values in [H0, 0) for some H0 < 0.

We digress to briefly discuss scale-invariant expanding CMC Einstein
flows. We say that this is the case if I = (0,∞) and

L = 1, h(ct) = c2h(t) (2.8)

for all c > 0. Then, from (2.4),

Kij = − th(1)ij = − 1
t
hij . (2.9)

Lemma 2.10. Equation (2.8) is equivalent to

L = 1, H = − n

t
, K0 = 0. (2.11)

In this case, Eqs. (2.2)–(2.5) are satisfied if and only if E is a Lorentzian cone
over a Riemanniann Einstein manifold with Einstein constant −(n − 1), i.e.,

g = −dt2 + t2hEin, (2.12)

where hEin is a Einstein metric on X with Einstein constant −(n − 1).

Proof. The equivalence of (2.8) and (2.11) is straightforward. If (2.12) holds,
then it is easy to see that Eqs. (2.2)–(2.5) are satisfied. Conversely, if (2.2)–(2.5)
are satisfied, then (2.11) implies that Rij = −(n − 1)h(1)ij = −n−1

t2 hij . �
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There is a more general notion of self-similarity for a vacuum Einstein
solution, namely having a future-directed homothetic Killing vector field V .
This means, in the expanding case, that LV g = 2g. If there is a compact space-
like hypersurface X of constant mean curvature, then g must be a Lorentzian
cone over a Riemannian Einstein manifold with Einstein constant −(n−1); see
[14] for the case n = 3. As mentioned in the introduction, if X is noncompact,
then there are other possibilities.

Returning to general expanding CMC Einstein flows, Eq. (2.5) gives

∂H

∂t
= − 	hL + LH2 + LR (2.13)

= − 	hL + L|K0|2 +
1
n

LH2.

The maximum principle gives

1
supX |K(t)|2

∂H

∂t
≤ L(t) ≤ n

H2

∂H

∂t
. (2.14)

We note in passing that if n > 1, then (2.2) gives a formula for the
normalized volume, as

(−H)n vol(X,h(t)) =
n

n − 1
(−H)n−2

∫

X

(−Rh + |K0|2) dvol(X,h(t)).

Proposition 2.15 [16]. Let E be an expanding CMC Einstein flow. The quantity
(−H)n vol(X,h(t)) is monotonically nonincreasing in t. It is constant in t if
and only if, taking t = − n

H , the Einstein flow E is a Lorentzian cone over a
Riemannian Einstein manifold with Einstein constant −(n − 1).

Proof. As in [16], using (2.4) we have the pointwise identity

∂

∂t
((−H)n dvol(X,h)) = (−H)n+1

(

L − n

H2

∂H

∂t

)

dvol(X,h). (2.16)

From (2.14), it follows that (−H)n dvol(X,h(t)) is pointwise monotonically
nonincreasing in t, and hence (−H)n vol(X,h(t)) is monotonically nonincreas-
ing in t. Alternatively, applying (2.13) to (2.16) gives

d
dt

((−H)n vol(X,h)) = − n(−H)n−1

∫

X

|K0|2L dvol(X,h). (2.17)

If it is constant in t, then K0 = 0. Taking t = − n
H , Eq. (2.13) gives L = 1. As

Kij = 1
nHhij = −hij

t , Eq. (2.4) gives hij(t) = t2hij(1). Equation (2.5) gives
Rij = −n−1

t2 hij . The proposition follows. �

Remark 2.18. Proposition 2.15 remains valid if L and h are locally W 2,p-
regular in spacetime, and K is locally W 1,p-regular in spacetime. It is also
valid for an expanding CMC Einstein flow with complete finite volume time
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slices, provided that L, K and the curvature of h are bounded on compact
time intervals.

2.2. Expanding CMC Einstein Flows Without a priori Bounds
In this subsection we show that in an integral sense, for large time the rescaled
Einstein flow is asymptotically scale invariant.

To motivate the result of the subsection, let us mention some properties
of a scale-invariant solution in the sense of Lemma 2.10:

1. t−n dvol(X,h(t)) is constant in t,
2. t−2h(t) is constant in t,
3. L − 1 = 0,
4. K0 = 0 and
5. R + n(n−1)

t2 = 0.
An expanding CMC Einstein flow has a limiting normalized volume mea-

sure dvol∞; see Eq. (2.19) below. The results of this subsection will be true
but vacuous if dvol∞ = 0. Hence, the results are only meaningful in the non-
collapsing case.

We will introduce the rescaling of a expanding CMC Einstein flow by a
parameter s > 1, to obtain a new expanding CMC Einstein flow. Using the
monotone quantity from Sect. 2.1, we show that on any fixed time interval
[Λ−1, Λ], the properties in (2.2) are asymptotically true for large s. More pre-
cisely, properties (1) and (2) hold asymptotically with respect to the spatial
measure dvol∞, while properties (3), (4), (5) hold asymptotically with respect
to the spacetime measure du dvol∞.

We essentially show C0-closeness of the rescaled flows to a scale invari-
ant flow (relative to dvol∞) by showing that properties (1), (2) and (3) hold
asymptotically. To consider a stronger statement, Lemma 2.10 says that a
scale-invariant Einstein flow in the sense of (2.8) has time slices with Ricci
curvature −n−1

t2 h(t). It is conceivable that some weak form of this statement
holds asymptotically in an integral sense. We do show that the corresponding
statement about scalar curvature, i.e., property (5), holds asymptotically.

To begin, taking t = − n
H , from (2.16) the measures {t−n dvol(X,h(t))}t≥t0

are pointwise nonincreasing in t. They are all absolutely continuous with
respect to some arbitrary smooth Riemannian measure on X, and their L1-
densities are pointwise nonincreasing. Put

dvol∞ = lim
t→∞

dvol(X,h(t))
tn

, (2.19)

a nonnegative absolutely continuous measure on X.
We give a sufficient condition for dvol∞ to be nonzero. From (2.2),

t2R + n(n − 1) = |tK0|2. (2.20)

Hence, R ≥ − n(n−1)
t2 and letting gX range over all Riemannian metrics on X,

we have

t−n vol(X,h(t)) ≥ inf
gX

{

t−n vol(X, gX) : R(gX) ≥ − n(n − 1)
t2

}
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= inf
gX

{vol(X, gX) : R(gX) ≥ − n(n − 1)}. (2.21)

It follows that
∫

X

dvol∞ ≥ inf{vol(X, gX) : R(gX) ≥ − n(n − 1)}. (2.22)

If X has a nonpositive σ-invariant, then we obtain
∫

X

dvol∞ ≥
(

− σ(X)
n(n − 1)

)
n
2

, (2.23)

as was recognized in [16]. In particular, if dim(X) = 3 and X contains a
hyperbolic piece in its Thurston decomposition, then σ(X) < 0 and hence
∫

X
dvol∞ > 0.

The results that follow in this subsection will be true but vacuous if dvol∞
vanishes.

Lemma 2.24. We have

lim
t→∞

t−n dvol(X,h(t))
dvol∞

= 1 (2.25)

in L1(supp(dvol∞); dvol∞).

Proof. As t−n dvol(X,h(t)) and dvol∞ are absolutely continuous on X, the
ratio t−n dvol(X,h(t))

dvol∞
is measurable on supp(dvol∞). As t−n dvol(X,h(t))

dvol∞
is mono-

tonically decreasing to 1 as t → ∞, the monotone convergence theorem gives

lim
t→∞

∫

X

∣

∣

∣

∣

t−n dvol(X,h(t))
dvol∞

− 1
∣

∣

∣

∣

dvol∞

= lim
t→∞

∫

X

(

t−n dvol(X,h(t))
dvol∞

− 1
)

dvol∞ = 0. (2.26)

This proves the lemma. �

We now prove some integral inequalities. From (2.17), we have

n

∫ ∞

t0

(−H)n−1

∫

X

|K0|2L dvol(X,h(t)) dt

= (−H(t0))n vol(X,h(t0)) − lim
t→∞(−H(t))n vol(X,h(t)) < ∞. (2.27)

As

t = − n

H
, (2.28)

we obtain
∫ ∞

t0

∫

X

|tK0|2L dvol(X,h(t))
tn

dt

t
< ∞. (2.29)

Hence,
∫ ∞

t0

∫

X

|tK0|2L dvol∞
dt

t
≤
∫ ∞

t0

∫

X

|tK0|2L dvol(X,h(t))
tn

dt

t
< ∞.

(2.30)
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Using (2.13) and (2.28), we have

n(1 − L) = −t2	hL + |tK0|2L. (2.31)

The maximum principle gives 1 − L ≥ 0. Then
∫ ∞

t0

∫

X

|L − 1| dvol∞
dt

t
=
∫ ∞

t0

∫

X

(1 − L) dvol∞
dt

t

≤
∫ ∞

t0

∫

X

(1 − L)
dvol(X,h(t))

tn
dt

t

=
1
n

∫ ∞

t0

∫

X

|tK0|2 L
dvol(X,h(t))

tn
dt

t
< ∞. (2.32)

From (2.20) and (2.30),
∫ ∞

t0

∫

X

t2
∣

∣

∣

∣

R +
n(n − 1)

t2

∣

∣

∣

∣

L dvol∞
dt

t

=
∫ ∞

t0

∫

X

(t2R + n(n − 1))L dvol∞
dt

t

≤
∫ ∞

t0

∫

X

(t2R + n(n − 1))L
dvol(X,h(t))

tn
dt

t

=
∫ ∞

t0

∫

X

|tK0|2L dvol(X,h(t))
tn

dt

t
< ∞. (2.33)

For s > 1, the Lorentzian metric s−2g is isometric to

gs = −L2(su)du2 + s−2h(su). (2.34)

Hence, we put

Ls(u) = L(su), hs(u) = s−2h(su), Ks,ij(u) = s−1Kij(su), (2.35)

Hs(u) = sH(su), K0
s,ij(u) = s−1K0

ij(su), |K0|2s(u) = s2Kij(su),

Rs,ij(u) = Rij(su), Rs(u) = s2R(su).

The variable u will refer to the time parameter of a rescaled Einstein flow, or
a limit of such.

Proposition 2.36. Given Λ > 1, we have

lim
s→∞(Ls − 1) = lim

s→∞ |K0|2sLs = lim
s→∞

∣

∣

∣

∣

Rs +
n(n − 1)

u2

∣

∣

∣

∣

Ls = 0 (2.37)

in L1
(

[Λ−1, Λ] × X,du dvol∞
)

.

Proof. We prove that lims→∞ |K0|2sLs = 0. The proofs for the other state-
ments are similar, using (2.32) and (2.33).

Suppose that it is not true that lims→∞ |K0|2sLs = 0 in
L1

(

X × [Λ−1, Λ],dvol∞ du
)

. Then, there is some ε > 0 and a sequence {si}∞
i=1

with limi→∞ si = ∞ and
∫ Λ

Λ−1

∫

X

|K0|2si
Lsi

dvol∞ du ≥ ε. (2.38)
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After passing to a subsequence, we can assume that the intervals [siΛ
−1, siΛ]

are disjoint. Now
∫ siΛ

siΛ−1

∫

X

|tK0(t)|2L(t) dvol∞
dt

t

=
∫ Λ

Λ−1

∫

X

s2i u
2|K0(siu)|2L(siu) dvol∞

du

u

≥ Λ−1

∫ Λ

Λ−1

∫

X

s2i |K0(siu)|2L(siu) dvol∞ du

≥ Λ−1ε. (2.39)

This contradicts (2.30). �
From Lemma 2.24, the volume forms of the rescaled metrics hs(u)

approach dvol∞ in an appropriate sense, as s → ∞. We now look at what one
can say about the rest of hs(u). In the scale-invariant setting of Lemma 2.10,
for any s > 1, the rescaled metrics u−2hs(u) are constant in u. In particular,
for any Λ > 1, we have hs(1) = Λ−2hs(Λ). Without assuming scale invariance,
we would like to compare the nonvolume parts of hs(1) and hs(Λ) as s → ∞.
To do so, we look at their pointwise change as an element of a symmetric
space.

Given Λ > 1, s >> 1 and x ∈ X, there is some Hs,Λ(x) ∈ End(Tx) such
that

hs(x,Λ) = Hs,Λ(x)∗hs(x, 1)Hs,Λ(x). (2.40)

It is defined up to left multiplication by Isom(TxX,hs(x, 1)). Let H1
s,Λ(x) be

the rescaling of Hs,Λ(x) to have determinant one. After choosing an orthonor-
mal basis of (TxX,hs(x, 1)), the endomorphism H1

s,Λ(x) defines an element of
the symmetric space SO(n)\SL(n) of n×n symmetric matrices with determi-
nant one. Let In ∈ SO(n)\SL(n) be the basepoint represented by the identity
matrix. Let dsymm be the distance on SO(n)\SL(n), coming from the Rie-
mannian metric given by 〈H,H〉 = Tr(H2) for a traceless symmetric matrix
H ∈ TIn

(SO(n)\SL(n)).

Proposition 2.41. We have

lim
s→∞ dsymm(H1

s,Λ, In) = 0 (2.42)

in L2(X, dvol∞).

Proof. Let M0 denote the traceless part of an n × n matrix M , i.e., M0 =
M − 1

n (TrM)In. From (2.4), the length of the curve {H1
s,u(x)}Λ

u=1 is

∫ Λ

1

√

√

√

√

√Tr

⎛

⎝

(

(

hs(x, u)− 1
2
∂hs(x, u)

∂u
hs(x, u)− 1

2

)0
)2

⎞

⎠ du

= 2
∫ Λ

1

|K0
s (x, u)|Ls(x, u)du. (2.43)



Vol. 19 (2018) Collapsing in the Einstein Flow 2259

Using the Cauchy–Schwarz inequality and the fact that Ls ≤ 1,

d2symm(H1
s,Λ(x), In) ≤ 4

∫ Λ

1

|K0
s |2(x, u)Ls(x, u)du

∫ Λ

1

Ls(x, u)du

≤ 4(Λ − 1)
∫ Λ

1

|K0
s |2(x, u)Ls(x, u)du. (2.44)

The proposition now follows from Proposition 2.36. �

Remark 2.45. We cannot conclude from (2.42) that there is a dvol∞-almost
everywhere limit as t → ∞ of ( dvol∞

dvolh(t)
)

1
n h(t). The reason is the factor of (Λ−1)

in (2.44), which prevents us from taking Λ → ∞.

2.3. Noncollapsed Type-III Einstein Flows

This subsection is devoted to noncollapsed expanding CMC Einstein flows with
an a priori scale-invariant curvature bound. The results of this subsection are
largely due to Anderson [2]. As we will need some of the results in a more
general setting, we give a self-contained presentation, modulo some technical
results that we quote.

