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COLLAPSING AND THE DIFFERENTIAL
FORM LAPLACIAN: THE CASE OF A
SMOOTH LIMIT SPACE

JOHN LOTT

Abstract
We analyze the limit of the p-form Laplacian under a collapse, with bounded sectional
curvature and bounded diameter, to a smooth limit space. As an application, we char-
acterize when the p-form Laplacian has small positive eigenvalues in a collapsing
sequence.

1. Introduction
A central problem in geometric analysis is to estimate the spectrum of the Laplacian
on a compact Riemannian manifoldM in terms of geometric invariants. In the case of
the Laplacian on functions, a major result is J. Cheeger’s lower bound on the smallest
positive eigenvalue in terms of an isoperimetric constant (see [11]). The problem of
extending his lower bound to the case of thep-form Laplacian was posed in [11].
There has been little progress on this problem. We address the more general question
of estimating the eigenvalues{λp, j (M)}∞j =1 of the p-form Laplacian4p (counted
with multiplicity) in terms of geometric invariants ofM .

A basic fact, due to Cheeger and J. Dodziuk, is thatλp, j (M) depends continu-
ously on the Riemannian metricgT M in theC0-topology (see [17]). Then an imme-
diate consequence of theCα-compactness theorem of M. Anderson and Cheeger [1]
is that for anyn ∈ Z+, r ∈ R, andD, i0 > 0, there are uniform bounds onλp, j (M)

among connected closedn-dimensional Riemannian manifoldsM with Ric(M) ≥ r ,
diam(M) ≤ D, and inj(M) > i0 (cf. [10, Theorem 1.3], [14, Theorem 0.4]). In par-
ticular, there is a uniform positive lower bound on the smallest positive eigenvalue of
the p-form Laplacian under these geometric assumptions.

The question, then, is what happens when inj(M) → 0. For technical reasons,
in this paper we assume uniform bounds on the Riemannian curvatureRM . Then we
wish to study how the spectrum of4p behaves in the collapsing limit. By collapsing
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we mean the phenomenon of a sequence of Riemannian manifolds converging in the
Gromov-Hausdorff topology to a lower-dimensional space. We refer to [23, Chapters
1 and 3] for basic information about collapsing and to [12, Section I], [13], [21], and
[23, Chapter 6] for information about bounded curvature collapsing. In this paper we
analyze the behavior of the spectrum of4p under collapse, with bounded sectional
curvature and bounded diameter, to a smooth limit space. The answer is in terms
of a type of Laplacian on the limit space. As an application, we characterize when
the p-form Laplacian has small positive eigenvalues in a collapsing sequence. In a
subsequent paper we will extend the results to the case of singular limit space and
give additional applications.

From Hodge theory, dim(Ker(4p)) = bp(M), the pth Betti number ofM . Given
K ≥ 0, letM (M, K ) be the set of Riemannian metricsg on M with ‖RM

‖∞ ≤ K
and diam(M, g) ≤ 1. We say thatM has small positive eigenvalues of thep-form
Laplacian if

inf
g∈M (M,K )

λp, j (M, g) = 0 (1.1)

for some j > bp(M) and someK > 0. If this is the case, then we say thatM has (at
least) j small eigenvalues. Note that this is a statement about the (smooth) topological
type of M .

There are no small positive eigenvalues of the Laplacian on functions onM (see,
e.g., [3]). B. Colbois and G. Courtois gave examples of manifolds with small posi-
tive eigenvalues of thep-form Laplacian forp > 0 (see [14]). Their examples were
manifoldsM with free isometricTk-actions, which one shrinks in the direction of the
Tk-orbits. In terms of the fiber bundleM → M/Tk, this sort of collapsing is a case
of the so-called adiabatic limit. The asymptotic behavior of the small eigenvalues of
the p-form Laplacian in the adiabatic limit was related to the Leray spectral sequence
of the fiber bundle in [5], [16], [18], and [26].

In another direction, K. Fukaya considered the behavior of the Laplacian on func-
tions in the case of a sequence of manifolds that converge in the Gromov-Hausdorff
metricdG H to a lower-dimensional limit spaceX, the collapsing assumed to be with
bounded sectional curvature and bounded diameter (see [19]). He found that in or-
der to get limits, one needs to widen the class of spaces being considered by adding
a Borel measure and to consider measured metric spaces. This is the case even if
X happens to be a smooth manifold. He defined a Laplacian acting on functions on
the measured limit space and proved a convergence theorem for the spectrum of the
Laplacian on functions, under the geometric assumption of convergence in the mea-
sured Gromov-Hausdorff topology.

We consider the behavior of the spectrum of4p under collapse with bounded sec-
tional curvature and bounded diameter. We find that we need a somewhat more refined
structure on the limit space, namely, a superconnection as introduced by D. Quillen
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[27]. More precisely, we need a flat degree-1 superconnection in the sense of [8].
Suppose thatB is a smooth connected closed manifold and thatE =

⊕m
j =0 E j is a

Z-graded real vector bundle onB. The degree-1 superconnectionsA′ that we need are
of the form

A′
= A′

[0]
+ A′

[1]
+ A′

[2]
, (1.2)

where
• A′

[0]
∈ C∞(B; Hom(E∗, E∗+1)),

• A′

[1]
is a grading-preserving connection∇

E on E, and

• A′

[2]
∈ �2(B; Hom(E∗, E∗−1)).

The superconnection extends by Leibniz’s rule to an operatorA′ on the E-valued
differential forms�(B; E). The flatness condition(A′)2

= 0 becomes
• (A′

[0]
)2

= (A′

[2]
)2

= 0,

• ∇
E A′

[0]
= ∇

E A′

[2]
= 0, and

• (∇E)2
+ A′

[0]
A′

[2]
+ A′

[2]
A′

[0]
= 0.

In particular,A′

[0]
defines a differential complex on the fibers ofE. Let gT B be a Rie-

mannian metric onB, and lethE be a graded Euclidean inner product onE, meaning
that Ei is orthogonal toE j if i 6= j . Then there are an adjoint(A′)∗ to A′ and a
Laplacian4E

= A′(A′)∗ + (A′)∗ A′ on�(B; E). Let 4E
p be the restriction of4E to⊕

a+b=p �a(B; Eb).

Using theC0-continuity of the spectrum and the geometric results of Cheeger,
Fukaya, and M. Gromov [12], we can reduce our study of collapsing to certain spe-
cial fiber bundles. As is recalled in Section3, an infranilmanifoldZ has a canonical
flat linear connection∇aff. Let Aff(Z) be the group of diffeomorphisms ofZ which
preserve∇aff.

Definition 1
An affine fiber bundleis a smooth fiber bundleM → B whose fiberZ is an infranil-
manifold and whose structure group is reduced from Diff(Z) to Aff(Z). A Rieman-
nian affine fiber bundleis an affine fiber bundle with the following:
• a horizontal distributionT H M on M whose holonomy lies in Aff(Z),
• a family gT Z of vertical Riemannian metrics that are parallel with respect to

the flat affine connections on the fibersZb, and
• a Riemannian metricgT B on B.

Fix a smooth connected closed Riemannian manifoldB. Fukaya showed that any
manifold M that collapses toB, with bounded sectional curvature, is the total space
of an affine fiber bundle overB (see [20]). If M → B is an affine fiber bundle,
let T H M be a horizontal distribution onM as above. LetT ∈ �2(M; T Z) be the
curvature ofT H M . There is aZ-graded real vector bundleE on B whose fiber over
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b ∈ B is isomorphic to the differential forms on the fiberZb which are parallel with
respect to the flat affine connection onZb. The exterior derivativedM induces a flat
degree-1 superconnectionA′ on E. If M → B is in addition a Riemannian affine
fiber bundle, then we obtain a Riemannian metricgT M on M constructed fromgT Z,
gT B, andT H M . There is an inducedL2 inner producthE on E. Define4

E as above.
Let diam(Z) denote the maximum diameter of the fibers{Zb}b∈B in the intrinsic
metric, and let5 denote the second fundamental forms of the fibers{Zb}b∈B. Our
first result says that the spectrumσ(4E

p ) of 4
E
p contains all of the spectrum of the

p-form Laplacian4M
p which stays bounded asdG H(M, B) → 0.

THEOREM 1
There are positive constants A, A′, and C which depend only ondim(M) such that if
‖RZ

‖∞ diam(Z)2
≤ A′, then for all0 ≤ p ≤ dim(M),

σ(4M
p ) ∩

[
0, Adiam(Z)−2

− C(‖RM
‖∞ + ‖5‖

2
∞ + ‖T‖

2
∞)
)

= σ(4E
p ) ∩

[
0, Adiam(Z)−2

− C(‖RM
‖∞ + ‖5‖

2
∞ + ‖T‖

2
∞)
)
. (1.3)

WhenZ is flat, there is some intersection between Theorem1 and the adiabatic limit
results of [5], [16], [18], and [26]. However, there is the important difference that we
need estimates that are uniform with respect todG H(M, B), whereas the adiabatic
limit results concern the asymptotics of the eigenvalues under the collapse of a given
Riemannian fiber bundle coming from a constant rescaling of its fibers.