Section 2.3.1 begins with the notion of convergence for a sequence of CMC
Einstein flows. We then give a compactness result for CMC Einstein flows that
uniformly satisfy certain geometric bounds. We define type-III Einstein flows
and obtain a compactness result for the rescalings of a noncollapsed type-III
Einstein flow.

In Sect. 2.3.2 we assume that the noncollapsed type-III Einstein flow has a
scale-invariant a priori diameter bound. We show that the rescalings approach
the collection of Lorentzian cones over compact Riemannian Einstein manifolds
with Einstein constant −(n−1). This is a straightforward generalization of the
n = 3 results in [2, Section 3] (we use the Fischer–Moncrief normalized volume
functional, whereas Anderson used a different but closely related monotonic
quantity).

Section 2.3.3 analyzes noncollapsed type-III Einstein flows without the a
priori diameter bound. The result is that for large time, there is a decomposi-
tion of X into a “thick part” where the rescaled flow looks like a Lorentzian
cone over a compact Riemannian Einstein manifold with Einstein constant
−(n − 1), and a “thin” part that has a F -structure in the sense of Cheeger–
Gromov [6]. When n is two or three, one can also say that after rescaling,
points in the thin part are volume collapsed. The n = 3 result was stated in
[2, Section 3]; we add some detail to the arguments.

Section 2.3.3 is not needed for the rest of the paper. Stronger conclusions
in the n = 3 case, under stronger assumptions (boundedness of Bel–Robinson
energies), are in [23].

To begin, we say how we measure the pointwise size of the curvature
tensor. Let E be an Einstein flow. Let g be the corresponding Lorentzian metric.
Put e0 = T = 1

L
∂
∂t , a unit timelike vector that is normal to the level sets of t.
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Let {ei}n
i=1 be an orthonormal basis for e⊥

0 . Put

|Rm |T =

√

√

√

√

n
∑

α,β,γ,δ=0

R2
αβγδ. (2.46)

2.3.1. Limits of CMC Einstein Flows. Let E∞ = (L∞, h∞,K∞) be a CMC
Einstein flow on a pointed n-manifold (X∞, x∞), with complete time slices,
defined on a time interval I∞. For the moment, t need not be the Hubble time.

Definition 2.47. The flow E∞ is W 2,p-regular if X∞ is a W 3,p-manifold, L∞

and h∞ are locally W 2,p-regular in space and time, and K∞ is locally W 1,p-
regular in space and time.

Note that the equations of Definition 2.1 make sense in this generality.
Let E(k) = {h(k),K(k), L(k)}∞

k=1 be smooth CMC Einstein flows on
pointed n-manifolds {(X(k), x(k)

)}∞
k=1, defined on time intervals I(k).

Definition 2.48. We say that limk→∞ E(k) = E∞ in the pointed weak W 2,p-
topology if

• Any compact interval S ⊂ I∞ is contained in I(k) for large k, and
• For any compact interval S ⊂ I∞ and any compact n-dimensional

manifold-with-boundary W∞ ⊂ X∞ containing x∞, for large k there are
pointed time-independent W 3,p-regular diffeomorphisms φS,W,k : W∞ →
W (k) (with W (k) ⊂ X(k)) so that

– limk→∞ φ∗
S,W,kL(k) = L∞ weakly in W 2,p on S × W∞,

– limk→∞ φ∗
S,W,kh(k) = h∞ weakly in W 2,p on S × W∞ and

– limk→∞ φ∗
S,W,kK(k) = K∞ weakly in W 1,p on S × W∞.

We define pointed (norm) C1,α-convergence similarly.

Definition 2.49. Let S be a collection of pointed CMC Einstein flows defined on
a time interval I∞. We say that a sequence {E(k)}∞

k=1 approaches S as k → ∞,
in the pointed weak W 2,p-topology, if for any subsequence of {E(k)}∞

k=1, there
is a further subsequence that converges to an element of S in the pointed weak
W 2,p-topology.

Definition 2.50. Let S be a collection of pointed CMC Einstein flows defined on
a time interval I∞. We say that a 1-parameter family {E(s)}s∈[s0,∞) of pointed
CMC Einstein flows approaches S, in the pointed weak W 2,p-topology, if for
any sequence {sk}∞

k=1 in [s0,∞) with limk→∞ sk = ∞, there is a subsequence
of the flows {E(sk)}∞

k=1 that converges to an element of S in the pointed weak
W 2,p-topology.

We define “approaches S” in the pointed (norm) C1,α-topology similarly.
The motivation for these definitions comes from how one can define conver-
gence to a compact subset of a metric space, just using the notion of sequential
convergence. In our applications, the relevant set S of Einstein flows can be
taken to be sequentially compact.

The next result is essentially contained in [2, Proof of Theorem 3.1].
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Proposition 2.51. Let
{E(k)

}∞
k=1

be a sequence of CMC Einstein flows on
pointed n-dimensional manifolds (X(k), x(k)). Suppose that each E(k) is defined
on a time interval I(k), on which the mean curvature H(k) is negative and
increasing. Suppose that each E(k) has complete time slices. Suppose that
I∞ ⊂ R is an interval so that for any compact interval S ⊂ I∞,

• For large k we have S ⊂ I(k), and
• For large k, there are uniform upper bounds on

∣

∣H(k)
∣

∣,
∣

∣
d
dtH

(k)
∣

∣,
∣

∣

∣

d2

dt2 H(k)
∣

∣

∣,
∣

∣

∣

d3

dt3 H(k)
∣

∣

∣, − d
dt

1
H(k) and

∣

∣

∣Rm(k)
∣

∣

∣

T
on S.

Fix t0 ∈ I∞. Suppose that there is some v0 > 0 so that for all large k,
the time-t0 unit ball satisfies vol

(

Bh(k)(t0)(x
(k), 1)

) ≥ v0. Then, after passing
to a subsequence, there is a limit limk→∞ E(k) = E∞ in the pointed weak W 2,p-
topology and the pointed C1,α-topology. The limit flow E∞ is defined on a
pointed n-manifold (X∞, x∞), and on the time interval I∞. Its time slices are
complete.

If for each compact interval S ⊂ I∞, there is some CS < ∞ such that
∣

∣K(k)
∣

∣

2 ≤ CS
dH(k)

dt for all large k, on the time interval S, then the limiting
lapse function L∞ is positive.

Proof. On any compact interval S ⊂ I∞, the bounds on H(k) and
∣

∣

∣Rm(k)
∣

∣

∣

T

give bounds on
∣

∣K(k)
∣

∣ for large k [2, Proposition 2.2], and hence on the curva-
ture of h(k). From (2.14), there is a uniform upper bound on the lapse functions
L(k). Using (2.13) and taking t-derivatives of it, there are W 2,p-bounds on the
L(k)’s; see [2, p. 551] and [9, Section 3]. One also has first derivative bounds
on K. In all, one obtains W 2,p-bounds on

{E(k)
}∞

k=1
over the time interval S;

c.f. [9, Theorem 3.1]
Using the lower volume bound, after passing to a subsequence of the

pointed Riemannian manifolds {(X(k), x(k), h(k)(t0))}∞
k=1 there is a pointed

W 3,p-regular limit manifold (X∞, x∞) with a complete W 2,p-regular limit Rie-
mannian metric h∞(t0). Let W∞ ⊂ X∞ be a compact n-dimensional manifold-
with-boundary containing x∞ and let φW,k : W∞ → W (k) be the comparison
diffeomorphisms inherent in forming X∞. Put

φS,W,k = (IdS ×φW,k) : (S × W∞) →
(

S × X(k)
)

. (2.52)

We have uniform (in k) pointed W 2,p-bounds on
{

φ∗
S,W,kE(k)

}∞

k=1
, in the sense

of Definition 2.47. The construction of E∞ now follows from a standard diag-
onal argument; c.f. [18, Section 2].

The uniform bounds on
∣

∣K(k)
∣

∣ give uniform multiplicative bounds on the
distance distortion when going from time t0 to another time t ∈ I∞, from
which the completeness of (X∞, h∞(t)) follows.

If
∣

∣K(k)
∣

∣

2 ≤ CS
dH(k)

dt then (2.14) implies that L(k) ≥ C−1
S on the time

interval S. Hence, L∞ ≥ C−1
S on S. �

We take t = − n
H .
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Definition 2.53. A type-III Einstein flow is an expanding CMC Einstein flow
for which there is some C < ∞ so that |Rm |T ≤ Ct−2.

Recall the rescaling from (2.35). We write the rescaled Einstein flow as
Es. It is also type-III, with the same constant C.

Corollary 2.54. Let E be a type-III Einstein flow on an n-dimensional manifold
X. Suppose that it is defined on a time interval [t0,∞) with t0 > 0, and has
complete time slices. Let {ti}∞

i=1 be a sequence in [t0,∞) with limi→∞ ti = ∞
and let {xi}∞

i=1 be a sequence in X with the property that vol
(

Bh(ti)(xi, ti)
) ≥

v0t
n
i for large i, and some v0 > 0. Then, after passing to a subsequence, which

we relabel as {ti}∞
i=1 and {xi}∞

i=1, there is a limit limi→∞ Eti
= E∞ in the

pointed weak W 2,p-topology and the pointed C1,α-topology. The limit flow E∞

is defined on the time interval (0,∞). Its time slices {(X∞, h∞(u))}u>0 are
complete. Its lapse function L∞ is uniformly bounded below by a positive con-
stant.

Proof. Put I(i) = [t0/ti,∞), I∞ = (0,∞) and E(i) = E(i)
ti

. The existence of
E∞ follows from Proposition 2.51. From the proof of Proposition 2.51, on any
compact interval S ⊂ I∞ there is a bound

∣

∣K(i)
∣

∣

2 ≤ const. t−2 that is uniform
in i. As dH(i)

dt = n
t2 , Proposition 2.51 implies that L∞ > 0. From its proof, L∞

is uniformly bounded below by a positive constant. �

2.3.2. Noncollapsed Type-III Einstein Flows with a Diameter Bound. In the
rest of this section, we will only consider type-III Einstein flows. In this sub-
subsection, we make the following assumption.

Assumption 2.55. There is some D < ∞ so that for all t, we have
diam(X,h(t)) ≤ Dt.

Let S be the collection of Einstein flows that generate Lorentzian cones
over compact n-dimensional Riemannian Einstein manifolds with Einstein con-
stant −(n − 1). They are defined on the time interval (0,∞).

Proposition 2.56 [2]. Suppose that a type-III Einstein flow E satisfies Assump-
tion 2.55, with limt→∞ t−n vol(X,h(t)) > 0. Then, as s → ∞, the rescaled
flows Es approach S in the weak W 2,p-topology and C1,α-topology.

Proof. Let {si}∞
i=1 satisfy limi→∞ si = ∞. Pick arbitrary basepoints xi ∈ X.

From the upper diameter bound and the positive lower volume bound on
(X,hsi

(1)), the Bishop–Gromov inequality gives a v0 > 0 so that for each i,
we have vol

(

Bhsi
(1)(xi, 1)

)

≥ v0. Corollary 2.54 now gives a subsequential

limit Einstein flow E∞, which a priori is W 2,p-regular in the sense of Defini-
tion 2.47. Because of the diameter bounds, X∞ is compact. The monotonic-
ity of t−n vol(X,h(t)) implies that u−n vol(X∞, h∞(u)) is constant in u. By
Proposition 2.15 and Remark 2.18, E∞ ∈ S. This proves the proposition. �

The lower volume bound in Proposition 2.56 is guaranteed when the
topology of X is such that it cannot collapse with bounded curvature and
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bounded diameter. For example, it suffices that X have a nonzero character-
istic number or a nonvanishing simplicial volume. The conclusion of Propo-
sition 2.56 implies that X carries an Einstein metric with Einstein constant
−(n − 1).

In three dimensions, if X admits a hyperbolic metric, then it has positive
simplicial volume and cannot collapse with bounded curvature and bounded
diameter. An Einstein three-manifold with Einstein constant −2 is hyperbolic.

Corollary 2.57. Suppose that a three-dimensional type-III Einstein flow E satis-
fies Assumption 2.55, with limt→∞ t−3 vol(X,h(t)) > 0. Let ˜E denote the pull-
back Einstein flow on the universal cover ˜X. For s > 0, choose x̃s ∈ ˜X. Then,
as s → ∞, the pointed rescaled flows

(

˜Es, x̃s

)

approach the flat Milne solution

with basepoint (1, x̃∞) ∈ (0,∞) × H3, in the pointed weak W 2,p-topology and
the pointed C1,α-topology.

Remark 2.58. The notion of convergence in Proposition 2.56 is up to s-
dependent diffeomorphisms. For this reason, Proposition 2.56 does not imply
that lims→∞ hs(·) exists as a metric. As Proposition 2.56 does give regions that
are arbitrarily close to Lorentzian cones in S, a stability result for Lorentzian
cones would imply that that lims→∞ hs(·) exists as a metric. When n = 3,
the stability result of [3] needs, in particular, H3-closeness of hs(1) to the
hyperbolic metric on X. From Proposition 2.56 we only get weak W 2,p-
closeness or C1,α-closeness. If we strengthen the type-III assumption to include
|∇Rm |T ≤ Ct−3 and |∇∇Rm |T ≤ Ct−4, then we will get C3,α-closeness and
the stability result will apply.

2.3.3. Noncollapsed Type-III Einstein Flows Without a Diameter Bound. In
this subsubsection we remove the diameter assumption in Sect. 2.3.2.

Let S be the collection of Einstein flows that generate Lorentzian cones
over finite volume complete connected pointed n-dimensional Riemannian Ein-
stein manifolds with Einstein constant −(n− 1). They are defined on the time
interval (0,∞).

Proposition 2.59. Let E be a type-III Einstein flow with time slices diffeomor-
phic to a compact connected n-dimensional manifold X. Given v > 0, there
is some Nv ∈ N so that for all t ≥ t0, there is a set {xt,j}N ′

t
j=1 in X, with

N ′
t ≤ Nv, such that

• Each x ∈ X − ⋃N ′
t

j=1 Bh(t)(xt,j , 2t) has t−n vol(Bh(t)(x, t)) < v. Here
Bh(t)(x, t) denotes the ball of radius t around x with respect to the metric
h(t).

• Let {ti}∞
i=1 be a sequence tending to infinity such that {xti,j}

N ′
ti

j=1 is

nonempty for each i. Let xi be a choice of an element of {xti,j}
N ′

ti
j=1 for

each i. Then, as i → ∞, the pointed rescaled flows (Eti
, xi) approach S

in the pointed weak W 2,p-topology and the pointed C1,α-topology.
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Proof. Define the v-thick part of (X,h(t)) by

Xv-thick,h(t) = {x ∈ X : t−n vol
(

Bh(t)(x, t)
) ≥ v}. (2.60)

If Xv-thick,h(t) �= ∅, choose a maximal collection of points {xt,j} in Xv-thick,h(t)

so that the balls Bh(t)(xt,j , t) are disjoint. From volume monotonicity, there
is some V0 < ∞ so that for all t ≥ t0, we have t−n vol(X,h(t)) ≤ V0. Hence,
the number of points in the collection is bounded above by N = V0

v . The first
conclusion of Proposition 2.59 follows.

Given the sequence {ti}∞
i=1 tending to infinity, after passing to a sub-

sequence, from Corollary 2.54 the rescaled pointed flows {(Eti
, xi)} converge

to a pointed W 2,p-regular Einstein flow (E∞, x∞) with complete time slices
(X∞, h∞(u)) of constant mean curvature − n

u , defined for u ∈ (0,∞).
To show that (E∞, x∞) lies in S, we claim first that its lapse function

L∞ is identically one. Suppose not. From (2.31), the lapse L for E is bounded
above by one. Hence, L∞ is also bounded above by one. Suppose that L∞ �= 1.
Then, there are a compact set K∞ ⊂ X∞, a time interval [u1, u2] ⊂ (0,∞)
and a number ε > 0 so that

∫ u2

u1

∫

K∞
(1 − L∞)

dvol(X∞, h∞(u))
un

du

u
> ε. (2.61)

It follows that for large i, there are compact subsets Ki ⊂ X so that
∫ tiu2

tiu1

∫

Ki

(1 − L)
dvol(X,h(t))

tn
dt

t
>

ε

2
. (2.62)

From the set of intervals {[tiu1, tiu2]}∞
i=1, we can extract a subset consisting

of an infinite number of disjoint intervals. Then, (2.62) gives a contradiction
to the fact from (2.32) that

∫ ∞

t0

∫

X

(1 − L)
dvol(X,h(t))

tn
dt

t
< ∞. (2.63)

Hence, L∞ = 1. A similar argument, using (2.29), shows that |K0,∞|2L∞

= 0. Then, from Lemma 2.10, the limit flow E∞ lies in S. This proves the
proposition. �

Remark 2.64. From [7, Theorem 0.1] and [8, Theorem 4.7], there is some
v0 = v0(n,C) > 0 so that for all large t, the complement of the v0-thick
set Xv0−thick,h(t) is part of an open subset of X with an F -structure (here
C is the constant from Definition 2.53). In particular, if X does not carry an
F -structure, then Xv0−thick,h(t) is nonempty for all large t. For example, it
suffices that X have a nonzero Euler characteristic or a nonvanishing simpli-
cial volume, e.g., if dim(X) = 3 that X has a hyperbolic piece in its Thurston
decomposition.

2.3.4. Dimensions Two and Three. If n is two or three, then a finite volume
complete Riemannian manifold with Ric = −(n − 1)g is hyperbolic, i.e., has
constant sectional curvature −1. There is a positive lower bound on the vol-
umes of such manifolds.
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For n ∈ {2, 3}, let S now be the collection of Einstein flows that gen-
erate flat Lorentzian cones over finite volume complete connected pointed n-
dimensional hyperbolic manifolds.

Proposition 2.65. Let E be a type-III Einstein flow with time slices diffeomor-
phic to a compact connected n-dimensional manifold X, where n ∈ {2, 3}.
Then, there are a number N ∈ N and a function σ : [t0,∞) → (0,∞) with
limt→∞ σ(t) = 0 so that for all t ≥ t0, there is a set {xt,j}N ′

t
j=1 in X, with

N ′
t ≤ N , such that

• Each x ∈ X −⋃N ′
t

j=1 Bh(t)

(

xt,j ,
t

σ(t)

)

has t−n vol(Bh(t)(x, t)) < σ(t).

• Let {ti}∞
i=1 be a sequence tending to infinity such that {xti,j}

N ′
ti

j=1 is

nonempty for each i. Let xi be a choice of an element of {xti,j}
N ′

ti
j=1 for

each i. Then, as i → ∞, the pointed rescaled flows (Eti
, xi) approach S

in the pointed weak W 2,p-topology and the pointed C1,α-topology.

Proof. Using the Margulis lemma and pointed compactness, there is some
v0 > 0 so that for all sufficiently small v > 0, there is some D(v) < ∞
with the following property. If (Z, h) is a finite volume complete connected
n-dimensional hyperbolic manifold, n ∈ {2, 3}, then Zv-thick,h is contained in
the D(v)-neighborhood of Z2v0−thick,h.

Consequently, we can carry out the proof of Proposition 2.59 while let-
ting v go to zero, but keeping basepoints {xt,j}N ′

t
j=1 within Xv0−thick,h(t). The

proposition follows. �

Remark 2.66. There is a possible redundancy in the choice of basepoints
{xt,j}N ′

t
j=1 in Proposition 2.65. In the second conclusion of the proposition, if

xi = xti,ji
and x′

i = xti,j′
i

are choices of basepoints with dh(ti)(xi, x
′
i) = O(ti),

then they will give rise to the same element of S, up to a change of base-
point. After eliminating this redundancy, we can say that for large t, there
is a decomposition of

(

X, h(t)
t2

)

into an almost-hyperbolic part and a locally
collapsing part.

We do not claim that as t → ∞, the volume of the almost-hyperbolic
part approaches limt→∞ t−n vol(X,h(t)). That is, it is conceivable that there
is a substantial part of the volume in the locally collapsing part of (X,h(t)).

3. Einstein Flows on Étale Groupoids

This section contains the results about collapsed type-III Einstein flows. The
convergence results are phrased in terms of Einstein flows on étale groupoids.
We refer to [22, Section 3] for an overview, aimed at geometers, of the use of
groupoids in collapsing theory. More details appear in [21, Section 5].

In Sect. 3.1 we define Einstein flows on étale groupoids. We extend the
results of Sect. 2.3.1 by removing the lower volume bound assumption. As
an immediate application, we strengthen the convergence result of Sect. 2.2
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when the Einstein flow is type-III. Namely, for any point x ∈ X with
dvol∞(x) �= 0, the rescaled Einstein flows around x converge in the pointed
sense to Lorentzian cones over (possibly collapsed) Riemannian Einstein met-
rics with Einstein constant −(n − 1).

From Sect. 3.1, after performing rescalings on a type-III Einstein flow E ,
we can extract subsequential limit Einstein flows that live on étale groupoids.
In the rest of the section, we restrict to the case n = 3. We also assume
a scale invariant a priori diameter bound on E . The goal is to show that
there are arbitrarily large future time intervals on which E is modeled, in a
scale-invariant way, by one of a few homothety-invariant homogeneous Einstein
flows, depending on the Thurston type of X.

The dimension of the orbit space of the étale groupoid is the same as
the dimension of the Gromov–Hausdorff limit of the rescaled time slices. The
case when the dimension is three was covered in Sect. 2.3.2. The cases when
the orbit space has dimension zero, one or two are covering in Sects. 3.2, 3.3
and 3.4, respectively. More detailed descriptions are at the beginnings of the
subsections.

To summarize the relation between type-III flows (with a scale invariant
diameter bound) and topology, we recall the notion of the Thurston type of
a compact 3-manifold [27]. This is a topological notion, i.e., we do not only
consider locally homogeneous metrics.

1. If E has a rescaling limit flow with a zero-dimensional orbit space, then
X has Thurston type R

3 or Nil.
2. If X has Thurston type Sol then any rescaling limit flow of E has a one-

dimensional orbit space. Conversely, if a rescaling limit flow of E has a
one-dimensional orbit space, then X has Thurston type Sol, R

3 or Nil.
3. If X has Thurston type H2 ×R or ˜SL(2, R), then any rescaling limit flow

of E has a two-dimensional orbit space. Conversely, if a rescaling limit
flow of E has a two-dimensional orbit space, then X has Thurston type
H2 ×R, ˜SL(2, R), R

3 or Nil. One can speculate that in fact, X must have

Thurston type H2 × R or ˜SL(2, R); this is true when Proposition 3.49
applies.

4. If X has Thurston type H3, then any rescaling limit flow of E has a
three-dimensional orbit space. Conversely, if a rescaling limit flow of E
has a three-dimensional orbit space, then X has Thurston type H3.
If X has Thurston type R

3, then the orbit space of a rescaling limit
flow could be zero-dimensional (as happens for a quotient of a generic Kas-
ner solution) or one-dimensional (as happens for a quotient of the Taub-flat
spacetime). The same is true for Thurston type Nil.

3.1. Collapsing Limits of Expanding CMC Einstein Flows

In what follows, X will denote a closed effective Hausdorff étale groupoid [21,
Section 5]. We will loosely refer to it just as an étale groupoid.

Definition 3.1. Let I be an interval in R. An Einstein flow E on an n-
dimensional étale groupoid X is given by a family of nonnegative functions
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{L(t)}t∈I on X , a family of Riemannian metrics {h(t)}t∈I on X , and a family
of symmetric covariant 2-tensor fields {K(t)}t∈I on X so that Eqs. (2.2)–(2.5)
are satisfied.

We can talk about E being W 2,p-regular as in Definition 2.47. The W 2,p-
norms can be defined using integration over the orbit space, as in [19, Section
2.6].

An expanding CMC Einstein flow on an étale groupoid X is defined as
in Definition 2.7.

The definition of convergence of Riemannian groupoids is given in
[21, Definition 5.8]. Let {E(k)}∞

k=1 be CMC Einstein flows on pointed étale
groupoids. If E∞ is a CMC Einstein flow on a pointed étale groupoid, whose
time slices have metrically complete orbit spaces, then we define pointed weak
W 2,p-convergence of {E(k)}∞

k=1 to E∞ by the corresponding spacetime exten-
sion, as in Definition 2.48. Let S be a set of CMC Einstein flows on pointed étale
groupoids, whose time slices have metrically complete orbit spaces. If {E(k)}∞

k=1

are pointed CMC Einstein flows on étale groupoids, then as in Definition 2.49,
we can talk about {E(k)}∞

k=1 approaching S as k → ∞. If {E(s)}s∈[s0,∞) is a
1-parameter family of pointed CMC Einstein flows on étale groupoids, then as
in Definition 2.50, we can talk about {E(s)}s∈[s0,∞) approaching S as s → ∞.

Proposition 3.2. Let
{E(k)

}∞
k=1

be sequence of CMC Einstein flows on pointed
n-dimensional manifolds (X(k), x(k)). Suppose that E(k) is defined on a time
interval I(k), on which the mean curvature H(k) is negative and increasing.
Suppose that E(k) has complete time slices. Suppose that I∞ ⊂ R is an interval
so that for any compact interval S ⊂ I∞,

• For large k we have S ⊂ I(k), and
• For large k, there are uniform upper bounds on

∣

∣H(k)
∣

∣,
∣

∣
d
dtH

(k)
∣

∣,
∣

∣

∣

d2

dt2 H(k)
∣

∣

∣,
∣

∣

∣

d3

dt3 H(k)
∣

∣

∣ − d
dt

1
H(k) and

∣

∣

∣Rm(k)
∣

∣

∣

T
on S.

Then, after passing to a subsequence, there is a limit limk→∞ E(k) = E∞

in the pointed weak W 2,p-topology and the pointed C1,α-topology. The limit
flow E∞ is defined on a pointed n-dimensional étale groupoid (X ∞,O∞), and
on the time interval I∞. The time slices have metrically complete orbit spaces.

If for each compact interval S ⊂ I∞, there is some CS < ∞ such that
∣

∣K(k)
∣

∣

2 ≤ CS
dH(k)

dt for all large k, on the time interval S, then the limiting
lapse function L∞ is positive.

Proof. The proof is similar to that of Proposition 2.51. On any compact inter-
val S ⊂ I∞, the uniform bounds on H(k) and

∣

∣

∣Rm(k)
∣

∣

∣

T
give uniform bounds

on
∣

∣K(k)
∣

∣ for large k [2, Proposition 2.2], and hence on the curvature of h(k).
Choose t0 ∈ I∞. As in [21, Proposition 5.9], after passing to a subsequence the
pointed Riemannian manifolds {(X(k), x(k), h(k))}∞

k=1 converge in the pointed
weak W 2,p-topology to a pointed Riemannian groupoid (X ∞,O∞, h∞(t0))
whose orbit space is metrically complete (the smooth convergence in [21,
Proposition 5.9] gets replaced by pointed weak W 2,p-convergence). Given this,
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the construction of a limit on the time interval I∞ is similar to that in the
proof of Proposition 2.51. �

Remark 3.3. There is an analog of Proposition 3.2 when E(k) is a CMC Ein-
stein flow on an n-dimensional étale groupoid.

The unit space X ∞
(0) of the étale groupoid X ∞ carries a locally constant

sheaf n of finite-dimensional Lie algebras, which act as germs of Killing vector
fields on (X ∞

(0), h
∞(t)). For any t, the Riemannian groupoid (X ∞

(0), h
∞(t)) is a

limit of Riemannian manifolds with bounded curvature; hence, the Lie algebras
are nilpotent.

We take t = − n
H .

Corollary 3.4. Let E be a type-III Einstein flow on a pointed n-dimensional
manifold (X,x). Suppose that it is defined on a time interval [t0,∞) with t0 >
0, and has complete time slices. Then, for any sequence {ti}∞

i=1 in [t0,∞) with
limi→∞ ti = ∞, after passing to a subsequence, which we relabel as {ti}∞

i=1,
there is a limit limi→∞ Eti

= E∞ in the pointed weak W 2,p-topology and the
pointed C1,α-topology. The limit flow E∞ exists on a pointed étale groupoid
(X ∞,O∞) and is defined on the time interval (0,∞). The orbit spaces of its
time slices are metrically complete. Its lapse function L∞ is uniformly bounded
below by a positive constant.

Proof. Given Proposition 3.2, the proof is similar to that of Corollary 2.54. �

Recall the definition of dvol∞ from (2.19).

Proposition 3.5. Let S denote the collection of Einstein flows that are
Lorentzian cones over Riemannian Einstein metrics on étale groupoids, with
Einstein constant −(n − 1). Under the hypotheses of Corollary 3.4, suppose
that the basepoint x is such that dvol∞(x) �= 0. Then, as t → ∞, the rescaled
flows {Et}∞

t=1 approach S.