We apply Theorem1 to estimate the eigenvalues of a general Riemannian mani-
fold M which is Gromov-Hausdorff close toB, assuming sectional curvature bounds
on M . Of course, we cannot say precisely whatσ(4M ) is, but we can use Theorem1
to approximate it to a given precisionε > 0. We say that two nonnegative numbers
λ1 andλ2 areε-close if e−ελ2 ≤ λ1 ≤ eελ2. We show that for a givenε > 0, if
dG H(M, B) is sufficiently small, then there is a flat degree-1 superconnectionA′ on
B whose Laplacian4E

p has a spectrum that isε-close to that of4M
p , at least up to a

high level.

THEOREM 2
Let B be a fixed smooth connected closed Riemannian manifold. Given n∈ Z+, ε >

0, and K ≥ 0, there are positive constants A(n, ε, K ), A′(n, ε, K ), and C(n, ε, K )

with the following property: if Mn is an n-dimensional connected closed Riemannian
manifold with‖RM

‖∞ ≤ K and dG H(M, B) ≤ A′(n, ε, K ), then there are
(1) a Z-graded real vector bundle E on B,
(2) a flat degree-1 superconnection A′ on E, and
(3) a Euclidean inner product hE on E,
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such that ifλp, j (M) is the j th eigenvalue of the p-form Laplacian on M,λp, j (B; E)

is the j th eigenvalue of4E
p , and

min
(
λp, j (M), λp, j (B; E)

)
≤ A(n, ε, K ) dG H(M, B)−2

− C(n, ε, K ), (1.4)

thenλp, j (M) is ε-close toλp, j (B; E).

Using [2], one can also show that the eigenspaces of4
E
p are L∞-close to those of

4
M
p , with respect to the embedding�(B; E) → �(M).

In the case of the Laplacian on functions, onlyE0 is relevant. AlthoughE0 is the
trivial R-bundle onB with a trivial connection, its Euclidean inner producthE0

need
not be trivial and corresponds exactly to the measure in Fukaya’s work.

In order to apply Theorem2, we prove a compactness result for the superconnec-
tion and the Euclidean metric.

Definition 2
Let SE be the space of degree-1 superconnections onE, let GE be the group of
smooth grading-preserving GL(E) gauge transformations onE, and letHE be the
space of graded Euclidean inner products onE. We equipSE andHE with theC∞-
topology. Give(SE × HE)/GE the quotient topology.

THEOREM 3
In Theorem2, we may assume that E is one of a finite number of isomorphism classes
of real Z-graded topological vector bundles{Ei } on B. Furthermore, there are com-
pact subsets DEi ⊂ (SEi × HEi )/GEi depending on n,ε, and K , such that we may
assume that the gauge equivalence class of the pair(A′, hE) lies in DE.

We remark that there may well be a sequence of topologically distinct Riemannian
manifolds of a given dimension, with uniformly bounded sectional curvatures, which
converge toB in the Gromov-Hausdorff topology (see Example 3). This contrasts
with the finiteness statement in Theorem3.

The eigenvalues of4E
p are continuous with respect to[(A′, hE)] ∈ (SE ×

HE)/GE. One application of Theorem3 is the following relationship between the
spectra of4M

p and the ordinary differential form Laplacian onB.

THEOREM 4
Under the hypotheses of Theorem2, letλ′

p, j (B) be the j th eigenvalue of the Laplacian

on
⊕

r �r (B) ⊗ Rdim(E p−r ). Then there is a positive constant D(n, ε, K ) such that

e−ε/2λ′

p, j (B)1/2
− D(n, ε, K ) ≤ λp, j (M)1/2

≤ eε/2λ′

p, j (B)1/2
+ D(n, ε, K ). (1.5)
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Now consider a flat degree-1 superconnectionA′ on a realZ-graded vector bundle
E over a smooth manifoldB. As (A′)2

= 0, there is a cohomology H∗(A′) for the
action of A′ on �(B; E), the latter having the total grading. There is a flatZ-graded
“cohomology” vector bundle H∗(A′

[0]
) on B. Furthermore, there is a spectral sequence

to compute H∗(A′), with E2-term H∗(B; H∗(A′

[0]
)).

Suppose thatM is a connected closed manifold with at leastj small eigenval-
ues of4p for j > bp(M). Consider a sequence of Riemannian metrics{gi }

∞

i =1
in M (M, K ) with lim i →∞ λp, j (M, gi ) = 0. There must be a subsequence of
{(M, gi )}

∞

i =1 which converges to a lower-dimensional limit spaceX. That is, we are
in the collapsing situation. Suppose that the limit space is a smooth manifoldB. From
Theorems2 and3, we can take a further subsequence of{(M, gi )}

∞

i =1 to obtain a sin-
gle vector bundleE on B, equipped with a sequence{(A′

i , hE
i )}∞i =1 of superconnec-

tions and Euclidean inner products. Using the compactness result in Theorem3, we
can take a convergent subsequence of these pairs, modulo gauge transformations, to
obtain a superconnectionA′

∞ on E with dim Ker(4E
p ) ≥ j . Then dim(Hp(A′

∞)) ≥ j .
It is no longer true that H∗(A′

∞) ∼= H∗(M; R) for this limit superconnection. How-
ever, we can analyze H∗(A′

∞) using the spectral sequence. We obtain

j ≤

∑
a+b=p

dim
(

Ha(B; Hb(A′

∞,[0]
))
)
. (1.6)

This formula has some immediate consequences. The first one is a bound on the
number of small eigenvalues of the 1-form Laplacian.

COROLLARY 1
Suppose that M has j small eigenvalues of the1-form Laplacian with j > b1(M).
Let X be the limit space coming from the above argument. Suppose that X is a smooth
manifold B. Then

j ≤ b1(B) + dim(M) − dim(B) ≤ b1(M) + dim(M). (1.7)

The second consequence is a bound on the number of small eigenvalues of thep-
form Laplacian for a manifold that is Gromov-Hausdorff close to a codimension-1
manifold.

COROLLARY 2
Let B be a connected closed(n − 1)-dimensional Riemannian manifold. Then for
any K ≥ 0, there areδ, c > 0 with the following property: suppose that M is a
connected closed smooth n-dimensional Riemannian manifold with‖RM

‖∞ ≤ K
and dG H(M, B) < δ. First, M is the total space of a circle bundle over B. LetO be
the orientation bundle of M→ B, a flat real line bundle on B. Thenλp, j (M, g) > c
for j = bp(B) + bp−1(B; O) + 1.
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The rest of our results concern small eigenvalues in collapsing sequences.

Definition 3
If M → B is an affine fiber bundle, a collapsing sequence associated to the affine
fiber bundle is a sequence of metrics{gi }

∞

i =1 ∈ M (M, K ) for someK ≥ 0 such that
lim i →∞(M, gi ) = B in the Gromov-Hausdorff topology, and for someε > 0, each
(M, gi ) is ε-bi-Lipschitz to a Riemannian affine fiber bundle structure onM → B.

We show that there are three mechanisms to make small positive eigenvalues of the
differential form Laplacian onM in a collapsing sequence. Either the differential
form Laplacian on the fiber admits small positive eigenvalues, the holonomy of the
flat “cohomology” bundle onB fails to be semisimple, or the Leray spectral sequence
of M → B does not degenerate at theE2-term.

THEOREM 5
Let {(M, gi )}

∞

i =1 be a collapsing sequence associated to an affine fiber bundle M→

B. Suppose thatlim i →∞ λp, j (M, gi ) = 0 for some j> bp(M). Write the fiber Z of
the affine fiber bundle as the quotient of a nilmanifoldẐ = 0̂\N by a finite group F.
Then
(1) for some q∈ [0, p], bq(Z) < dim(3q(n∗)F ); or
(2) for all q ∈ [0, p], bq(Z) = dim(3q(n∗)F ), and for some q∈ [0, p], the

holonomy representation of the flat vector bundleHq(Z; R) on B fails to be
semisimple; or

(3) for all q ∈ [0, p], bq(Z) = dim(3q(n∗)F ) and the holonomy representation
of the flat vector bundleHq(Z; R) on B is semisimple, and the Leray spectral
sequence to computeHp(M; R) does not degenerate at the E2 term.

Examples show that small positive eigenvalues can occur in each of the three cases in
Theorem5.

Theorem5 has some immediate consequences. The first is a characterization of
when the 1-form Laplacian has small positive eigenvalues in a collapsing sequence.

COROLLARY 3
Let {(M, gi )}

∞

i =1 be a collapsing sequence associated to an affine fiber bundle M→

B. Suppose thatlim i →∞ λ1, j (M, gi ) = 0 for some j> b1(M). Then
(1) the differential d2 : H0(B; H1(Z; R)) → H2(B; R) in the Leray spectral se-

quence forH∗(M; R) is nonzero; or
(2) the holonomy representation of the flat vector bundleH1(Z; R) on B has a

nontrivial unipotent subrepresentation; or
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(3) Z is almost flat but not flat and there is a nonzero covariantly constant section
of the flat vector bundle(H1(A′

∞,[0]
))/(H1(Z; R)∞).

The differentiald2 : H0(B; H1(Z; R)) → H2(B; R) can be considered to be a type
of Euler class; in the case of an oriented circle bundle over a smooth base, it gives
exactly the Euler class.

The second consequence is a characterization of when thep-form Laplacian has
small positive eigenvalues in a collapsing sequence over a circle.