Proof. With reference to Corollary 3.4, we must show that E∞ describes a
Lorentzian cone over an Einstein metric on X ∞, with Einstein constant −(n−
1). From (2.16), we have

∂

∂t
ln

dvol∞
t−n dvolt

=
n

t
(1 − L). (3.6)

Hence,
∫ ∞

t0

(1 − L(x, t))
dt

t
< ∞. (3.7)

(recall that L ≤ 1). Then, L∞(x, u) = 1 for all u ∈ (0,∞). Equation (2.31)
(with t replaced by u), along with elliptic regularity, the fact that g∞ is locally
C1,α-regular and the fact that K0

∞ is locally Cα-regular, implies that L∞(x, u)
is locally C2,α-regular in x. We can apply the strong maximum principle to
(2.31) on the unit space of X ∞ to obtain that L∞ = 1 and K0

∞ = 0. The
proposition follows from Lemma 2.10. �
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Corollary 3.8. Under the hypotheses of Proposition 3.5, for any C < ∞ we
have the following asymptotics as t → ∞:

1. The supremum of |L − 1| on the time-t ball Bh(t)(x,Ct) is o(t0).

2. The supremum of |K0| on the time-t ball Bh(t)(x,Ct) is o(t−1).

Proof. The corollary follows from the Cα convergence of L and K0, after
rescaling. �

Remark 3.9. We cannot conclude that the Einstein flow is noncollapsing
around x, in the sense of volumes of metric balls. Although the volume form
is noncollapsing in a neighborhood of x in X, there is not enough control on
the change of distances to deduce noncollapsing of a time-t metric ball around
x of radius comparable to t, as t → ∞. A priori, the rescaled spatial geometry
around x could resemble that of a point going out the end of a hyperbolic cusp,
for example, while the diameter of a fixed neighborhood U ⊂ X of x increases
faster than O(t) so as to keep vol(U) ≥ const. tn.

In what follows, we will assume that n = 3, and also make the following
assumption.

Assumption 3.10. There is some D < ∞ so that for all t, we have
diam(X,h(t)) ≤ Dt.

The reason for Assumption 3.10 is that we will want to apply monotonic-
ity arguments to limit spaces, and will need to know that they have compact
spatial hypersurfaces. This is ensured by Assumption 3.10

Because of the bounded diameter assumption, in what follows we will not
have to choose basepoints. Assumption 3.10, along with the type-III assump-
tion, implies that the Thurston decomposition of X consists of a single topo-
logical type [22, Proposition 3.5]. We will also assume that X is aspherical,
i.e., has a contractible cover. Then, the relevant Thurston types are R

3, H3,
H2 × R, ˜SL(2, R), Nil and Sol. From [22, Lemma 6.1], the étale groupoid X ∞

of Corollary 3.4 is locally free.

3.2. Zero-Dimensional Orbit Space

In this subsection we look at the case when there is a rescaling limit that is
an Einstein flow on an étale groupoid with a zero-dimensional orbit space.
This is the case when lim inft→∞ t−1 diam(X,h(t)) = 0. The unit space of the
groupoid is locally homogeneous with respect to the local action of the sheaf
n of nilpotent Lie algebras. The only possibilities for the stalk of n are R

3 or
nil.

In the R
3 case, the limiting Einstein flow must be a Kasner solution. In

the nil case, the limiting Einstein flow must be the Taub-nil solution. Hence,
we can say that if limt→∞ t−1 diam(X,h(t)) = 0, then at large times, after
rescaling the geometry is modeled by one of these two solutions.

The rescalings of a Taub-nil solution approach a Kasner solution. Using
this fact, if lim inft→∞ t−1 diam(X,h(t)) = 0, then we show that there is a
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sequence of times going to infinity so that after rescaling, the geometry is
modeled by a Kasner solution.

We first recall some facts about homogeneous Einstein solutions from
[15]. The only R

3-invariant expanding CMC Einstein flows on R
3 (up to time

translation) are the Kasner solutions

g = −du2 + u2p1dx2 + u2p2dy2 + u2p3dz2, (3.11)

where p1 + p2 + p3 = p21 + p22 + p23 = 1. Equation (3.11) is not in CMC form.
Putting it in CMC form and using the time parameter − 3

H removes the time
translation freedom.

The only left-invariant expanding CMC Einstein flows on Nil (up to time
translation) are the Taub-nil solutions

g = −A2du2 + u2p1A−2(dx + 4p1bzdy)2 + u2p2A2dy2 + u2p3A2dz2, (3.12)

where A2 = 1 + b2u4p1 and p1 + p2 + p3 = p21 + p22 + p23 = 1. Equation (3.12)
is not in CMC form. Putting it in CMC form and using the time parameter
− 3

H removes the time translation freedom.
With reference to Corollary 3.4, suppose that the groupoid X ∞ has

dim(n) = 3. Then, the orbit space is a point.
Let E be an Einstein flow on a 3-dimensional étale groupoid X with

dim(n) = 3. Then, the stalk of n is R
3 or nil. If the stalk is R

3, then there is a
cross-product description X = R

3
� Γ , where Γ is a group (with the discrete

topology) that contains R
3 as a finite-index subgroup of translations. We say

that E is of Kasner type.
If the stalk of n is nil, then X = Nil � Γ , where Γ is a group (with the

discrete topology) that contains Nil as a finite-index subgroup, acting by left
multiplication. We say that E is of Taub-nil type. One can check as s → ∞, the
rescaled Einstein flow E∞

s approaches an Einstein flow of Kasner type (3.11)
with the same indices (p1, p2, p3).

Let Kas denote the Einstein flows of Kasner type on 3-dimensional étale
groupoids whose orbit space is a point. Let Taub-nil denote the Einstein flows
of Taub-nil type on 3-dimensional étale groupoids whose orbit space is a point.

Proposition 3.13. Let E be a type-III Einstein flow on a compact manifold
X. Suppose that there is a sequence {ti}∞

i=1 with limi→∞ ti = ∞ so that
limi→∞ t−1

i diam(X,h(ti)) = 0. Then, X has Thurston type R
3 or Nil. As

i → ∞,
1. If X has Thurston type R

3, then the rescaled Einstein flow Eti
approaches

Kas in the weak W 2,p-topology and the C1,α-topology.
2. If X has Thurston type Nil, then the rescaled Einstein flow Eti

approaches
Kas ∪ Taub-nil in the weak W 2,p-topology and the C1,α-topology.

Proof. Since X admits a sequence of Riemannian metrics {h(ti)}∞
i=1 with

limi→∞ |Rm |h(ti) diam2(X,h(ti)) = 0, it is an almost flat manifold and hence
of Thurston type R

3 or Nil. Suppose that X has Thurston type R
3. Consider

any subsequence of the ti’s, which we relabel as {ti}∞
i=1. From Corollary 3.4,

a further subsequence converges to an Einstein flow E∞ on an étale groupoid
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X ∞, with a zero-dimensional orbit space from the diameter bound. Since X
is a finite quotient of T 3, the local symmetry algebra n∞ of X ∞ must be R

3.
Hence, E∞ ∈ Kas.

If X has Thurston type Nil, then we can again construct E∞. Now the
stalk of n∞ is R

3 or nil. Hence, E∞ ∈ Kas ∪ Taub-nil. �

Corollary 3.14. Under the hypotheses of Proposition 3.13, let ˜E denote the
pullback Einstein flow on the universal cover ˜X. Choose x̃i ∈ ˜X. Under con-
clusion (1) of Proposition 3.13, limi→∞ ˜Eti

approaches the set of pointed Kas-
ner solutions on R

3, in the pointed weak W 2,p-topology and the pointed C1,α-
topology. Under conclusion (2) of Proposition 3.13, {˜Eti

, x̃i}∞
i=1 approaches the

set of pointed Kasner and Taub-nil solutions on R
3, in the pointed weak W 2,p-

topology and the pointed C1,α-topology.

Proof. Given Proposition 3.13, the corollary follows as in [22, Section 6.2]. �

Corollary 3.15. Under the hypotheses of Proposition 3.13, there is a sequence
{t′j}∞

i=1 with limj→∞ t′j = ∞ so that the rescalings
{

Et′
j

}∞

j=1
approach an Ein-

stein flow of Kasner type on a three-dimensional étale groupoid, in the weak
W 2,p-topology and the C1,α-topology.

Proof. Proposition 3.13 implies that after passing to a subsequence of {ti}∞
i=1,

which we relabel as {ti}∞
i=1, there is a limit limi→∞ Eti

= E∞, with the stalk of
n∞ equal to R

3 or nil. If the stalk is R
3, then E∞ ∈ Kas and we can take t′i = ti.

Suppose that the stalk is nil. Then, E∞ ∈ Taub-nil. As lims→∞ E∞
s = E∞,∞

for some E∞,∞ ∈ Kas, we can find a sequence {sj}∞
i=1 with limj→∞ sj = ∞ so

that limj→∞ E∞
sj

= E∞,∞. From the definition of convergence of flows, we can
find a subsequence

{

tij

}∞
j=1

of {ti}∞
i=1 so that limj→∞ Esjtij

= E∞,∞. Putting
t′j = sjtij

, the corollary follows. �

Let ˜X denote the universal cover of X. We give it the pullback Einstein
flow.

Corollary 3.16. Under the hypotheses of Corollary 3.15, choose x̃′
j ∈ ˜X. Then,

{˜Et′
j
, x̃′

j}∞
j=1 approaches the set of pointed Kasner solutions on R

3, in the
pointed weak W 2,p-topology and the pointed C1,α-topology.

Proof. Given Corollary 3.15, the corollary follows as in [22, Section 6.2]. �

Remark 3.17. Under the hypotheses of Proposition 3.13, it does not immedi-
ately follow that as i → ∞, the rescaled Einstein flows {Eti

}∞
i=1 approach an

Einstein flow of Kasner type. For example, it is conceivable that there is an
infinite number of increasingly sparse subsequences {tj,m}∞

j=1 so that for each
m, the limit limj→∞ Etj,m

exists and is always the same Taub-nil solution. We
do not know if there is an example where the rescaled flows {Eti

}∞
i=1 approach

a Taub-nil solution.
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3.3. One-Dimensional Orbit Space

In this subsection we deal with the case when a limiting Einstein flow E∞ is
on an étale groupoid whose orbit space is one dimensional, i.e., is a circle or an
interval. The goal is to show that after performing a further rescaling, there
is a new limit E∞,∞ which is a Taub-flat flow; hence an appropriate rescaling
limit of the original Einstein flow E is a Taub-flat flow.

If E has lim inft→∞ t−1 diam(X,h(t)) = 0, then we can consider the flow
to be treated by Corollary 3.15. Hence, we assume that diam(X,ht)) ≥ ct
for all t ∈ [t0,∞) and some c > 0. Then, the limiting flow E∞ satisfies
diam (X ∞, h∞(u)) ≥ cu for all u > 0. This means that any rescaling limit
E∞,∞ of E∞ also has a one-dimensional orbit space.

Using the type-III assumption on the original flow E , we argue that a
rescaling limit E∞,∞ of E∞ exists. Then, the issue is to show that it is a Taub-
flat flow. In order to do this, we need a monotonic quantity. The Einstein
flow E∞ has dim(n) = 2, i.e., has local R

2-symmetries. The metric in the
R

2-directions is locally given by a 2×2 matrix G, whose determinant is a well-
defined function on the two-dimensional Lorentzian manifold (0,∞)×X∞. We
can assume that E∞ is not already a Taub-flat flow. Then, it is known that
∇det G is a nonvanishing timelike vector on (0,∞) × X∞. The level sets of
det G are spacelike submanifolds; we assume that they are compact. Then, we
can use the monotonic quantities defined in Sect. A.3.

We obtain an integral convergence result along the lines of Proposi-
tion 2.36. To go further, we make the additional assumption that there is
a time function û for the foliation of (0,∞) × X∞ by level sets of det(G),
which is comparable to u. Using this time function and the monotonic quanti-
ties from Sect. A.3, we deduce that E∞,∞ is a Taub-flat flow. Hence, there are
arbitrarily large future time intervals on which the original flow E is modeled,
in a scale-invariant way, by a Taub-flat flow.

To begin, the Taub-flat vacuum solution is the isometric product of R
2

with the Lorentzian cone over H1 ∼= R
1. Suppose that X is a three-dimensional

cross-product groupoid (H1 × R
2) � Γ , where Γ is a group (with the discrete

topology) that contains the translations LZ × R
2 as a finite-index subgroup,

for some L > 0. We say that an Einstein flow on X is of Taub-flat type if
the corresponding Lorentzian groupoid is equivalent to the cross-product of Γ
with the Taub-flat solution.

Let E be an Einstein flow as in the hypotheses of Corollary 3.4, satisfying
Assumption 3.10. If X has Thurston type Sol and {ti}∞

i=1 is a sequence with
limi→∞ ti = ∞, then a Gromov–Hausdorff limit of {(X, t−2

i h(ti))}∞
i=1 cannot

be three dimensional by Proposition 2.56. It cannot be zero dimensional (or
else X would have Thurston type R

3 or Nil) and it cannot be two dimensional
(or else X would be a Seifert 3-manifold). Thus, if X has Thurston type Sol,
then a Gromov–Hausdorff limit of {(X, t−2

i h(ti))}∞
i=1 must be one dimensional.

More generally, if {(X, t−2
i h(ti))}∞

i=1 has a one-dimensional Gromov–Hausdorff
limit, then X must have Thurston type Sol, R

3 or Nil.
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With reference to Corollary 3.4, suppose that the groupoid X ∞ has
dim(n) = 2. Then, the orbit space is one dimensional. If X has Thurston
type Sol, then there is some c > 0 so that diam(X,h(t)) ≥ ct for all t ≥ t0,
as X is not almost flat. If X has Thurston type R

3 or Nil, and lim inft→∞ t−1

diam(X,h(t)) = 0, then we can consider the Einstein flow to be covered by
Corollary 3.15. Hence, we make the following assumption.

Assumption 3.18. For some c > 0, we have diam(X,h(t)) ≥ ct for all t ∈
[t0,∞).

With reference to Corollary 3.4, letting X∞ denote the orbit space of X ∞,
we loosely write diam(X ∞, h∞(u)) for the diameter of X∞ with the induced
metric. Then

diam(X ∞, h∞(u)) ≥ cu (3.19)

for all u ∈ (0,∞).
The orbit space X∞ is a one-dimensional orbifold [22, Proof of Proposi-

tion 3.5]. Hence, it is S1 or S1/Z2. In the latter case, we can pullback under
the orbifold covering map S1 → S1/Z2 to reduce the statements to the S1

case. Hence, we assume that the orbit space X∞ is diffeomorphic to S1.
The coordinate function u on (0,∞) × X ∞ pulls back from a function

on (0,∞) × S1, which we again denote by u. Similarly, the lapse function L
pulls back from a function on (0,∞) × S1, which we again denote by L. As
in Sect. A.1, the Lorentzian metric corresponding to the Einstein flow E∞ can
locally be written as

− L2du2 + hdθ2 +
2
∑

I,J=1

GIJ (dbI + AI)(dbJ + AJ). (3.20)

We note that det(G) is a well-defined function on (0,∞) × S1, since the flat
twisting bundle e on (0,∞)×S1 has holonomy in SL(2, Z) [22, Proof of Lemma
6.1]. Put g = −L2du2 + hdθ2.

If E∞ is not flat, then the function det(G) has a timelike gradient on
(0,∞) × S1; see [20, Proof of Proposition 5.1] and references therein. If E∞ is
flat, then the results of this subsection will be valid, so we assume that E∞ is
not flat. Then, det(G) has level sets that foliate (0,∞) × S1. We assume that
∇det(G) is future-directed; this holds, for example, in the Ellis–MacCallum
Sol-solution [15, Section 9.2.3]. Then, we can choose a time function û on
(0,∞) × S1 that is an increasing function of det(G).

Assumption 3.21. There is an open set U ⊂ (0,∞)×S1 containing [u0,∞)×S1

for some u0 < ∞, and a proper function û ∈ W 3,p
loc (U) so that

1. ∇û is timelike, and
2. On U , det(G) is a function of û.

Assumption 3.21 implies the level sets of û are compact manifolds. We
can assume that they are diffeomorphic to S1. Then, for suitable û0 < ∞,
the space û−1([û0,∞)) is W 3,p

loc -diffeomorphic to [û0,∞) × S1. We write the
Lorentzian metric g on [û0,∞)×S1, in terms of û and θ, as ĝ = −̂L2dû2+̂hdθ2.
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If the curvature F of the R
N -valued connection A vanishes, then from

(A.20),
∫ ∞

û0

1√
det G

̂L−1Tr
(

(

G−1∂ûG
)2
)

dvol(S1,̂h(û)) dû < ∞. (3.22)

Given s > 0, define ̂Ls and ̂hs as in (2.35). Put Gs(v̂) = G(sv̂).

Proposition 3.23. Suppose that F = 0. Given Λ > 1, we have

lim
s→∞

1√
det Gs

̂L−1
s Tr

(

(

G−1
s ∂v̂Gs

)2
)

dv̂ dvol(S1,̂hs(v̂)) = 0 (3.24)

in norm convergence of measures on [Λ−1, Λ] × S1.

Proof. The proof is similar to that of Proposition 2.36. We omit the details. �

Remark 3.25. From Sect. A.3, if G−1
s ∂v̂Gs = 0, then G is locally constant in

v̂ and θ, and ĝ is flat. Hence, Proposition 3.23 can be interpreted as saying
that in an integral sense, the original flow E is approaching a flow of Taub-flat
type. If F �= 0, then there is a result analogous to Proposition 3.23, except
more complicated to state, using (A.27) and (A.28).

We now make a further assumption about û, saying that it is comparable
to u.

Assumption 3.26. In addition to Assumption 3.21, suppose that there is a
constant Λ < ∞ so that

1. Λ−1u ≤ û ≤ Λu,
2. For all r > u0, p < ∞ and k + l ≤ 3,

‖ ∇k
x∂l

uû ‖Lp((r,2r)×X∞)≤ const. r1−k−l+ 2
p and (3.27)

3. g(∇u,∇û)
|∇u|g|∇û|g ≤ −Λ−1.

Remark 3.28. The exponent on the right-hand side of (3.27) ensures scale
invariance.

Proposition 3.29. If Assumption 3.26 holds, then there is a sequence {t′j}∞
j=1

with limj→∞ t′j = ∞, and an Einstein flow E∞,∞ of Taub-flat type, so that the
rescalings Et′

j
of E satisfy limj→∞ Et′

j
= E∞,∞.

Proof. Let {sj}∞
j=1 be a sequence with limj→∞ sj = ∞. Since limi→∞ Eti

=
E∞, for fixed j, we have limi→∞ Esjti

= E∞
sj

. If {tij
}∞

j=1 is a subsequence
of {ti}∞

i=1, then after passing to a subsequence of j’s, we can assume that
limj→∞ Esjtij

= E∞,∞ for an Einstein flow E∞,∞ on an étale groupoid X ∞,∞,
defined on the time interval (0,∞). From our definition of convergence of flows,
we can choose {tij

}∞
j=1 so that limj→∞ E∞

sj
= limj→∞ Esjtij

= E∞,∞ (the
rescaling in E∞

sj
involves pullback with respect to u → sju and a j-dependent

diffeomorphism φj of S1, along with a j-dependent automorphism of the flat
R

2-vector bundle on S1). From Assumption 3.18, the orbit space of X ∞,∞
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is one dimensional. The Lorentzian metric corresponding to the Einstein flow
E∞,∞ can be locally written as

− (L∞)2(du∞)2 + h∞(dθ∞)2 +
2
∑

I,J=1

G∞
IJ (dbI + A∞,I)(dbJ + A∞,J ).

(3.30)

We will show this is an Einstein flow of Taub-flat type and take t′j = sjtij
.

Let ̂X∞ denote the level sets of û. Let ûsj
be 1

sj
times the pullback of

û with respect to u → sju and φj ∈ Diff(X∞). From Assumption 3.26(1,
2), after passing to a subsequence we can assume that limj→∞ ûsj

= û∞

in the weak topology on W 3,p
loc , for some û∞ ∈ W 3,p

loc ((0,∞) × X∞,∞). From
Assumption 3.21 and Assumption 3.26(3), the gradient ∇û∞ is timelike, and
det(G) is a function of û∞. We can write the Lorentzian metric on (0,∞) ×
X∞,∞ as

− (̂L∞)2(dû∞)2 + ̂h∞(d̂θ∞)2. (3.31)

Suppose first that the curvature F∞ of A∞ vanishes. Applying Sect. A.2
to the flow E∞, we know that (∂û ln det G)

∫

̂X∞ ̂L−1 dvol
̂X∞ is monotoni-

cally nonincreasing in û. It is clearly nonnegative. Since dim( ̂X∞) = 1,
the expression is invariant under rescaling. Note that in forming the limit
limj→∞ E∞

sj
= E∞,∞, we are allowed to perform j-dependent automorphisms

of the flat 2-dimensional vector bundle on X∞. These automorphisms can
change ln detG by a j-dependent additive constant, which vanishes upon tak-
ing the û-derivative.

Given a ∈ (0,∞), the level set (û∞)−1(a) ⊂ (0,∞) × X∞,∞ is the limit
of rescalings of level sets û−1(sja) ⊂ (0,∞) × X∞. It follows that the mono-
tonic quantity (∂û∞ ln det G∞)

∫

̂X∞,∞(̂L∞)−1 dvol
̂X∞,∞ is constant in û∞. By

Sect. A.3.1, we conclude that E∞,∞ is a flat solution.

Remark 3.32. We could have reached the same conclusion using the functional
̂E of (A.19).

Now suppose that F∞ �= 0. After pulling back from a finite cover of
S1 if necessary, we can assume that the holonomy H ∈ SL(2, R) over S1 of
the flat vector bundle E has real positive eigenvalues. The functional ̂EK of
(A.26) is scale invariant and monotonically nonincreasing. It follows that the
corresponding functional for E∞,∞ is constant. In terms of Sect. A.3.2, the
metric (3.30) equals (A.29), after a change of variable from u∞ to R. From
Corollary 3.4, the function L∞ is uniformly bounded below and so the metric
(3.30) admits future-directed timelike curves along which the proper time goes
to infinity. Hence, under the change of variable from u∞ to R, we must have
limu∞→∞ R(u∞) = ∞. From (A.29), the length of the S1-fiber is uniformly
bounded as R goes to infinity. This contradicts (3.19), showing that F∞ cannot
be nonzero.
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Hence, E∞,∞ is a flat solution. There is a foliation of (0,∞) × X∞,∞ by
circles {Cv}v∈(0,∞) of constant geodesic curvature − 1

v . The lift ˜Cv of such
a circle to the universal cover (0,∞) × ˜X∞,∞ is an embedded curve with a
neighborhood that is isometric to a neighborhood of a hyperbola, of constant
geodesic curvature − 1

v , in the flat Lorentzian plane R
1,1. As (0,∞) × ˜X∞,∞

is foliated by such lifts, it must be isometric to the chronological future of
the origin in R

1,1, with its foliation by hyperbolas. Then (0,∞) × X∞,∞ is
the Lorentzian cone over a circle, and E∞,∞ is an Einstein flow of Taub-flat
type. �

Let ˜X denote the universal cover of X. We give it the pullback Einstein
flow.

Corollary 3.33. Under the hypotheses of Proposition 3.29, choose x̃′
j ∈ ˜X.

Then {(˜Et′
j
, x̃′

j)}∞
j=1 approaches the set of Taub-flat Einstein flows on R

3, in
the pointed weak W 2,p-topology and the pointed C1,α-topology.

Proof. Given Proposition 3.29, the corollary follows as in [22, Section 6.2]. �

3.4. Two-Dimensional Orbit Space

In this subsection we deal with the case when a limiting Einstein flow E∞

is on an étale groupoid whose orbit space is two dimensional. In our case, it
will necessarily be a two-dimensional orbifold. The goal is to show that after
performing a further rescaling, there is a new limit E∞,∞ which is a Bianchi-III
flat flow; hence, an appropriate rescaling limit of the original Einstein flow E
is a Bianchi-III flat flow.

If E has a rescaling limit whose orbit space has dimension zero or one, then
we can consider the flow to be treated by Corollary 3.15 and Proposition 3.29.
Hence, we assume that there is no such rescaling limit. This implies that any
rescaling limit E∞,∞ of E∞ also has a two-dimensional orbit space.

Using the type-III assumption on the original flow E , we argue that a
rescaling limit E∞,∞ of E∞ exists. Then, the issue is to show that it is a
Bianchi-III flat flow. In order to do this, we make the conformal change of
Sect. A.4 and assume that the ensuing Lorentzian 3-manifold has an expand-
ing CMC foliation, Using the monotonic quantity of Sect. A.4, we obtain an
integral convergence result along the lines of Proposition 2.36. To go further,
we make the additional assumption that there is a time function û for the
new CMC foliation, which is comparable to u. Using this time function and
the monotonic quantity from Sect. A.4, we deduce that E∞,∞ is a Bianchi-III
flat flow. Hence, there are arbitrarily large future time intervals on which the
original flow E is modeled, in a scale-invariant way, by a Bianchi-III flat flow.

To begin, the Bianchi-III flat vacuum solution is the isometric product of
R with the Lorentzian cone over H2. Suppose that X is a three-dimensional
cross-product groupoid (R × R

2) � Γ , where Γ is a group (with the discrete
topology) that contains R × Γ0 as a finite-index subgroup, with Γ0 being a
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discrete subgroup of Isom(H2). We say that an Einstein flow on X is of Bianchi-
III flat type if the corresponding Lorentzian groupoid is the cross-product of
Γ with the Bianchi-III flat vacuum solution.

Let E be an Einstein flow as in the hypotheses of Corollary 3.4, sat-
isfying Assumption 3.10. If X has Thurston type H2 × R or ˜SL(2, R), and
{ti}∞

i=1 is a sequence with limi→∞ ti = ∞, then a Gromov–Hausdorff limit of
{(X, t−2

i h(ti))}∞
i=1 cannot be three dimensional by Proposition 2.56. It cannot

be zero dimensional (or else X would have Thurston type R
3 or Nil) and it

cannot be one dimensional (or else a finite cover of X would be the total space

of a T 2-bundle over a circle). Thus, if X has Thurston type H2×R or ˜SL(2, R),
then a Gromov–Hausdorff limit of {(X, t−2

i h(ti))}∞
i=1 must be two dimensional.

More generally, if there is a sequence {ti}∞
i=1 with limi→∞ ti = ∞ so that

{(X, t−2
i h(ti))}∞

i=1 has a two-dimensional Gromov–Hausdorff limit, then X

must have Thurston type H2 × R, ˜SL(2, R), R
3 or Nil.

With reference to Corollary 3.4, suppose that the groupoid X ∞ has
dim(n) = 1. Then, the orbit space is two dimensional.

If there is a sequence {ti}∞
i=1 with limi→∞ ti = ∞ so that

{(X, t−2
i h(ti))}∞

i=1 has a Gromov–Hausdorff limit of dimension less than two,
then we can consider the Einstein flow to be covered by Corollary 3.15 and
Proposition 3.29 (modulo the verification of Assumption 3.26). Hence, we make
the following assumption.

Assumption 3.34. There is no sequence {ti}∞
i=1 with limi→∞ ti = ∞ so that

{(X, t−2
i h(ti))}∞

i=1 has a Gromov–Hausdorff limit of dimension less than two.

Let E∞ be a limit flow on an étale groupoid X ∞, as in Corollary 3.4.
The orbit space X∞ of X ∞ is a two-dimensional orbifold [22, Proof of Propo-
sition 3.5] (this uses our assumption that X is aspherical). From Assump-
tion 3.34, there is no subsequence {uj}∞

j=1 with limj→∞ uj = ∞ so that
{(X∞, u−2

j h∞(uj))}∞
j=1 has a Gromov–Hausdorff limit of dimension less than

two.
The coordinate function u on (0,∞) × X ∞ pulls back from a function

on (0,∞) × X∞, which we again denote by u. Similarly, the lapse function L
pulls back from a function on (0,∞)×X∞, which we again denote by L. As in
Sect. A.1, the Lorentzian metric corresponding to the groupoid Einstein flow
E∞ can locally be written as

− L2du2 +
2
∑

α,β=1

hαβdbαdbβ + G(dθ + A)2. (3.35)

Put

g = −L2du2 +
2
∑

α,β=1

hαβdbαdbβ , (3.36)

ĝ = Gg and ̂G = G2. Then

g + G(dθ + A)2 = ̂G− 1
2

(

ĝ + ̂G(dθ + A)2
)

. (3.37)
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Assumption 3.38. There is an open set U ⊂ (0,∞)×X∞ containing [u0,∞)×
X∞ for some u0 < ∞, and a proper function û ∈ W 3,p

loc (U) so that
1. ∇û is timelike, and
2. On U , the level sets of û have constant mean curvature with respect to ĝ.