COROLLARY 4
Let {(M, gi )}

∞

i =1 be a collapsing sequence associated to an affine fiber bundle M→

S1. Suppose thatlim i →∞ λp, j (M, gi ) = 0 for some j> bp(M). Write the fiber Z of
the affine fiber bundle as in Theorem5. Then
(1) for some q∈ {p − 1, p}, bq(Z) < dim(3q(n∗)F ); or
(2) for q ∈ {p − 1, p}, bq(Z) = dim(3q(n∗)F ), and if 8∗

∈ Aut(H∗(Z; R))

denotes the holonomy action on the fiber cohomology, then8p or 8p−1 has a
nontrivial unipotent factor in its Jordan normal form.

The third consequence is a characterization of when thep-form Laplacian has small
positive eigenvalues in a collapsing sequence over a codimension-1 manifold.

COROLLARY 5
Let {(M, gi )}

∞

i =1 be a collapsing sequence associated to an affine fiber bundle M→

B with dim(B) = dim(M) − 1. Suppose thatlim i →∞ λp, j (M, gi ) = 0 for some
j > bp(M). Let O be the orientation bundle of M→ B, a flat real line bundle on
B. Letχ ∈ H2(B; O) be the Euler class of the circle bundle M→ B. LetMχ be
multiplication byχ . ThenMχ : Hp−1(B; O) → Hp+1(B; R) is nonzero orMχ :

Hp−2(B; O) → Hp(B; R) is nonzero.

Finally, we give a class of examples for which the inequality in (1.6) is an equality.

THEOREM 6
Suppose that M→ B is an affine fiber bundle with a smooth base B and fiber Z=

Ẑ/F, whereẐ is a nilmanifold̂0\N and F is a finite group. Let

n = n′

[0]
⊃ n′

[1]
⊃ · · · ⊃ n′

[S]
⊃ 0 (1.8)

be the lower central series of the Lie algebran. Let c(n) be the center ofn. For
0 ≤ k ≤ S, put

n[k] = n′

[k]
+ c(n) (1.9)
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and putr[k] = n[k]/n[k+1]. Let P be the principalAff (Z)-bundle such that M=

P ×Aff (Z) Z. Let G=
⊕

b Gb be theZ-graded flat vector bundle on B with

Gb
= P ×Aff (Z)

(
3b
( S⊕

k=0

r∗
[k]

))F

. (1.10)

Then for any0 ≤ p ≤ dim(M), M has
∑

a+b=p dim(Ha(B; Gb)) small eigenvalues
of the p-form Laplacian.

The structure of the paper is as follows. In Section2 we give examples of collapsing
which show that the superconnection formalism is necessary. In Section3 we give
some background information about infranilmanifoldsZ and show that the orthog-
onal projection onto the parallel forms ofZ is independent of the choice of parallel
Riemannian metric. In Section4 we give a detailed analysis of the spectrum of the
differential form Laplacian on an infranilmanifold. In Section5 we show that the
eigenvalues of the superconnection Laplacian are continuous with respect to the su-
perconnection, the Riemannian metric, and the Euclidean inner product. We then an-
alyze the differential form Laplacian on a Riemannian affine fiber bundle and prove
Theorem1. In Section6 we consider manifoldsM that are Gromov-Hausdorff close
to a smooth manifoldB and prove Theorems2, 3, and4. Section7 uses the com-
pactness results to prove Theorem5 and Corollaries1–5. We then prove Theorem6.
More detailed descriptions appear at the beginnings of the sections.

2. Examples
For notation in this paper, ifG is a group that acts on a setX, we let XG denote
the set of fixed points. IfB is a smooth manifold andE is a smooth vector bundle
on B, we let�(B; E) denote the smoothE-valued differential forms onB. If n is
a nilpotent Lie algebra on which a finite groupF acts by automorphisms, thenn∗

denotes the dual space,3∗(n∗) denotes the exterior algebra of the dual space, and
3∗(n∗)F denotes theF-invariant subspace of the exterior algebra.

Example 1
Let N be a simply connected, connected nilpotent Lie group, such as the 3-
dimensional Heisenberg group. Letn be its Lie algebra of left-invariant vector fields,
let gT N be a left-invariant Riemannian metric onN, and let4N be the corresponding
Laplacian on�∗(N). (For simplicity of notation, we omit reference to the form degree
p.) The left-invariant differential forms3∗(n∗) form a subcomplex of�∗(N) with
differentialdn, on which4

N restricts to a finite-dimensional operator4
n. If 0 is a

lattice inN, then the left-invariant forms onN push down to forms onZ = 0\N, giv-
ing a subcomplex of�∗(Z) which is isomorphic to3∗(n∗). One knows that H∗(Z; R)
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is isomorphic to the cohomology of this subcomplex (see [28, Corollary 7.28]). We
see that the spectrumσ(4n) of 4

n is contained in the spectrumσ(4Z) of the differ-
ential form Laplacian on�∗(Z).

Suppose that{0i }
∞

i =1 is a sequence of lattices inN with quotientsZi = 0i \N
such that limi →∞ diam(Zi ) = 0. Then{Zi }

∞

i =1 obviously converges to a point, with
bounded sectional curvature in the collapse. We see that there are eigenvalues of4

Zi

which are constant ini , namely, those that come fromσ(4n). By Proposition2, the
other eigenvalues go to infinity asi → ∞. If N is nonabelian, then there are positive
eigenvalues of4Zi which are constant ini .

In terms of Theorem2, B is a point,E∗
= 3∗(n∗), and A′

= A′

[0]
= dn. This

shows that the termA′

[0]
does appear in examples. In fact,A′

[0]
= 0 if and only if N

is abelian.
By choosing different left-invariant metrics onN, we can makeσ(4n) arbitrarily

close to zero while keeping the sectional curvature bounded. (In fact, the sectional
curvature goes to zero.) This is a special case of Theorem6. We see that, in general,
there is no nontrivial lower bound on the first positive eigenvalue of4

Z under the
assumptions of bounded sectional curvature and bounded diameter.

Example 2
Let M be a compact manifold with a freeTk-action. LetgT M be aTk-invariant Rie-
mannian metric onM . Then forε > 0, there is a Riemannian metricgT M

ε obtained by
multiplying gT M in the direction of theTk-orbit by ε. Clearly, limε→0(M, gT M

ε ) =

M/Tk, the collapse being with bounded sectional curvature (see [13]). This collaps-
ing is an example of the so-called adiabatic limit, for which the eigenvalues of the
differential form Laplacian have been studied in [5], [16], [18], and [26]. Let E be the
flat “cohomology” vector bundle onM/Tk with fiber H∗(Tk

; R); in fact, it is a trivial
bundle. The results of the cited references imply that asε → 0, the eigenvalues of
4

M which remain finite approach those of the Laplacian on�∗(M/Tk
; E). In partic-

ular, the number of eigenvalues of thep-form Laplacian which go to zero asε → 0
is
∑

a+b=p dim
(
Ha(M/Tk

; Eb))
)
, which is also the dimension of theE2-term of the

Leray spectral sequence for computing Hp(M; R). This is consistent with Theorems
5 and6. Let A′

ε be the superconnection onE coming from Theorem2, usinggT M
ε .

Then limε→0 A′
ε = ∇

E.

Example 3
Suppose thatM is the total space of an oriented circle bundle, with anS1-
invariant Riemannian metric. Fork ∈ Z+, consider the subgroupZk ⊂ S1. Then
limk→∞ M/Zk = M/S1, the collapse obviously being with bounded sectional cur-
vature. By Fourier analysis, one finds that ask → ∞, the spectrum of4M/Zk ap-
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proaches the spectrum of the Laplacian onS1-invariant (not necessarily basic) dif-
ferential forms onM . In terms of Theorem2, B = M/S1 and E is the direct sum
of two trivial R-bundles onB. Let T be the curvature 2-form of the fiber bundle
M → M/S1. Then one finds that the Laplacian acting onS1-invariant forms onM is
isomorphic to the Laplacian4E

= A′
(
A′
)∗

+
(
A′
)∗

A′, whereA′ is the extension of
the superconnection onC∞(B; E) = C∞(B) ⊕ C∞(B) given by

A′
=

(
∇

E0
T

0 ∇
E1

)
. (2.1)

Here∇
E0

and∇
E1

are product connections. This shows that the termA′

[2]
does ap-

pear in examples. Note that ifM is simply connected, then{M/Zk}
∞

k=1 are mutually
nondiffeomorphic.

3. Infranilmanifolds
In this section we first recall some basic facts about infranilmanifolds. Then in Propo-
sition 1 we show that the orthogonal projection onto the parallel differential forms of
Z comes from an averaging technique and so is independent of the choice of parallel
metric onZ, a result that is crucial in what follows.

Let N be a simply connected, connected nilpotent Lie group. Following [12],
when N acts on a manifold on the left, we denote it byNL , and when it acts on a
manifold on the right, we denote it byNR. As in [12], let us recall the elementary but
confusing point that the right action ofN on N generates left-invariant vector fields,
while the left action ofN on N generates right-invariant vector fields.

There is a flat linear connection∇aff on N which is characterized by the fact that
left-invariant vector fields are parallel. The group Aff(N) of diffeomorphisms ofN
which preserve∇aff is isomorphic toNL×̃ Aut(N).

Suppose that0 is a discrete subgroup of Aff(N) which acts freely and cocom-
pactly onN, with 0 ∩ NL of finite index in0. Then the quotient spaceZ = 0\N is
an infranilmanifold modeled onN. We have the short exact sequences

1 −→ NL −→ Aff (N)
p

−→ Aut(N) −→ 1 (3.1)

and
1 −→ 0 ∩ NL −→ 0

p
−→ p(0) −→ 1. (3.2)

Put 0̂ = 0 ∩ NL and F = p(0). ThenF is a finite group. There is a normal cover
Ẑ = 0̂\N of Z with covering groupF .

The connection∇aff descends to a flat connection onT Z, which we again de-
note by∇

aff. Let Aff(Z) denote the affine group ofZ, let Aff0(Z) denote the con-
nected component of the identity in Aff(Z), and let aff(Z) denote the affine Lie al-
gebra ofZ. Any element of Aff(Z) can be lifted to an element of Aff(N). That is,
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Aff (Z) = 0\(N0Aff (N)), whereN0Aff (N) is the normalizer of0 in Aff (N). Sim-
ilarly, Aff 0(Z) = C(0)\(C0Aff (N)), whereC0Aff (N) is the centralizer of0 in
Aff (N) andC(0) is the center of0. There is a short exact sequence

1 −→ Aff 0(Z) −→ Aff (Z) −→ Out(0) −→ 1. (3.3)

As affine vector fields onZ can be lifted toF-invariant affine vector fields on̂Z,
we have aff(Z) = aff(Ẑ)F . If C(N) denotes the center ofN, then Aff0(Ẑ) = (0̂ ∩

C(NR))\NR. In particular, ifn is the Lie algebra ofN, thenF acts by automorphisms
onn and aff(Z) = nF

R.
The F-invariant subspace3∗(n∗)F of 3∗(n∗) is isomorphic to the vector space

of differential forms onZ which are parallel with respect to∇aff or, equivalently, to
the(NL×̃F)-invariant subspace of�∗(N).

Let gT Z be a Riemannian metric onZ which is parallel with respect to∇aff.
Such metrics correspond toF-invariant inner products onn. Let diam(Z) denote the
diameter ofZ, let ∇Z denote the Levi-Civita connection ofZ, and letRZ denote the
Riemann curvature tensor ofZ.

Let P : �∗(Z) → 3∗(n∗)F be the orthogonal projection onto parallel differen-
tial forms.

PROPOSITION1
The orthogonal projectionP is independent of the parallel metric gT Z.

Proof
We first consider the case whenF = {e}, so thatZ is a nilmanifold0\N. As N is
nilpotent, it has a bi-invariant Haar measureµ. We normalizeµ so that

∫
0\N dµ = 1.

Givenω ∈ �∗(Z), let ω̃ ∈ �∗(N) be its pullback toN. If Lg denotes the left action
of g ∈ NL on N, then for allγ ∈ 0,

L∗
γgω̃ = L∗

gL∗
γ ω̃ = L∗

gω̃. (3.4)

Hence it makes sense to defineω̃ ∈ �∗(N) by

ω̃ =

∫
0\NL

(L∗
gω̃) dµ(g). (3.5)

For h ∈ NL ,

L∗

hω̃ =

∫
0\NL

(L∗

hL∗
gω̃) dµ(g) =

∫
0\NL

(L∗

ghω̃) dµ(g)

=

∫
0\NL

(L∗
gω̃) dµ(gh−1) =

∫
0\NL

(L∗
gω̃) dµ(g) = ω̃. (3.6)
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Thus ω̃ is NL -invariant and, in particular, descends to a formω ∈ �∗(Z). Put
P(ω) = ω. ThenP is idempotent, with Im(P) being the parallel differential forms.
By construction,P is independent of the choice ofgT Z. It remains to show that
P is self-adjoint. Givenη ∈ �∗(Z), let η̃ be its lift to N. Consider the function
f : N × N → R given by

f (g, n) = 〈̃η, L∗
gω̃〉n =

〈̃
η(n), ω̃(gn)

〉
n. (3.7)

For γ ∈ 0, we have f (γg, n) = f (gγ −1, γ n) = f (g, n). It follows that we can
write

〈η, Pω〉Z =

∫
(0×0)\(N×N)

〈̃η, L∗
gω̃〉n dµ(g) dµ(n), (3.8)

where the action of0 × 0 on N × N is (γ1, γ2) · (g, n) = (γ1gγ −1
2 , γ2n). Changing

variable tog′
= gn, we have

〈η, Pω〉Z =

∫
0\NL

∫
0\NL

〈̃η, L∗

g′n−1ω̃〉n dµ(g′n−1) dµ(n) (3.9)

=

∫
0\NL

∫
0\NL

〈̃η, L∗

n−1 L∗

g′ω̃〉n dµ(g′) dµ(n)

=

∫
0\NL

∫
0\NL

〈L∗
nη̃, L∗

g′ω̃〉e dµ(g′) dµ(n)

=

∫
0\NL

∫
0\NL

〈L∗

g′ω̃, L∗
nη̃〉e dµ(n) dµ(g′)

= 〈ω, Pη〉Z = 〈Pη, ω〉Z .

ThusP is self-adjoint.
In the case of generalF , we can apply the above argument equivariantly onẐ

with respect toF . As F acts isometrically on̂Z, it commutes with the orthogonal
projectionP on Ẑ. As F preservesµ, it also commutes with the averaging operator
P on Ẑ. The proposition follows.

4. Eigenvalue estimates on infranilmanifolds
In this section we show in Proposition2 that if an infranilmanifoldZ has bounded
sectional curvature and a diameter that goes to zero, then all of the eigenvalues of4

Z

go to infinity, except for those that correspond to eigenforms which are parallel onZ.
Let N be a simply connected, connectedn-dimensional nilpotent Lie group with

a left-invariant Riemannian metric. Let{ei }
n
i =1 be an orthonormal basis ofn. De-

fine the structure constants ofn by [ei , ej ] =
∑n

k=1 ck
i j ek. Take the corresponding

left-invariant basis{ei }
n
i =1 of T N, with dual basis of 1-forms{τ i

}
n
i =1. Then the com-

ponentsωi
j =

∑n
k=1 ωi

jkτ k of the Levi-Civita connection 1-formω =
∑

k ωkτ
k are
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the constant matrices

ωi
jk = −

1

2
(ci

jk − c j
ik − ck

i j ). (4.1)

LEMMA 1
Letκ denote the scalar curvature of Z. Then

n∑
i, j,k=1

(ci
jk)2

= −4κ. (4.2)

Proof
As
∑n

i, j,k=1(c
i
jk)2 is independent of the choice of orthonormal basis, we compute it

using a special orthonormal basis. Recall the definition ofn[k] from (1.9). In particular,
n[S] = c(n). Following the notation of [20, §6], we take an orthonormal basis{ei }

n
i =1

of n such thatei ∈ n[O(i )] for some nondecreasing function

O : {1, . . . , n} → {0, . . . , S}, (4.3)

andei ⊥ n[O(i )+1].
For a general Riemannian manifold, we have the structure equations

dτ i
= −

∑
j

ωi
j ∧ τ j , (4.4)

�i
j = dωi

j +

∑
m

ωi
m ∧ ωm

j .

Then

�i
j = d

∑
l

ωi
j l τ

l
+

∑
m

ωi
m ∧ ωm

j (4.5)

=

∑
k,l

(ekω
i
j l )τ

k
∧ τ l

+

∑
m

ωi
jmdτm

+

∑
k,l ,m

ωi
mkω

m
jl τ

k
∧ τ l .

This gives the Riemann curvature tensor as

Ri
jkl = ekω

i
j l − el ω

i
jk +

∑
m

[−ωi
jmωm

lk + ωi
jmωm

kl + ωi
mkω

m
jl − ωi

mlω
m
jk]. (4.6)

Then

κ =

∑
i, j

(ei ω
i
j j − ej ω

i
j i ) +

∑
i, j,m

[−ωi
jmωm

ji + ωi
jmωm

i j + ωi
miω

m
j j − ωi

m jω
m
ji ]

=

∑
i, j

(ei ω
i
j j − ej ω

i
j i ) +

∑
i, j,m

[ωi
jmωm

i j + ωi
miω

m
j j ]. (4.7)
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In our case, the components of the connection matrix are constant. Also, asn is
nilpotent,

ωi
j j = c j

i j = 0. (4.8)

Then one obtains

κ = −

n∑
i, j,k=1

ωi
jkωi

k j . (4.9)

Separatingωi
jk into components that are symmetric or antisymmetric inj andk, and

using (4.1), we obtain

κ = −
1

4

n∑
i, j,k=1

(c j
ik + ck

i j )
2
+

1

4

n∑
i, j,k=1

(ci
jk)2 (4.10)

= −

n∑
i, j,k=1

[1

2
c j

ikck
i j +

1

4
(ci

jk)2
]
.

As n is nilpotent, it follows thatc j
ikck

i j = 0. This proves the lemma.

Let Z be an infranilmanifold with an affine-parallel metric. Let4
Z denote the

Laplacian acting on�∗(Z). Let 4
inv be the finite-dimensional Laplacian acting on

3∗(n∗)F .

PROPOSITION2
There are positive constants A and A′, depending only ondim(Z), such that if
‖RZ

‖∞ diam(Z)2
≤ A′, then the spectrumσ(4Z) of 4Z satisfies

σ(4Z) ∩
[
0, Adiam(Z)−2)

= σ(4inv) ∩
[
0, Adiam(Z)−2). (4.11)

Proof
Recall the definition ofP from Proposition1. It is enough to show that under the
hypotheses of the present proposition, the spectrum of4

Z on Ker(P) is bounded
below byAdiam(Z)−2.