Assumption 3.38 implies the level sets of û are compact. Let us denote
their diffeomorphism type by ̂X∞. Then, for suitable û0 < ∞, the space
û−1([û0,∞)) is W 3,p

loc -diffeomorphic to [û0,∞) × ̂X∞.
Letting ̂H denote the (constant) mean curvatures of the level sets, sup-

pose that ̂H is an increasing function in û that takes all values in an inter-
val (− ̂H0, 0). Define a new time parameter by v = − 2

̂H
. From (A.51),

v−2 dvol( ̂X∞,̂h(v)) is pointwise decreasing. Put
̂dvol∞ = lim

v→∞ v−2 dvol( ̂X∞,̂h), (3.39)

an absolutely continuous measure on ̂X∞. From (A.52),

d
dv

(

v−2 vol
(

̂X∞,̂h(v)
))

= − v

∫

̂X∞

[

̂L| ̂K0|2 +
1
4
̂L−1

∣

∣

∣

̂S0

∣

∣

∣

2

+
1
4
̂L−1

(

∂ ln det ̂G
∂v

)2

+
1
4
̂L̂hij

̂hkl
̂GIJ

̂F I
ik
̂F J
jl

]

dvol
(

̂X∞,̂h(v)
)

. (3.40)

Given s > 0, define ̂Ls, ̂hs, ̂Ks and ̂K0
s as in (2.35). Put ̂Gs(v) = ̂G(sv)

and ̂Fs,ij(v) = s−1
̂Fij(sv).

Proposition 3.41. Given Λ > 1, we have

lim
s→∞(̂Ls − 1) = lim

s→∞ | ̂K0|2ŝLs = lim
s→∞ |̂S0|2ŝLs = lim

s→∞

(

∂ ln det ̂Gs

∂v

)2

̂L−1
s

= lim
s→∞

̂hij
s
̂hkl

s
̂Gs,IJ

̂F I
s,ik

̂F J
s,jl

̂Ls = 0 (3.42)

in L1
(

[Λ−1, Λ] × ̂X∞,dv ̂dvol∞
)

.

Proof. The proof is similar to that of Proposition 2.36. We omit the details. �

Remark 3.43. From Sect. A.4, if ̂L − 1 = ̂K0 = ̂S0 = ∂ ln det ̂G
∂v =

̂hij
̂hkl

̂GIJ
̂F I
ik
̂F J
jl = 0, then ̂G is locally constant and ĝ is flat. Hence, Propo-

sition 3.41 can be interpreted as saying that in an integral sense, the original
flow E is approaching a flow of Bianchi-III flat type.

Define ̂H1
s,Λ as in the paragraph before Proposition 2.41, replacing hs by

̂hs.

Proposition 3.44. We have

lim
s→∞ dsymm( ̂H1

s,Λ, In) = 0 (3.45)

in L2( ̂X∞, d̂vol∞).
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Proof. The proof is similar to that of Proposition 2.41. We omit the details. �

We now make a further assumption about û, saying that it is comparable
to u.

Assumption 3.46. In addition to Assumption 3.38, there is some Λ < ∞ so
that

1. Λ−1u ≤ û ≤ Λu,
2. For all r > u0, p < ∞ and k + l ≤ 3,

‖ ∇k
x∂l

uû ‖Lp((r,2r)×X∞)≤ const. r1−k−l+ 3
p , (3.47)

and

3. g(∇u,∇û)
|∇u|g|∇û|g ≤ −Λ−1.

Remark 3.48. The exponent on the right-hand side of (3.47) ensures scale
invariance.

Proposition 3.49. If Assumption 3.46 holds, then there is a sequence {t′j}∞
j=1

with limj→∞ t′j = ∞, and an Einstein flow E∞,∞ of Bianchi-III flat type, so
that the rescalings Et′

j
of E satisfy limj→∞ Et′

j
= E∞,∞.

Proof. Let {sj}∞
j=1 be a sequence with limj→∞ sj = ∞. Since limi→∞ Eti

=
E∞, for fixed j, we have limi→∞ Esjti

= E∞
sj

. If {tij
}∞

j=1 is a subsequence
of {ti}∞

i=1, then after passing to a subsequence of j’s, we can assume that
limj→∞ Esjtij

= E∞,∞ for an Einstein flow E∞,∞ on an étale groupoid X∞,∞,
defined on the time interval (0,∞). From our definition of convergence of flows,
we can choose {tij

}∞
j=1 so that limj→∞ E∞

sj
= limj→∞ Esjtij

= E∞,∞ (the
rescaling in E∞

sj
involves pullback with respect to u → sju and a j-dependent

diffeomorphism φj of X∞, along with a j-dependent automorphism of the flat
R-vector bundle on X∞). From Assumption 3.34, the orbit space of X∞,∞ is
two dimensional. The Lorentzian metric corresponding to the groupoid Ein-
stein flow E∞,∞ can be locally written as

− (L∞)2(du∞)2 +
2
∑

α,β=1

h∞
αβdb∞

α db∞
β + G∞(dθ + A∞)2. (3.50)

We will show this is an Einstein flow of Bianchi-III flat type and take t′j = sjtij
.

Put

g∞ = −(L∞)2(du∞)2 +
2
∑

α,β=1

h∞
αβdb∞

α db∞
β , (3.51)

ĝ∞ = G∞g∞ and ̂G∞ = (G∞)2. Then

g∞ + G∞(dθ + A)2 = ( ̂G∞)− 1
2

(

ĝ∞ + ̂G∞(dθ + A∞)2
)

. (3.52)

Let ûsj
be 1

sj
times the pullback of û with respect to u → sju and

φj ∈ Diff(X∞). From Assumption 3.46(1, 2), after passing to a subsequence
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we can assume that limj→∞ ûsj
= û∞ in the weak topology on W 3,p

loc , for some
û∞ ∈ W 3,p

loc ((0,∞) × X∞,∞). From Assumption 3.38 and Assumption 3.46(3),
the gradient ∇û∞ is timelike, and the level sets of û∞ have constant mean
curvature with respect to ĝ∞.

We will apply the monotonicity result of Sect. A.4, with n = 2 and N = 1,
to E∞, replacing the g and G of Sect. A.4 by ĝ and ̂G. Let ̂h denote the induced
metric on the level sets ̂X∞ of û. Let ̂H denote the (constant) mean curva-
tures of the level sets. From Sect. A.4, we know that (− ̂H)2 vol( ̂X∞,̂h(û))
is nonincreasing in û. It is clearly nonnegative. Since dim( ̂X∞) = 2, the
expression is invariant under rescaling. Note that when forming the limit
limj→∞ E∞

sj
= E∞,∞, we are allowed to perform j-dependent automorphisms

of the flat 1-dimensional vector bundle on X∞. These automorphisms can
change G by a j-dependent multiplicative constant, and hence change ĝ by a
multiplicative constant. One sees that on a given level set, this does not change
(− ̂H)2 vol( ̂X∞,̂h).

Given a ∈ (0,∞), the level set (û∞)−1(a) ⊂ (0,∞)×X∞,∞ is the limit of
rescalings of level sets û−1(sja) ⊂ (0,∞) × X∞. It follows that the monotonic
quantity (− ̂H∞)2 vol( ̂X∞,∞,̂h∞) is constant in û∞. By Sect. A.4, we conclude
that E∞,∞ is an Einstein flow of Bianchi-III flat type. �

Let ˜X denote the universal cover of X. We give it the pullback Einstein
flow.

Corollary 3.53. Under the hypotheses of Proposition 3.49, choose x̃′
j ∈ ˜X.

Then, {(˜Et′
j
, x̃′

j)}∞
j=1 approaches the set of Bianchi-III flat Einstein flows on

R
3, in the pointed weak W 2,p-topology and the pointed C1,α-topology.

Proof. Given Proposition 3.49, the corollary follows as in [22, Section 6.2]. �
Corollary 3.54. Under the hypotheses of Proposition 3.49, X has Thurston type
H2 × R or ˜SL(2, R).

Proof. The sequence {(t′j)
−2h(t′j)}∞

j=1 of Riemannian metrics on X Gromov–
Hausdorff converges with bounded curvature to a two-dimensional compact
hyperbolic orbifold, from which the corollary follows. �

4. Type-II Blowdown

Let E be an expanding CMC Einstein flow that is not type-III in the sense
of Definition 2.53. Then, we say that E is a type-IIb Einstein flow. One can
get information about such a flow by a rescaling analysis. The rescaling now
involves the size of the curvature tensor, unlike in the type-III case where the
rescaling involves the Hubble time.

After rescaling and passing to a limit, one obtains an Einstein flow E∞ on
an étale groupoid, defined for times t ∈ R, with vanishing mean curvature. We
show that if the second fundamental form of the original flow E is controlled
by the mean curvature, then E∞ is the static flow on a Ricci-flat Riemannian
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groupoid. In particular, if E is locally homogeneous or on a three-dimensional
manifold, then E∞ is flat. This may seem to contradict the fact that the rescal-
ings in the blowdown procedure normalize the size of the curvature tensor, but
the point is that the convergence to E∞ is in the weak W 2,p-topology. Relevant
example come from the homogeneous Einstein flows on ˜SL(2, R) considered in
[25].

More generally, we show that if E is a type-IIb Einstein flow on a three-
dimensional manifold, then the second fundamental form fails to be controlled
by the mean curvature, or the first covariant derivative of the curvature tensor
fails to be controlled by the curvature norm.

To begin, let E be a type-IIb Einstein flow on a compact n-dimensional
manifold. Given t ∈ [t0,∞), let xt ∈ X be a point where the time-t curvature
norm |Rm |T is maximized.

Proposition 4.1. We can find a sequence {ti}∞
i=1 with limi→∞ ti = ∞ such

that the following property holds. Put Qi = |Rm |T (xi, ti) and E(i)(u) =

E
Q

− 1
2

i

(u + Q
1
2
i ti). Then, after passing to a subsequence, there is a limit

limi→∞(E(i), xi) = (E∞, x∞) in the pointed weak W 2,p-topology and the
pointed C1,α-topology. Here E∞ is an Einstein flow on an n-dimensional étale
groupoid, defined for t ∈ R. If there is some C < ∞ such that |K|2 ≤ CH2,
then L∞ is uniformly bounded below by a positive constant.

Proof. As in [12, Chapter 8.2.1.3], we can make an initial choice of the ti’s so
that limi→∞ Qit

2
i = ∞ and for any compact time interval S ⊂ R, there are

bounds on |Rm |T on S for the rescaled flows {E(i)}∞
i=1 that are uniform in i.

This implies uniform bounds on S for |K(i)| [2, Proposition 2.2]. The rescaled
Einstein flow E(i) has

|Rm(i) |T (u) = Q−1
i |Rm |T (Q− 1

2
i u + ti), (4.2)

|K(i)|(u) = Q
− 1

2
i |K|(Q− 1

2
i u + ti),

H(i)(u) = − nQ
− 1

2
i

Q
− 1

2
i u + ti

.

From Proposition 3.2, after passing to a subsequence there is a limit
limi→∞(E(i), xi) = (E∞, x∞) as stated. If |K(t)|2 ≤ CH(t)2 = C n2

t2 then

|K(i)|2(u) = Q−1
i |K|2(Q− 1

2
i u + ti) ≤ CQ−1

i

n2

(Q− 1
2

i u + ti)2
=

C

n

∂H(i)(u)
∂u

.

(4.3)

From Proposition 3.2, the lapse function L∞ is positive. As in the proof of
Corollary 2.54, it is uniformly bounded below by a positive constant (it is
bounded above by one). �
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As noted in [2, Section 5], because of the renormalization, the flow E∞

has vanishing mean curvature H∞, since limi→∞ H(i)(u) = − limi→∞ n

u+Q
1
2
i ti

= 0.

Proposition 4.4. If a type-IIb expanding CMC Einstein flow E has a uniform
upper bound on |K|2

H2 , then the blowdown limit E∞ is a static Einstein flow on
a Ricci-flat Riemannian groupoid.

Proof. Because of the rescaling, the blowdown limit has vanishing second fun-
damental form K∞. Hence, E∞ is a static Einstein flow on a Riemannian
groupoid (X ∞, h∞). The static Einstein flow equations become L∞R∞

ij = L∞
;ij

and 	h∞L∞ = 0. In the smooth structure on the unit space of E∞ com-
ing from local harmonic coordinates, by elliptic regularity the metric h∞ is
smooth and L∞ is smooth. We use the trick from [1, Appendix] of passing
to Y∞ = X ∞ × S1 with the Riemannian metric h∞ + (L∞)2dθ2, which is
Ricci-flat. The function log L∞ is a bounded harmonic function on Y∞. The
proof of [29, Corollary 1] extends to the groupoid setting to show that L∞ is
constant. Then, h∞ is Ricci-flat. This shows that E∞ is a static Einstein flow
on a Ricci-flat Riemannian groupoid X ∞, thereby proving the proposition. �

Corollary 4.5. Under the hypotheses of Proposition 4.4, if X is locally homo-
geneous, then the type-IIb blowdown limit E∞ is a static Einstein flow on a
flat Riemannian groupoid.

Proof. A Gromov–Hausdorff limit of homogeneous spaces is still homogeneous
[17, p. 66]. Applying this to the balls in the tangent spaces, it follows that
(X∞, h∞(t)) is a locally homogeneous Ricci-flat Riemannian groupoid and
hence is flat [28]. �

Corollary 4.6. Under the hypotheses of Proposition 4.4, if n = 3, then the
type-IIb blowdown limit E∞ is a static Einstein flow on a flat Riemannian
groupoid.

Proof. A Ricci-flat three-dimensional Riemannian groupoid is flat. �

It may seem contradictory that although we rescale so that the norm of
the curvature tensor at (xi, ti) is one, the limit flow is flat. The point is that
the convergence to the limit flow is in the weak W 2,p-topology, which does
not imply pointwise convergence of the curvature norm. In effect, there are
increasing fluctuations of the curvature tensor, which average it out to zero.

Under the hypotheses of Corollary 4.6, one does have pointed C1,α-
convergence of the normalized Einstein flows to the flat limit flow. In particular,
put ̂hi = Qi exp∗

xi
h(ti), a metric defined at least on Bi = B(0, πQ

− 1
2

i ) ⊂ Txi
X.

Then, the pointed balls (Bi, xi,̂hi) converge in the sense of distance geometry,
i.e., in the pointed Gromov–Hausdorff topology, to the flat Euclidean metric
on a three-dimensional ball of radius π. However, their curvature tensors do
not converge.
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Corollary 4.7. When n = 3, if there is some C < ∞ so that an expanding CMC
Einstein flow has |K|2 ≤ CH2 and |∇Rm |T (x, t) ≤ C supy∈X |Rm| 3

2
T (y, t) for

all x ∈ X and t ∈ [t0,∞), then the flow must be type-III.