As Ẑ isometrically coversZ with covering groupF , the spectrum of4Z on
Ker(P) ⊂ �∗(Z) is contained in the spectrum of4

Ẑ on Ker(P) ⊂ �∗(Ẑ).

LEMMA 2
There is a functionη : N → N such that

diam(Ẑ) ≤ η
(
|F |
)

diam(Z). (4.12)
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Proof
Let ẑ1, ẑ2 ∈ Ẑ be such that diam(Ẑ) = d(̂z1, ẑ2). It is easy to see thatd(̂z1, F · ẑ2) ≤

diam(Z). Let z2 ∈ Z be the projection of̂z2 ∈ Ẑ. Then it is enough to bound‖ · ‖geo

from above onπ1(Z, z2) ∼= F , that is, to bound the minimal lengths of curves in
the classes ofπ1(Z, z2). From [23, Proposition 3.22], there is a set of generators of
π1(Z, z2) on which‖ · ‖geo is bounded above by 2 diam(Z). Givenr ∈ N, there is a
finite number of groups of orderr , up to isomorphism, and each of these groups has
a finite number of generating sets. The lemma follows.

Furthermore, there is a universal bound|F | ≤ const.(dim(Z)) (see [9]). Hence, with-
out loss of generality, we may assume thatF = {e}, so thatZ is a nilmanifold0\N.

Let Ei denote exterior multiplication on�∗(Z) by τ i , and letI i denote interior
multiplication byei . From the Bochner formula, ifη ∈ �∗(Z), then

〈η, 4Zη〉Z = 〈∇
Zη, ∇Zη〉Z +

∑
i jkl

∫
Z

RZ
i jkl 〈Ei I j η, Ek I l η〉 d volZ . (4.13)

Using the left-invariant vector fields onN, there is an isometric isomorphism

�∗(Z) ∼= C∞(Z) ⊗ 3∗(n∗). (4.14)

With respect to this isomorphism,

∇
T Z
ei

= (ei ⊗ Id) +

(
Id ⊗

∑
j,k

ω
j
ki E

j I k
)
, (4.15)

whereE j and I k now act on3∗(n∗). It follows that

〈∇
Zη, ∇Zη〉Z ≥

∑
i

〈
(ei ⊗ Id)η, (ei ⊗ Id)η

〉
Z −

∑
i

∣∣∣∑
j,k

ω
j
ki E

j I kη

∣∣∣2
Z
. (4.16)

Let 4
Z
0 be the ordinary Laplacian onC∞(Z). With respect to (4.14), consider the

operator4Z
0 ⊗ Id. We have〈

η, (4Z
0 ⊗ Id)η

〉
Z =

∑
i

〈
(ei ⊗ Id)η, (ei ⊗ Id)η

〉
Z . (4.17)

Using (4.1), (4.13), (4.16), (4.17), and Lemma1, we obtain

〈η, 4Zη〉Z ≥
〈
η, (4Z

0 ⊗ Id)η
〉
Z − const. ‖RZ

‖∞|η|
2
Z . (4.18)

In terms of (4.14), Ker(P) ∼= 1⊥
⊗3∗(n∗), where 1 denotes the constant function

on Z. Thus ifη ∈ Ker(P), then〈η, (4Z
0 ⊗ Id)η〉Z ≥ λ0,2|η|

2
Z , whereλ0,2 is the first

positive eigenvalue of the function Laplacian onZ. There is a lower bound

λ0,2 ≥ diam(Z)−2 f
(
‖RZ

‖∞ diam(Z)2) (4.19)
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for some smooth functionf with f (0) > 0 (see [3]). Thus the spectrum of4Z on
Ker(P) is bounded below by

diam(Z)−2[ f
(
‖RZ

‖∞ diam(Z)2)
− const. ‖RZ

‖∞ diam(Z)2]. (4.20)

Taking A = (3/4) f (0), the proposition follows.

5. Affine fiber bundles
In this section we first show that the eigenvalues of a superconnection Laplacian are
continuous with respect to the superconnection, the Riemannian metric, and the Eu-
clidean inner product. We then construct the superconnectionA′ associated to an
affine fiber bundleM → B and prove Theorem1.

Let B be a smooth connected closed Riemannian manifold. LetE =
⊕m

j =0 E j

be aZ-graded real vector bundle onB. For background information about super-
connections, we refer to [4, Chapter 1.4], [7], [8], and [27]. Let A′ be a degree-1
superconnection onE. That is, A′ is anR-linear map fromC∞(B; E) to �(B; E)

with a decomposition

A′
=

dim(B)∑
k=0

A′

[k]
, (5.1)

where
• A′

[1]
is a connection∇E on E which preserves theZ-grading;

• for k 6= 1, A′

[k]
∈ �k(B; Hom(E∗, E∗+1−k)).

We can extendA′ to anR-linear map on�(B; E) using the Leibniz rule. We assume
that A′ is flat in the sense that

(A′)2
= 0. (5.2)

Let hE be a Euclidean inner product onE such thatE j is orthogonal toE j ′ if j 6= j ′.
Let (A′)∗ be the adjoint superconnection with respect tohE, and put

4
E

= A′(A′)∗ + (A′)∗ A′. (5.3)

Then4
E preserves the totalZ-grading on�(B; E) and decomposes with respect to

the grading as4E
=
⊕

p 4
E
p . By elliptic theory,4E

p has a discrete spectrum.

If gT B
1 andgT B

2 are two Riemannian metrics onB andε ≥ 0, we say thatgT B
1

andgT B
2 areε-close if

e−εgT B
2 ≤ gT B

1 ≤ eεgT B
2 . (5.4)

Similarly, if hE
1 andhE

2 are two Euclidean inner products onE, we say thathE
1 and

hE
2 areε-close if

e−εhE
2 ≤ hE

1 ≤ eεhE
2 . (5.5)
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If S1 = {λ1, j } and S2 = {λ2, j } are two countable nondecreasing ordered sets of
nonnegative real numbers, then we say thatS1 andS2 areε-close if for all j ,

e−ελ2, j ≤ λ1, j ≤ eελ2, j . (5.6)

For simplicity we omit the subscriptp, the form degree, in this section when its
role is obvious.

LEMMA 3
There is an integer J= J(dim(B)) > 0 such that if gT B

1 and gT B
2 are ε-close, and

hE
1 and hE

2 are ε-close, then the corresponding Laplacians4
E
1 and4

E
2 have spectra

that are Jε-close.

Proof
As in [17, Proposition 3.1], using a trick apparently first due to Cheeger, we can write
the spectrum of4E on Im((A′)∗) as

λ j = inf
V

sup
η∈V−{0}

sup
θ∈�(B;E)

{
〈η, η〉

〈θ, θ〉
: η = A′θ

}
, (5.7)

whereV ranges overj -dimensional subspaces of Im(A′). As the Riemannian metric
and Euclidean inner product enter only in defining〈·, ·〉, the lemma follows as in
[17].

We also need a result about how the spectrum of4
E depends on the superconnection

A′. Given X ∈ �(B; End(E)), let ‖X‖ be the operator norm for the action ofX on
theL2-completion of�(B; E). If A′

1 andA′

2 are two superconnections as above, then
A′

1 − A′

2 ∈ �(B; End(E)). Fix gT B andhE.

LEMMA 4
For all j ∈ Z+, ∣∣λ j (A′

1)
1/2

− λ j (A′

2)
1/2
∣∣ ≤ (2 +

√
2)‖A′

1 − A′

2‖. (5.8)

Proof
Putx = ‖A′

1 − A′

2‖. If ω ∈ �(B; E) is nonzero, then∣∣∣ |A′

1ω|

|ω|
−

|A′

2ω|

|ω|

∣∣∣ ≤
|(A′

1 − A′

2)ω|

|ω|
≤ x (5.9)

and ∣∣∣ |(A′

1)
∗ω|

|ω|
−

|(A′

2)
∗ω|

|ω|

∣∣∣ ≤
|((A′

1)
∗

− (A′

2)
∗)ω|

|ω|
≤ x. (5.10)
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DefineEv1, Ev2 ∈ R2 by

Evi =

( |A′

i ω|

|ω|
,
|(A′

i )
∗ω|

|ω|

)
. (5.11)

Then (5.10) and (5.11) imply that∣∣(‖Ev2‖ − ‖Ev1‖)
∣∣ ≤ ‖Ev2 − Ev1‖ ≤

√
2x. (5.12)

Hence

‖Ev2‖
2
− ‖Ev1‖

2
= (‖Ev2‖ − ‖Ev1‖) · (‖Ev2‖ + ‖Ev1‖) ≤

√
2x(2‖Ev2‖ +

√
2x), (5.13)

so

‖Ev1‖
2

≥ ‖Ev2‖
2
− 2

√
2x‖Ev2‖ − 2x2 (5.14)

= (‖Ev2‖ −
√

2x)2
− 4x2.

Thus
‖Ev1‖

2
≥ max

(
0, (‖Ev2‖ −

√
2x)2

− 4x2), (5.15)

or equivalently,

〈ω, 4A′

1
ω〉

〈ω, ω〉
≥ max

(
0,
(( 〈ω, 4A′

2
ω〉

〈ω, ω〉

)1/2
−

√
2x
)2

− 4x2
)

. (5.16)

The minmax characterization of eigenvalues

λ j (A′) = inf
V

sup
ω∈V−{0}

{
〈ω, 4A′ω〉

〈ω, ω〉

}
, (5.17)

whereV ranges overj -dimensional subspaces of�(B; E), implies

λ j (A′

1) ≥ max
(
0, (λ

1/2
j (A′

2) −
√

2x)2
− 4x2). (5.18)

An elementary calculation then gives

λ j (A′

1)
1/2

− λ j (A′

2)
1/2

≥ −(2 +
√

2)x. (5.19)

Symmetrizing inA′

1 andA′

2, the proposition follows.

Let M be a closed manifold that is the total space of an affine fiber bundle, as in
Definition 1. Let T H M be a horizontal distribution onM so that the correspond-
ing holonomy onB lies in Aff(Z). If m ∈ Zb, then usingT H M , we can write
3∗(T∗

mM) ∼= 3∗(T∗

b B)⊗̂3∗(T∗
mZb). That is, we can compose differential forms on

M into their horizontal and vertical components. Correspondingly, there is an infinite-
dimensionalZ-graded real vector bundleW on B such that�∗(M) ∼= �(B; W) (see
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[8, Section III(a)]). A fiberWb of W is isomorphic to�∗(Zb). We callC∞(B; W)

the vertical differential forms. The exterior derivativedM
: �∗(M) → �∗(M),

when considered to be an operatordM
: �(B; W) → �(B; W), is the extension

to �(B; W) of a flat degree-1 superconnection onW. From [8, Proposition 3.4], we
can write the superconnection as

dZ
+ ∇

W
+ iT , (5.20)

where
• dZ

∈ C∞(B; Hom(W∗
; W∗+1)) is vertical differentiation,

• ∇
W

: C∞(B; W) → �1(B; W) comes from Lie differentiation in the hori-
zontal direction, and

• iT ∈ �2(B; Hom(W∗
; W∗−1)) is interior multiplication by the curvature 2-

form T ∈ �2(M; T Z) of T H M .
Acting on�∗(M), we have

dM
= dZ

+ dW
+ iT , (5.21)

wheredW
: �∗(B; W) → �∗+1(B; W) is exterior differentiation onB using∇

W.
Let E be the finite-dimensional subbundle ofW such thatEb consists of the

elements of�∗(Zb) which are parallel onZb. The fibers ofE are isomorphic to
3∗(n∗)F , andC∞(B; E) is isomorphic to the vertical differential forms onM whose
restrictions to the fibers are parallel. Furthermore, the superconnection (5.20) restricts
to a flat degree-1 superconnectionA′ on E, as exterior differentiation onM preserves
the space of fiberwise-parallel differential forms. From (5.20),

A′
= dn

+ ∇
E

+ iT , (5.22)

wheredn is the differential on3∗(n∗)F and∇
E comes fromT H M through the action

of Aff (Z) on3∗(n∗)F . Acting on�(B; E), we have

A′
= dn

+ dE
+ iT , (5.23)

wheredE is exterior differentiation on�(B; E) using∇
E.

Remark.The connection∇E is generally not flat. AsA′ is flat, we have

(∇E)2
= −(dn iT + iT dn). (5.24)

Thus the curvature of∇E is given by Lie differentiation with respect to the (negative
of the) curvature 2-formT . More geometrically, givenb ∈ B, let γ be a loop inB
starting fromb, and leth(γ ) ∈ Aff (Zb) be the holonomy of the connectionT H M
aroundγ . Then the holonomy of∇E aroundγ is the action ofh(γ ) on the fiberEb.
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In particular, the infinitesimal holonomy of∇E lies in the image of the Lie algebra
aff(Z) in End(Eb). From the discussion after (3.3), aff(Z) lies innR. As the elements
of Eb areNL -invariant forms onN, they are generally not annihilated by aff(Z).

Suppose in addition thatM is a Riemannian affine fiber bundle, as in Definition1.
ThengT Z induces anL2 inner producthW on W and a Euclidean inner producthE

on E. Let diam(Z) denote the maximum diameter of the fibers{Zb}b∈B in the in-
trinsic metric, and let5 denote the second fundamental forms of the fibers. From
gT Z, T H M , andgT B, we obtain a Riemannian metricgT M on M . Let4M denote the
Laplacian acting on�∗(M), and define4E, acting on�(B; E), as in (5.3). Let RM

denote the Riemann curvature tensor ofgT M.
Let Pfib be fiberwise orthogonal projection from�(B; W) to �(B; E). We

claim thatPfib commutes withdM . Looking at (3.5), Pfib clearly commutes with
dZ . Using the fact that the holonomy ofT H M lies in Aff(Z), it follows from (3.5)
and the proof of Proposition1 that Pfib commutes with∇W. As T takes values in
parallel vector fields onZ, it follows from (3.5) and the proof of Proposition1 that
Pfib commutes withiT . ThusPfib commutes withdM . As the fiberwise metrics are
parallel on the fibers, it follows thatPfib also commutes with(dM )∗.

Then with respect to the decomposition�∗(M) = Im(Pfib)⊕Ker(Pfib), 4M is
isomorphic to4E

⊕ 4
M
∣∣
Ker(Pfib)

.

Proof of Theorem1
From Proposition2, there is a constantA > 0 such that for allb ∈ B, the spectrum
of 4

Zb
∣∣
Ker(P)

is bounded below byA · diam(Zb)
−2. It suffices to show that there is a

constantC as in the statement of the theorem such that

σ
(
4

M
∣∣
Ker(Pfib)

)
⊂
[
Adiam(Z)−2

− C(‖RM
‖∞ + ‖5‖

2
∞ + ‖T‖

2
∞), ∞

)
. (5.25)

We use the notation of [8, Section III(c)] to describe the geometry of the fiber
bundleM . In particular, lowercase Greek indices refer to horizontal directions, low-
ercase italic indices refer to vertical directions, and uppercase italic indices refer to
either. Let{τ i

}
dim(Z)
i =1 and {τα

}
dim(B)
α=1 be a local orthonormal basis of 1-forms as in

[8, Section III(c)], with dual basis{ei }
dim(Z)
i =1 and{eα}

dim(B)
α=1 . Let EJ be exterior mul-

tiplication by τ J , and let I J be interior multiplication byeJ . The tensors5 andT
are parts of the connection 1-form componentωi

α =
∑

j ωi
α j τ

j
+
∑

β ωi
αβτβ with

symmetries

ωαk j = ωα jk = −ω j αk = −ωkα j ,

ωβα j = −ωαβ j = −ωα jβ = ω j αβ = ωβ j α = −ω jβα. (5.26)
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Givenη ∈ �∗(M), the Bochner formula gives

〈η, 4Mη〉M = 〈∇
Mη, ∇Mη〉M +

∑
P QRS

∫
M

RM
P QRS〈EP I Qη, ERI Sη〉 d volM .

(5.27)
Here

∇
M

: C∞(M; 3∗T∗M) → C∞(M; T∗M ⊗ 3∗T∗M) (5.28)

is, of course, the Levi-Civita connection onM . We can write∇M
= ∇

V
+∇

H , where

∇
V

: C∞(M; 3∗T∗M) → C∞(M; TvertM ⊗ 3∗T∗M) (5.29)

denotes covariant differentiation in the vertical direction and

∇
H

: C∞(M; 3∗T∗M) → C∞(M; ThorM ⊗ 3∗T∗M) (5.30)

denotes covariant differentiation in the horizontal direction. Then

〈η, 4Mη〉M = 〈∇
Vη, ∇Vη〉M

+ 〈∇
Hη, ∇Hη〉M +

∫
M

∑
P QRS

RM
P QRS〈EP I Qη, ERI Sη〉 d volM

≥ 〈∇
Vη, ∇Vη〉M − const. ‖RM

‖∞〈η, η〉M

=

∫
B

∫
Zb

[
|∇

Vη|
2(z) − const. ‖RM

‖∞|η(z)|2
]

d volZb d volB . (5.31)

Let

∇
T Z

: C∞
(
M; 3∗(T∗,vertM)

)
→ C∞

(
M; T∗M ⊗ 3∗(T∗,vertM)

)
(5.32)

denote the Bismut connection acting on3∗(T∗,vertM) (see [4, Proposition 10.2],
[7, Definition 1.6]). On a given fiberZb, there is a canonical flat connection on
ThorM

∣∣
Zb

. Hence we can use∇T Z to vertically differentiate sections of3∗(T∗M) =

3∗(T∗,vertM)⊗̂3∗(T∗,horM). That is, we can define

∇
T Z

: C∞
(
M; 3∗(T∗M)

)
→ C∞

(
M; T∗,vertM ⊗ 3∗(T∗M)

)
. (5.33)

Explicitly, with respect to a local framing,

∇
T Z
ei

η = ei η +

∑
j,k

ω
j
ki E

j I kη (5.34)

and

∇
V
ei

η = ∇
T Z
ei

η +

∑
j α

ω
j
αi E j I αη +

∑
αk

ωα
ki E

α I kη +

∑
αβ

ωα
βi Eα I βη. (5.35)
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Then from (5.34) and (5.35),

〈∇
Vη, ∇Vη〉M

≥

∫
B

∫
Zb

[
|∇

T Zη|
2(z) − const.(‖Tb‖

2
+ ‖5b‖

2)|η|
2(z)

]
d volZb d volB. (5.36)

On a given fiberZb, for ηZb ∈ �∗(Zb), we have

〈ηZb, 4
ZbηZb〉Zb =

∫
Zb

|∇
T ZbηZb|

2(z) d volZb

+

∑
i jkl

∫
Zb

RZb
i jkl 〈Ei I j η, Ek I l η〉 d volZb. (5.37)

If ηZb ∈ Ker(P), then

〈η, 4Zbη〉Zb ≥ Adiam(Zb)
−2

〈η, η〉Zb. (5.38)

Hence∫
Zb

|∇
T ZbηZb|

2(z) d volZb ≥
(
Adiam(Zb)

−2
− const. ‖RZb‖∞

)
〈η, η〉Zb. (5.39)

From (5.31), (5.36), and (5.39), if η ∈ Ker(Pfib), then

〈η,4Mη〉M

≥
(
Adiam(Z)−2

− const.(‖RM
‖∞ + ‖T‖

2
∞ + ‖5‖

2
∞ + ‖RZ

‖∞)
)
〈η, η〉M .