Proof. If E is not type-III, then Corollary 4.6 applies. From the bound on the
normalized covariant derivative of the curvature tensor, we have convergence
of the normalized Einstein flows to E∞ in the pointed weak W 3,p-topology.
This implies pointwise convergence of the curvature tensors. The normalized
curvature tensors of E have norm 1 at (xi, ti), but converge to the vanishing
curvature of E∞ at (x∞, 0), which is a contradiction. �

Remark 4.8. Corollary 4.7 can be proven by just working on balls in tangent
spaces, instead of dealing with étale groupoids.

Example 4.9. An example of a type-IIb Einstein flow was given in [25]. Con-

sider ˜SL(2, R) with a left-invariant Riemannian metric ˜h(0). Let Γ be a cocom-

pact lattice in ˜SL(2, R). Let h(0) be the quotient metric on X = Γ\ ˜SL(2, R).

Let ˜K(0) be a left-invariant symmetric covariant 2-tensor field on ˜SL(2, R).
Let K(0) be the quotient 2-tensor field on X. Let E be the ensuing Einstein
flow on X, with initial conditions (h(0),K(0)).

Let R ⊂ ˜SL(2, R) be the lift of SO(2) ⊂ SL(2, R). If (h(0),K(0)) is right-R
invariant, then E is type-III. Otherwise, it is type-IIb [25].

In the latter case, we claim that Corollary 4.6 applies. This follows from
results in [25, Proof of Theorem 3]. In the notation there, the normalized trace-
less part K0

H of the second fundamental form is determined by Σ±. It is shown
that Σ± are uniformly bounded in t. Hence, the blowdown Einstein flow is the
static flow on a flat Riemannian groupoid.

We claim that this limit groupoid is R
2 × (R � Rδ), where Rδ denotes

R with the discrete topology. From [24, Theorem 3], we can write h(t) =
∑3

i=1 a2
i (t)ξ

i ⊗ ξi with a1(t) ∼ α1(ln t)
1
2 and ai(t) ∼ αit for i ∈ {2, 3}. Here

α1, α2, α3 > 0. From [25, Theorem 3], we have |Rm |T (t) ∼ c0
t ln t for some

c0 > 0. Hence, the normalized lengths are comparable to (t ln t)− 1
2 (ln t)

1
2 in

the 1-direction, and (t ln t)− 1
2 t in the 2 and 3 directions. That is, there are

two expanding directions and one shrinking direction. Then, the limit flat étale
groupoid must be R

2 × (R � Rδ).
The fact that there are increasing fluctuations of the curvature tensor,

which cause its averaging out to zero, is consistent with the nonuniform behav-
ior shown in [25, Theorem 3 and Proposition 2].

Appendix A: Monotonicity Formulas

In this section we derive monotonicity formulas for dimensionally reduced Ein-
stein flows. We consider a coupled system on a connected compact manifold
B, where the fields on B are (locally) a Lorentzian metric g, an R

N -valued
connection A and a map G to positive definite (N ×N)-matrices. Such coupled
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systems arise, for example, when doing dimensional reduction of the vacuum
Einstein equation on a manifold M with a free TN -action, and quotient space
B. The vacuum Einstein equation on M becomes a coupled system consisting
of a nonvacuum Einstein equation for g, a Yang-Mills-type equation for A and
a wave-type equation for G. In Sect. A.1 we write the equations and begin
their analysis.

Sections A.2 and A.3 are concerned with monotonicity formulas when
there is a spacetime decomposition for which det(G) is constant along spatial
hypersurfaces. In [5] and related papers, such a spacetime decomposition is
said to provide “areal” coordinates. It is especially relevant when dim(B) = 2.

Section A.4 deals with a monotonic quantity that exists when dim(B) >
2. In the case when dim(B) = 3 and N = 1, it reduces to the “first energy” of
Choquet-Bruhat [10] and Choquet-Bruhat–Moncrief [11].

More detailed descriptions are given at the beginnings of the subsections.
The results of this appendix extend in a straightforward way to the setting

where B is an orbifold. In the appendix, we only consider the case when B is
a manifold.

A.1. Curvature Formulas Under an R
N -Symmetry

We begin with the geometric setup of [22, Section 4.1], to which we refer for
more details. Let G be an N -dimensional abelian Lie group, with Lie algebra
g. Let E be a local system on B of Lie groups isomorphic to G. There is a
corresponding flat g-vector bundle e on B; see [22, Section 4.1].

Let M be the total space of an E-twisted principal G-bundle with base B,
in the sense of [22, Section 4.1]. (An example is when E is the constant local
system and M is the total space of a TN -bundle on B.) We write dim(B) =
n + 1 and dim(M) = m = N + n + 1.

Let g be a Lorentzian metric on M with a free local isometric E-action. We
assume that the induced metrics on the E-orbits are Riemannian. In adapted
coordinates, we can write

g =
N
∑

I,J=1

GIJ (dxI + AI)(dxJ + AJ) +
n+1
∑

α,β=1

gαβ dbαdbβ . (A.1)

Here GIJ is the local expression of a Euclidean inner product on
e,
∑n+1

α,β=1 gαβ dbαdbβ is the local expression of a Lorentzian metric gB on B

and AI =
∑

α AI
αdbα are the components of a local e-valued 1-form describing

an connection A on the twisted G-bundle M → B.
Put F I

αβ = ∂αAI
β − ∂βAI

α. At a given point b ∈ B, we can assume that
AI(b) = 0. We write

GIJ;αβ = GIJ;αβ − Γ σ
αβ GIJ,σ, (A.2)

where {Γ σ
αβ} are the Christoffel symbols for the metric gαβ on B.

From [22, Section 4.2], the Ricci tensor of g on M is given in terms of
the curvature tensor Rαβγδ of B, the 2-forms F I

αβ and the metrics GIJ by
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R
g
IJ = − 1

2
gαβ GIJ;αβ − 1

4
gαβ GKL GKL,α GIJ,β +

1

2
gαβ GKL GIK,α GLJ,β

+
1

4
gαγ gβδ GIK GJL F K

αβ F L
γδ (A.3)

R
g
Iα =

1

2
gγδ GIK F K

αγ;δ +
1

2
gγδ GIK,γ F K

αδ +
1

4
gγδ GIm GKL GKL,γ F m

αδ

R
g
αβ = Rg

αβ − 1

2
GIJ GIJ;αβ +

1

4
GIJ GJK,α GKL GLI,β − 1

2
gγδ GIJ F I

αγ F J
βδ.

The scalar curvature is

R
g

= Rg − gαβGIJ GIJ;αβ +
3
4

gαβ GIJ GJK,α GKL GLI,β

− 1
4

gαβ GIJ GIJ,α GKL GKL,β − 1
4

gαγ gβδ GIJ F I
αβ F J

γδ. (A.4)

In what follows we will assume that the flat vector bundle e has holonomy
in SL(N, R), so that ln detG is globally defined on B. We have

∇α ln det G = GIJGIJ,α (A.5)

and

	g ln det G = gαβGIJGIJ;αβ − gαβGIJGJK,αGKLGLK,β . (A.6)

Writing

|F |2 = GIJgαβgγδF I
αγF J

βδ, (A.7)

the first equation in (A.3) gives

GIJRIJ = −1
2
	g ln det G − 1

4
gαβ(∇α ln det G)(∇β ln det G) +

1
4
|F |2. (A.8)

Note that |F |2 need not be nonnegative.
Given a foliation of B by compact spacelike hypersurfaces Y , we can

write the metric g on B as

g = −L2dt2 +
n
∑

i,j=1

hijdyidyj . (A.9)

Here L = L(y, t) is the lapse function and we have performed spatial diffeo-
morphisms to kill the shift vectors.

A.2. Monotonicity Formulas for Equivolume Foliations

In this subsection we introduce a first monotonicity formula for equivolume
foliations. Suppose that detG is spatially constant, i.e., only depends on t.
Then

gαβ(∇α ln det G)(∇β ln det G) = − L−2(∂t ln det G)2 (A.10)

and

	g ln det G = − 1
L

√
det h

∂t

(

L−1
√

det h(∂t ln det G)
)

. (A.11)
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If R
g

IJ = 0, then (A.8) becomes

0 =
1
2

1
L

√
det h

∂t

(

L−1
√

det h(∂t ln det G)
)

+
1
4
L−2(∂t ln det G)2 +

1
4
|F |2. (A.12)

Multiplying by L
√

det h and integrating over Y gives

∂

∂t

(

(∂t ln det G)
∫

Y

L−1 dvolY

)

= − 1
2
(∂t ln det G)2

∫

Y

L−1 dvolY

− 1
2

∫

Y

|F |2LdvolY . (A.13)

If F = 0, then (∂t ln det G)
∫

Y
L−1 dvolY is monotonically nonincreasing in t.

A.3. Two Dimensions

In this subsection we specialize to the case when dim(B) = 2. We begin with
some generalities. In Sect. A.3.1 we consider monotonic quantities in the case
F = 0. Besides the monotonic quantity of Sect. A.2, we analyze an energy-like
monotonic functional ̂E .

In Sect. A.3.2 we look at the case when F is nonzero. In order to apply
results from the literature, in that subsubsection we specialize to the case N =
2. We introduce the monotonic quantity ̂EK and show that it is well-defined no
matter what the global twisting H ∈ SL(2, R) may be. We characterize when
̂EK is constant in t.

Continuing with Sect. A.2, suppose that dim(B) = 2, i.e., dim(Y ) = 1.
We write g locally (in Y ) as −L2dt2 + hdy2. We have Rg

αβ = 1
2Rgαβ , so

gttRg
tt = gyyRg

yy. Hence, −L−2Rg
tt = h−1Rg

yy. If R
g

αβ = 0, then the third
equation of (A.3) gives

L−2Tr
(

G− 1
2 G,tG

− 1
2

)2

+ h−1Tr
(

G− 1
2 G,yG− 1

2

)2

= L−2Tr
(

G− 1G,t

)2
+ h−1Tr

(

G− 1G,y

)2

= −2L−2(ln detG);tt = −2L−2(ln detG)tt + 2L−3Lt(ln detG)t. (A.14)

If in addition (ln detG)t = 0, then from (A.14), G− 1
2 G,tG

− 1
2 and G− 1

2 G,yG− 1
2

vanish, so G is locally constant in y and t. Then the third equation of (A.3)
gives Rg

αβ = 0, so B is flat. The holonomy around Y of the flat vector bundle
e must be orthogonal.

A.3.1. Gowdy Spacetime. In this subsubsection we assume that F = 0. From
(A.13), (∂t ln det G)

∫

Y
L−1 dvolY is monotonically nonincreasing in t. If it is

constant in t, then the right-hand side of (A.13) vanishes, so ∂t ln det G = 0.
Hence, G is locally constant in y and t, and B is flat.

For another monotonic quantity, consider
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E(t) =
∫

Y

[

h−1Tr

(

(

G−1 ∂G

∂y

)2
)

+ L−2Tr

(

(

G−1 ∂G

∂t

)2
)]

Ldvol

=
∫

Y

[

Lh− 1
2 Tr

(

(

G−1 ∂G

∂y

)2
)

+ L−1h
1
2 Tr

(

(

G−1 ∂G

∂t

)2
)]

dy.

(A.15)

Still assuming that F = 0, Eq. (A.12) gives

(ln detG)t∂t(Lh− 1
2 ) = Lh− 1

2 ((ln detG)tt +
1
2
(ln detG)2t ). (A.16)

When R
g

IJ = 0, Eq. (A.3) gives the matrix equation

− L−2(G−1Gtt − G−1GtG
−1Gt) + h−1(G−1Gyy − G−1GyG−1Gy)

+ L−3LtG
−1Gt + L−1h−1LyG−1Gy − 1

2
L−2h−1htG

−1Gt

− 1
2
h−2hyG−1Gy − 1

2
L−2(ln detG)tG

−1Gt = 0. (A.17)

Using (A.16) and (A.17), one finds

d
dt

((ln detG)tE) =
(

2(ln detG)tt +
1
2
(ln detG)2t

)

E

− 1
2
(ln detG)2t

∫

Y

L−1Tr
(

(

G−1Gt

)2
)

dvol . (A.18)

If (ln detG)t �= 0, then a scale-invariant quantity is given by

̂E(t) =
2

(ln detG)t

√
det G

E(t). (A.19)

Using (A.18), one finds

d̂E
dt

= − 1√
det G

∫

Y

L−1Tr
(

(

G−1Gt

)2
)

dvol (A.20)

If the right-hand side of (A.20) vanishes, then G is constant in t. As before,
this implies that G is constant in y and t, and B is flat.

Remark A.21. If we use the areal time variable t =
√

det G then ̂E(t) = E(t)
and

d̂E
dt

= − 1
t

∫

Y

L−1Tr
(

(

G−1Gt

)2
)

dvol; (A.22)

compare with (A.26) and (A.27).
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A.3.2. Non-Gowdy Spacetime. We now assume that F �= 0. If R
g

Iα = 0, then
from the second equation in (A.3), one finds that the R

N -valued vector

CI = L−1h− 1
2

√
det G GIKFK

ty (A.23)

is locally constant on the two-dimensional spacetime. More precisely, it is a
locally constant section of the flat vector bundle e∗ (using our assumption that
e is unimodular).

We now restrict to the case when N = 2 and the flat R
2-bundle e has

holonomy H, around the circle Y , lying in SL(2, R). When H = Id, the compo-
nents of C are called the “twist quantities” in [5] and subsequent papers such
as [20]. We mostly follow the notation of [20, pp. 1256–1283], with coordinates
(R, θ) for the two-dimensional base. We use linear coordinates x1, x2 for the
R

2-fiber. In that paper, R = det G and θ is the coordinate for the spacelike
hypersurface Y . The coordinates x1 and x2 are chosen so that C1 = 0 and
C2 = K, where K is a constant. The Lorentzian metric on (0,∞) × Y can be
written as

g = e2(η−U)(−dR2 + a−2dθ2) + e2U (dx1 + Adx2 + (G + AH)dθ)2

+ e−2UR2(dx2 + Hdθ)2. (A.24)

Put

D = a−1U2
R + aU2

θ + R−2e4U (a−1A2
R + aA2

θ) (A.25)

and

̂EK(R) =
∫

Y

(

D +
1
4
K2R−4e2ηa−1

)

dθ. (A.26)

Then, from [20, p. 1283]

d̂EK

dR
= −2R−1

∫

Y

(

a−1U2
R +

1
4
R−2e4UaA2

θ

)

dθ

−1
2
K2R−3

∫

Y

De2η dθ. (A.27)

If t is a time variable, with R a monotonically increasing function of t,
then

d̂EK

dt
=

(det G)t

2
√

det G

d̂EK

dR
. (A.28)

The quantity ̂EK is scale invariant.
To treat the more general case when H ∈ SL(2, R), since C is a nonzero

flat section of e∗, the matrix H−T must be unipotent, i.e., conjugate to
(

1 c
0 1

)

. The local coordinates {x1, x2} are such that C1 = 0 and C2 �= 0.