(5.40)

Using the Gauss-Codazzi equation, we can estimate‖RZ
‖∞ in terms of‖RM

‖∞ and
‖5‖

2
∞. The theorem follows.

6. Collapsing to a smooth base
In this section we prove Theorem2, concerning the spectrum of the Laplacian4

M on
a manifoldM which is Gromov-Hausdorff close to a smooth manifoldB. We prove
Theorem3, showing that the pairs(A′, hE) that appear in the conclusion of Theorem
2 satisfy a compactness property. We then prove Theorem4, relating the spectrum of
4

M to the spectrum of the differential form Laplacian on the base spaceB.

Proof of Theorem2
For simplicity, we omit reference top. Let gT M

0 denote the Riemannian metric onM .
From [17] or Lemma3, if a Riemannian metricgT M

1 on M is ε-close togT M
0 , then

the spectrum of4M , computed withgT M
1 , is Jε-close to the spectrum computed with
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gT M
0 . We use the geometric results of [12] to find a metricgT M

2 on M which is close
to gT M

0 and to which we can apply Theorem1.
First, as in [12, (2.4.1)], by the smoothing results of U. Abresch and others (see

[12, Theorem 1.12]), we can find metrics onM andB which areε-close to the original
metrics such that the new metrics satisfy‖∇

i R‖∞ ≤ Ai (n, ε) for some appropriate
sequence{Ai (n, ε)}∞i =0. By rescaling, we may assume that‖RM

‖∞ ≤ 1, ‖RB
‖∞ ≤

1, and inj(B) ≥ 1. LetgT M
1 denote the new metric onM . We now apply [12, Theorem

2.6], with B fixed. It implies that there are positive constantsλ(n) andc(n, ε), so that
if dG H(M, B) ≤ λ(n), then there is a fibrationf : M → B such that
(1) diam( f −1(b)) ≤ c(n, ε) dG H(M, B),
(2) f is ac(n, ε)-almost Riemannian submersion,
(3) ‖5 f −1(b)‖∞ ≤ c(n, ε).
As in [20], the Gauss-Codazzi equation, the curvature bound onM , and the second
fundamental form bound onf −1(b) imply a uniform bound on{‖R f −1(b)

‖∞}b∈B.
Along with the diameter bound onf −1(b), this implies that ifdG H(M, B) is suffi-
ciently small, thenf −1(b) is almost flat.

From [12, Propositions 3.6 and 4.9], we can find another metricgT M
2 on M which

is ε-close togT M
1 so that the fibrationf : M → B gives M the structure of a Rie-

mannian affine fiber bundle. Furthermore, by [12, Proposition 4.9], there is a sequence
{A′

i (n, ε)}∞i =0, so that we may assume thatgT M
1 andgT M

2 are close in the sense that

‖∇
i (gT M

1 − gT M
2 )‖∞ ≤ A′

i (n, ε) dG H(M, B), (6.1)

where the covariant derivative in (6.1) is that of the Levi-Civita connection ofgT M
2

(see also [30, Theorem 1.1] for an explicit statement). In particular, there is an upper
bound on‖RM (gT M

2 )‖∞ in terms ofB, n, ε, andK .
We now apply Theorem1 to the Riemannian affine fiber bundle with metricgT M

2 .
It remains to estimate the geometric terms appearing in (1.3). We have an estimate on
‖5‖∞ as above. Applying O’Neill’s formula (see [6, (9.29c)]) to the Riemannian
affine fiber bundle, we can estimate‖T‖

2
∞ in terms of‖RM

‖∞ and‖RB
‖∞. Putting

this together, the theorem follows.

The vector bundlesE and Euclidean inner productshE which appear in Theorem
2 are not completely arbitrary. For example,E0 is the trivial R-bundle onB. More
substantially, ifE is a realZ-graded topological vector bundle onB, let CE be the
space of grading-preserving connections onE, letGE be the group of smooth grading-
preserving GL(E) gauge transformations onE, and letHE be the space of graded
Euclidean inner products onE. We equipCE andHE with theC∞-topology. Give
(CE × HE)/GE the quotient topology. Let∇E denote the connection partA′

[1]
of A′.
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PROPOSITION3
In Theorem2 we may assume that E is one of a finite number of isomorphism classes
of real Z-graded topological vector bundles{Ei } on B. Furthermore, there are com-
pact subsets CEi ⊂ (CEi × HEi )/GEi depending on n,ε, and K , such that we may
assume that the gauge-equivalence class of the pair(∇E, hE) lies in CE.

Proof
As the infinitesimal holonomy of the connectionT H M lies in aff(Z) = nF

R, its action
on n, which is through the adjoint representation, is nilpotent. Hence its action on
3∗(n∗)F is also nilpotent. Givenb ∈ B, it follows that the local holonomy group of
T H M atb acts unipotently onEb. Then the structure group ofE can be topologically
reduced to a discrete group, and soE admits a flat connection. The rank ofE is at
most 2dim(M)−dim(B). By an argument of G. Lusztig, only a finite number of isomor-
phism classes of real topological vector bundles overB of a given rank admit a flat
connection (see [22, p. 22]). This proves the first part of the proposition.

To prove the second part of the proposition, we first reduce to the caseF = {e}.
Recall thatẐ is a nilmanifold that coversZ, with covering groupF . Given g ∈

Aff (Z), we can lift it to somêg ∈ Aff (Ẑ). There is an automorphismαĝ ∈ Aut(F)

such that for allf ∈ F and̂z ∈ Ẑ,

αĝ( f ) · ẑ = (ĝ f ĝ −1)(̂z). (6.2)

Considering the different possible liftings ofg, we obtain a well-defined homomor-
phism Aff(Z) → Out(F). Then there is an exact sequence

1 −→ Aff (Ẑ)F
−→ Aff (Z) −→ Out(F). (6.3)

Let P be the principal Aff(Z)-bundle such thatM = P ×Aff (Z) Z. Put M̂ =

P×Aff (Ẑ)F Ẑ. ThenM̂ is an affine fiber bundle that regularly coversM , with the order
of the covering group bounded in terms of|F |. Again, there is a uniform upper bound
on |F | in terms of dim(Z) (see [9]). Instead of consideringM , it suffices to consider
M̂ and work equivariantly with respect to the covering group. Thus we assume thatZ
is a nilmanifold with0 ⊂ NL andF = {e}.

As the fiber ofE j is3 j (n∗), it suffices to prove the second part of the proposition
for E1 with fiber n∗. Let us consider instead for a moment(E1)∗ with fiber n. With
respect to the lower central series (1.8) of n, let (E1)∗

[k]
be the vector bundle associated

to P with fibern′

[k]
. Then there is a filtration

(E1)∗ = (E1)∗
[0]

⊃ (E1)∗
[1]

⊃ · · · ⊃ (E1)∗
[S]

⊃ 0. (6.4)

Let Spl be the set of splittings of the short exact sequences

0 −→ (E1)∗
[k+1]

−→ (E1)∗
[k]

−→ (E1)∗
[k]

/(E1)∗
[k+1]

−→ 0. (6.5)
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PutV[k] = (E1)∗
[k]

/(E1)∗
[k+1]

and

V =

S⊕
k=0

V[k]. (6.6)

Let HV be the set of graded Euclidean inner products on theZ-graded real vector
bundleV . A Euclidean inner producth(E1)∗ determines splittings{sk}

S−1
k=0 of (6.5)

and a Euclidean inner producthV
∈ HV . Conversely, one recoversh(E1)∗ from the

splittings{sk}
S−1
k=0 andhV . Thus there is an isomorphismH(E1)∗

∼= Spl×HV .
Let Cfil denote the set of connections on(E1)∗ which preserve the filtration (6.4).

Let CV be the set of connections onV which are grading-preserving with respect to
(6.6). Let End<(V ) be the set of endomorphisms ofV which are strictly lower trian-
gular with respect to (6.6). Given(∇(E1)∗, h(E1)∗) ∈ Cfil ×H(E1)∗ , let i : (E1)∗ → V

be the isomorphism induced byh(E1)∗ . Theni ◦∇
(E1)∗

◦i −1
∈ CV ×�1(B; End<(V )).