We claim that the formula for ̂EK still makes sense. To see this, the result
of parallel transport around Y is x1 → x1 + cx2 and x2 → x2. In terms of
the metric (A.24), this is the same as η → η, U → U , a → a, A → A + c,
G → G − cH, H → H and K → K. One sees that the integrand of (A.26)
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is preserved under these changes. Hence, the formula for ̂EK makes sense and
(A.27) still holds.

Now suppose that ̂EK is constant in t. From (A.27) and (A.28), if detG is
not constant in t (in which case G is locally constant in y and t and B is flat),
then U and A are constant in y and R. Using the equations in [20, Proposition
4.4], one finds that the Lorentzian metric on (0,∞) × Y is a constant times

− R2

R2 − CK2
dR2 +

1
R2

(R2 − CK2)e−2σ(θ)dθ2, (A.29)

where C is a constant and σ : Y → R is arbitrary. If (A.29) admits a future
timelike curve along which the proper time goes to infinity, then R must range
over an interval [R0,∞). The length of the S1-fiber is bounded as R → ∞.

Remark A.30. The second equation below [20, (4.26)] should read F :=
2URUθ + 2R−2e4UARAθ.

A.4. Monotonicity of Reduced Volume

In this subsection, we consider monotonic quantities when dim(B) > 2. As in
Choquet-Bruhat [10] and Choquet-Bruhat–Moncrief [11], we make an appro-
priate conformal transformation of the Lorentzian metric on B and assume
that the new metric has an expanding CMC foliation. It turns out that the
normalized volume of the time slice is monotonically nonincreasing.

To simplify the calculations, we start with a Lorentzian metric g of the
form (A.1) and consider a conformally related metric h = e2φg, where φ pulls
back from B. We impose the vacuum Einstein equations on h. With an appro-
priate choice of φ, the monotonic quantity is derived from the geometry of
(B, g).

The papers [10] and [11] deal with the case N = 2. The space of inner
products G on R

2 is isomorphic to R
+ × H2, which gives the link between the

present paper and the formalism of [10] and [11].
The monotonic quantity in this section is only defined when dim(B) > 2.

If dim(B) = 2, then the formula for φ is such that h would necessarily have a
constant volume density on its R

N -fibers, which need not be the case.
To begin, we consider the effect of a conformal change on an arbitrary

Lorentzian metric g on M . Given φ ∈ C∞(M), put h = e2φg. Then, the Ricci
curvature of h is given by

R
h

ab = R
g

ab − (m − 2)φ;ab + (m − 2)φ,aφ,b

−(	gφ + (m − 2)|∇φ|2g) gab. (A.31)

We now assume that g is of the form (A.1). Given φ ∈ C∞(B), put
φ = π∗φ ∈ C∞(M). Then, on a fiber π−1(b),

φ
g

;IJ =
1
2
〈∇GIJ ,∇φ〉,

φ
g

;Iα = 0

φ
g

;αβ = φg
;αβ
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	gφ = 	gφ +
1
2
〈∇ ln det G,∇φ〉. (A.32)

Combining (A.3), (A.31) and (A.32) gives

R
h
IJ = − 1

2
gαβ GIJ;αβ − 1

4
gαβ GKL GKL,α GIJ,β +

1

2
gαβ GKL GIK,α GLJ,β

+
1

4
gαγ gβδ GIK GJL F K

αβ F L
γδ − 1

2
(n + N − 1) 〈∇GIJ , ∇φ〉g

−
(

�gφ +
1

2
〈∇ ln detG, ∇φ〉g + (n + N − 1)|∇φ|2g

)

GIJ

R
h
Iα =

1

2
gγδ GIK F K

αγ;δ +
1

2
gγδ GIK;γ F K

αδ +
1

4
gγδ GIM GKL GKL;γ F M

αδ

R
h
αβ = Rg

αβ − 1

2
GIJ GIJ;αβ +

1

4
GIJ GJK,α GKL GLI,β − 1

2
gγδ GIJ F I

αγ F J
βδ

− (n + N − 1)φ;αβ + (n + N − 1)φ,αφ,β

−
(

�gφ +
1

2
〈∇ ln detG, ∇φ〉g + (n + N − 1)|∇φ|2g

)

gαβ . (A.33)

We now set

φ = − 1
2(n + N − 1)

ln det G, (A.34)

so that
1
2
〈∇ ln det G,∇φ〉g + (n + N − 1)|∇φ|2g = 0. (A.35)

We set the left-hand side of (A.33) to be zero. Multiplying the first equation
of (A.33) by GIJ , summing over I and J , and using the equation

	g ln det G = gαβGIJGIJ;αβ − gαβGIJGJK,αGKLGLK,β , (A.36)

gives

0 = −1
2
	g ln det G − 1

4
|∇ ln detG|2g +

1
4
gαγgβδGIJF I

αβF J
γδ

− 1
2
(n + N − 1)〈∇ ln det G,∇φ〉g − N	gφ

=
1 − n

2(n + N − 1)
	g ln det G +

1
4
gαγgβδGIJF I

αβF J
γδ. (A.37)

Using the equation

(ln detG);αβ = GIJGIJ;αβ − GIJGJK,αGKLGLI,β , (A.38)

the last equation of (A.33) becomes

0 = Rg
αβ − 1

2
(ln detG);αβ − 1

4
GIJ GJK,α GKL GLI,β − 1

2
gγδ GIJ F I

αγ F J
βδ

− (n + N − 1)φ;αβ + (n + N − 1)φ,αφ,β − (	gφ)gαβ

= Rg
αβ − 1

4
GIJ GJK;α GKL GLI;β − 1

2
gγδ GIJ F I

αγ F J
βδ

+
1

4(n + N − 1)
(ln detG),α(ln detG),β +

1
2(n + N − 1)

(	g ln det G)gαβ .

(A.39)
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Using (A.37), if n > 1, then

Rg
αβ =

1

4
GIJ GJK,α GKL GLI,β +

1

2
gγδ GIJ F I

αγ F J
βδ

− 1

4(n+N−1)
(ln detG),α(ln detG),β − 1

4(n−1)
gμνgγδGIJF I

μγF J
νδgαβ . (A.40)

In terms of the decomposition (A.9), let Kij be the second fundamental
form of the spatial hypersurfaces. By performing a gauge transformation, we
can assume that A0 = 0. Put

H = hijKij ,

K0
ij = Kij − 1

n
Hhij ,

|K|2 = KijKij ,

∣

∣K0
∣

∣

2
= K0,ijK0

ij = |K|2 − 1
n

H2.

∣

∣

∣

∣

∂G

∂t

∣

∣

∣

∣

2

= Tr
(

(

G−1G,0

)2
)

= GIJ GJK,0 GKL GLI,0,

|∇G|2G,h = hijTr
(

G−1G,iG
−1G,j

)

= hijGIJ GJK,i GKL GLI,j ,

Sα = G− 1
2 G,αG− 1

2 − 1
N

(ln detG),αIN ,

|S0|2 = Tr(S2
0) =

∣

∣

∣

∣

∂G

∂t

∣

∣

∣

∣

2

− 1
N

(

∂ ln det G

∂t

)2

,

|S|2 = hijTr(SiSj) = hijTr
(

G−1G,iG
−1G,j

)− 1
N

|∇ ln det G|2. (A.41)

Then, from the Gauss–Codazzi equation,

Rg
00 − 1

2
Rgg00 =

L2

2
(

Rh − |K|2 + H2
)

=
L2

2

(

Rh − |K0|2 +
(

1 − 1
n

)

H2

)

. (A.42)

From (A.40),

Rg
00 − 1

2
Rgg00 =

1

8

∣

∣

∣

∣

∂G

∂t

∣

∣

∣

∣

2

+
1

8
L2|∇G|2G,h

− 1

8(n+N−1)

(

∂ ln detG

∂t

)2

− 1

8(n+N−1)
L2|∇ ln detG|2h

+
1

4
hij GIJ F I

0i F J
0j +

1

8
L2hikhjl GIJ F I

ij F J
kl. (A.43)

Hence, we obtain the constraint equation

L2

(

Rh − |K0|2 +
(

1 − 1
n

)

H2

)

=
1
4

∣

∣

∣

∣

∂G

∂t

∣

∣

∣

∣

2

+
1
4

L2|∇G|2G,h
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− 1
4(n + N − 1)

(

∂ ln det G

∂t

)2

− 1
4(n + N − 1)

L2|∇ ln det G|2h

+
1
2

hij GIJ F I
0i F J

0j +
1
4

L2hikhjl GIJ F I
ij F J

kl (A.44)

or, equivalently,

L2

(

Rh − |K0|2 +

(

1 − 1

n

)

H2

)

=
1

4
|S0|2 +

1

4
L2|�S|2

+
n − 1

4N(n + N − 1)

(

∂ ln detG

∂t

)2

+
n − 1

4N(n + N − 1)
L2|∇ ln detG|2h

+
1

2
hij GIJ F I

0i F J
0j +

1

4
L2hikhjl GIJ F I

ij F J
kl. (A.45)

From the spacetime splitting,
∂hij

∂t
= −2LKij (A.46)

and
∂Kij

∂t
= LHKij − 2LhklKikKlj − L;ij + LRh

ij − LRg
ij , (A.47)

where the covariant derivatives are now with respect to h. Then using (A.40),
(A.41) and (A.45),

∂H

∂t
= LH2 − �hL + LRh − LhijRg

ij

= LH2 − �hL + LRh − 1

4
L|∇G|2G,h +

1

4(n + N − 1)
L|∇ ln detG|2h

− 1

2(n − 1)
L−1hijGIJF I

0iF
J
0j − n − 2

4(n − 1)
LhijhklGIJF I

ikF J
jl

= − �hL + L|K0|2 +
1

n
LH2

+
1

4
L−1 |S0|2 +

n − 1

4N(n + N − 1)
L−1

(

∂ ln detG

∂t

)2

+
n − 2

2(n − 1)
L−1hijGIJF I

0iF
J
0j +

1

4(n − 1)
LhijhklGIJF I

ikF J
jl. (A.48)

Now suppose that H is spatially constant but time-dependent. The max-
imum principle, when applied to (A.48), gives

L ≤ n

H2

∂H

∂t
. (A.49)

We have the pointwise identity
∂

∂t
dvol(Y, h) =

1
2
hij ∂hij

∂t
dvolh = −LH dvolh, (A.50)

so
∂

∂t
((−H)n dvol(Y, h)) = (−H)n+1

(

L − n

H2

∂H

∂t

)

dvol(Y, h). (A.51)
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Assuming that H is negative, it follows from (A.49) and (A.51) that
(−H)n dvol(Y, h(t)) is pointwise monotonically nonincreasing in t, and hence
(−H)n vol(Y, h(t)) is monotonically nonincreasing in t. Applying (A.48) to
(A.51) gives

d
dt

((−H)n vol(Y, h)) = − n(−H)n−1

∫

Y

[

L|K0|2 +
1
4
L−1 |S0|2

+
n − 1

4N(n + N − 1)
L−1

(

∂ ln detG

∂t

)2

+
n − 2

2(n − 1)
L−1hijGIJF I

0iF
J
0j

+
1

4(n − 1)
LhijhklGIJF I

ikF J
jl

]

dvol(Y, h). (A.52)

We note in passing that (A.45) gives an energy-type interpretation for
the normalized volume, as

(−H)n vol(Y, h)

=
n

n − 1
(−H)n−2

∫

Y

[

−Rh + |K0|2 +
1
4
L−2 |S0|2 +

1
4

|S|2

+
n − 1

4(n + N − 1)
L−2

(

∂ ln det G

∂t

)2

+
n − 1

4(n + N − 1)
|∇ ln det G|2h

+
1
2
L−2 hij GIJ F I

0i F J
0j +

1
4

hikhjl GIJ F I
ij F J

kl

]

dvolY . (A.53)

If (−H)n vol(Y, h) is constant in t and n > 2, then from (A.52), we must
have

0 = K0 = S0 =
∂ ln det G

∂t
= F I

ij = F I
0i. (A.54)

Then, Kij = 1
nHhij , the connection AI

i is spatially flat and time-independent,
and G is time-independent. Equation (A.48) now has the unique solution

L = nH−2 dH

dt
. (A.55)

From (A.46),

∂hij

∂t
= −2H−1 dH

dt
hij , (A.56)

so

hij(t) = H−2(t)H2(1)hij(1). (A.57)

From (A.37), we have 	h ln det G = 0, so ln detG is constant. Then, from the
first equation in (A.33), G satisfies

0 = hijGIJ;ij − hijGKLGIK,iGLJ,j , (A.58)

where the covariant derivatives are now with respect to h. Equations (A.40)
and (A.47) now give

Rh
ij = − n − 1

n2
H2hij + Rg

ij
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= − n − 1
n2

H2hij +
1
4
GIJGJK,iG

KLGLI,j . (A.59)

Conversely, given a static solution (hij , GIJ ) to the pair

0 = hijGIJ;ij − hijGKLGIK,iGLJ,j ,

Rh
ij = − (n − 1)hij +

1
4
GIJGJK,iG

KLGLI,j , (A.60)

and an increasing positive function σ(t), we get a solution

L(t) =
dσ

dt
,

hij(t) = σ2(t)hij ,

Kij(t) = − σ(t)hij

GIJ (t) = GIJ (A.61)

with H(t) = − n
σ(t) . Solutions to (A.60) are discussed in [22, Proposition 4.80].

A.4.1. The Case n = 2. If n = 2 and (−H)2 vol(Y, h) is constant in t, then
from (A.52),

0 = K0 = S0 =
∂ ln det G

∂t
= F I

ij (A.62)

and so

L = nH−2 dH

dt
. (A.63)

Equation (A.37) becomes
1

N + 1
	h ln det G = − L−2hijGIJF I

0iF
J
0j . (A.64)

Integrating over Y gives F I
0i = 0. The discussion in (A.56)–(A.61) is now valid.
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[12] Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow Graduate Studies in Mathematics,
vol. 77. American Mathematical Society, Providence (2006)
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