In this way there is an isomorphism

Cfil × H(E1)∗
∼= CV × �1 (B; End<(V )

)
× Spl×HV . (6.7)

Let Gfil be the set of filtration-preserving gauge transformations of(E1)∗, and let
GV be the set of grading-preserving gauge transformations ofV . Note that the set of
splittings of (6.5) is acted upon freely and transitively by the gauge transformations
of (E1)∗

[k]
which preserve(E1)∗

[k+1]
and act as the identity on(E1)∗

[k]
/(E1)∗

[k+1]
. It

follows that Ker(Gfil → GV ) acts freely and transitively on Spl. Then(
Cfil × H(E1)∗

)
/ Ker(Gfil → GV ) ∼= CV × �1 (B; End<(V )

)
× HV , (6.8)

and so (
Cfil × H(E1)∗

)
/Gfil ∼=

(
CV × �1(B; End<(V )) × HV

)
/GV . (6.9)

There is an obvious continuous map(Cfil ×H(E1)∗)/Gfil → (C(E1)∗ ×H(E1)∗)/G(E1)∗ .
As Aff(Z) preserves the lower-central-series filtration ofn, in our case the dual

connection to∇E1
lies in Cfil . Then considering dual spaces in (6.9), it is enough for

us to show that there is a compact subset of(
CV ∗ × �1(B; End>(V ∗)) × HV ∗

)
/GV ∗ (6.10)

in which we may assume that the gauge equivalence of the pair(∇E1
, hE1

) lies. We
can then map the compact subset into(CE1 × HE1)/GE1.

As the local holonomy ofE1 comes from anNR-action, it factors through the
coadjoint action ofN onn∗. Letting∇

V ∗

=
⊕S

k=1 ∇
V ∗

[k] be the component of∇E1
in

CV ∗ , it follows that the local holonomy of∇V ∗
[k] is trivial and so∇V ∗

[k] is flat. We first
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claim that there is a compact subsetCV ∗
[k]

⊂ (CV ∗
[k]

× HV ∗
[k]

)/GV ∗
[k]

such that we may

assume that the gauge equivalence class of the pair(∇
V ∗

[k], hV ∗
[k]) lies inCV ∗

[k]
.

For simplicity of notation, fixk ∈ [0, S] and letE denoteV ∗

[k]
. Let FE be the

space of flat connections onE , with the subspace topology fromCE . We show that
there is a compact subset of(FE × HE )/GE in which we may assume that the gauge
equivalence class of the pair(∇E , hE ) lies. Then the claim follows from mapping the
compact subset into(CE × HE )/GE .

Let Ẽ be the lift ofE to the universal cover̃B of B. Fix a basepoint̃b0 ∈ B̃ with
projectionb0 ∈ B, and letẼb̃0

be the fiber ofẼ over b̃0. Then a flat connection∇E

gives a trivializationẼ = B̃ × Ẽb̃0
. Let ρ : π1(B, b0) → Aut(Ẽb̃0

) be the holonomy

of ∇
E . Then a Euclidean inner producthE on E can be identified with a Euclidean

inner producthẼ on Ẽ which satisfies

hẼ (γ −1b̃) = ρ(γ )T hẼ (̃b)ρ(γ ) (6.11)

for all γ ∈ π1(B, b0) andb̃ ∈ B̃. In short, we can identify(FE × HE )/GE with the
pairs(ρ, hẼ ) satisfying (6.11), modulo Aut(Ẽb̃0

). We can use the Aut(Ẽb̃0
)-action to

identify Ẽb̃0
with RN , with the standard inner producthRN

. If we put

XE =
{
(ρ, hẼ ) ∈ Hom

(
π1(B, b0), GL(N, R)

)
× HB̃×RN : hẼ (̃b0) = hRN

and for allγ ∈ π1(B, b0) andb̃ ∈ B̃, hẼ (γ −1b̃) = ρ(γ )T hẼ (̃b)ρ(γ )
}
,

(6.12)

then we have identified(FE × HE )/GE with XE /O(N). Let {γ j } be a finite gen-
erating set ofπ1(B, b0). The topology onXE comes from the fiber bundle structure

XE → Hom
(
π1(B, b0), GL(N, R)

)
, (6.13)

whose fiber overρ ∈ Hom(π1(B, b0), GL(N, R)) is{
hẼ

∈ HB̃×RN : hẼ (̃b0) = hRN
and for allγ ∈ π1(B, b0) andb̃ ∈ B̃,

hẼ (γ −1b̃) = ρ(γ )T hẼ (̃b)ρ(γ )
}
. (6.14)

Here Hom(π1(B, b0), GL(N, R)) has a topology as a subspace of GL(N, R){γ j }, and
the fiber (6.14) has theC∞-topology. Thus it suffices to show that(ρ, hẼ ) lies in a
predetermined compact subsetCE of XE .

By [20, (1) – (7)], we may assume that we have uniform bounds on the sec-
ond fundamental form5 of the Riemannian affine fiber bundleM , along with
its covariant derivatives. As5 determines how the Riemannian metrics on nearby
fibers vary (with respect toT H M) and hE1

comes from the inner product on the
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parallel differential forms on the fibers{Zb}b∈B, we obtain uniform bounds on
(hE1)−1(∇E1hE1) and its covariant derivatives. In particular, we also have a uniform
bound on(hE )−1(∇E hE ) and hence on(hẼ )−1(dhẼ ). For the finite generating set
{γ j }, using the fact thathẼ (̃b0) = hRN

, we obtain in this way uniform bounds on

{hẼ (γ −1
j b̃0)}. The equivariance (6.11) then gives uniform bounds on{ρ(γ j )

Tρ(γ j )}

and hence on{ρ(γ j )}. Thusρ lies in a predetermined compact subset of the rep-
resentation space Hom(π1(B, b0), GL(N, R)). Givenρ, the uniform bounds on the
covariant derivatives ofhẼ over a fundamental domain iñB show that we have com-
pactness in the fiber (6.14). As these bounds can be made continuous inρ, the claim
follows.

Fix a Euclidean inner producthV ∗

0 on V ∗. Given a pair(∇V ∗

, hV ∗

) ∈ CV ∗ ×

HV ∗ , we can always perform a gauge transformation to transform the Euclidean inner
product tohV ∗

0 . LetOV ∗ be the orthogonal gauge transformations with respect tohV ∗

0 .
Then we can identify(CV ∗ × HV ∗)/GV ∗ with CV ∗/OV ∗ . Similarly,(

CV ∗ × �1(B; End>(V ∗)) × HV ∗

)
/GV ∗

∼=
(
CV ∗ × �1(B; End>(V ∗))

)
/OV ∗ .

(6.15)
There is a singular fibrationp :

(
CV ∗ × �1(B; End>(V ∗))

)
/OV ∗ → CV ∗/OV ∗ .

The fiber over a gauge equivalence class[∇
V ∗

] is �1(B; End>(V ∗))/G, whereG is
the group of orthogonal gauge transformations that are parallel with respect to∇

V ∗

.
In particular, upon choosing a basepointb0 ∈ B, we can viewG as contained in the
finite-dimensional orthogonal groupO(V ∗

b0
).

From what we have already shown, we know that we are restricted to a compact
subset of the base(CV ∗ × HV ∗)/GV ∗

∼= CV ∗/OV ∗ of the singular fibrationp. Let
(∇E1

)T be the adjoint connection to∇E1
with respect tohE1

. The uniform bounds
on (hE1

)−1(∇E1
hE1

) and its derivatives give uniformC∞-bounds on the part of∇E1

which does not preserve the metrichE1
, that is, on∇E1

−(∇E1
)T

∈ �1(B; End(E1)).
In particular, using the upper triangularity of∇

E1
, we obtain uniformC∞-bounds on

the part of∇E1
in �1(B; End>(V ∗)). As the bounds can be made continous with

respect to[∇V ∗

] ∈ CV ∗/OV ∗ , we have shown that there is a fixed compact subset
of
(
CV ∗ × �1(B; End>(V ∗)) × HV ∗

)
/GV ∗ in which we may assume that the pair

(∇E1
, hE1

) lies.
To summarize, we have shown that the topological vector bundleE1 has a flat

structureV ∗, with flat connection∇V ∗

. We showed that there are bounds on the
holonomy of∇V ∗

which are uniform inn, ε, andK . We then showed thathE1
and

∇
E1

− ∇
V ∗

areC∞-bounded in terms ofn, ε, andK . (More precisely, we showed
that these statements are true after an appropriate gauge transformation is made.) The
proposition follows.

Let SE be the space of degree-1 superconnections onE, with theC∞-topology.
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PROPOSITION4
With reference to Proposition3, there are compact subsets DEi ⊂ (SEi × HEi )/GEi

depending on n,ε, and K such that we may assume that the gauge-equivalence class
of the pair

(
A′, hE

)
lies in DE.

Proof
Let E be as in Proposition3. As in the proof of Proposition3, upon choosing
hE

0 , we have identifications(CE × HE)/GE ∼= CE/OE and (SE × HE)/GE ∼=

SE/OE. There is a singular fibrationp : SE/OE → CE/OE coming from the
projection A′

→ A′

[1]
. The fiber of p over a gauge equivalence class[∇

E
] is⊕

a+b=1 �a(B; End(E∗, E∗+b))/G, whereG is the group of orthogonal gauge trans-
formations that are parallel with respect to∇

E.
From Proposition3 we know that we are restricted to a compact subset of the

base(CE × HE)/GE ∼= CE/OE. The superconnection onE has the form (5.22). We
measure norms on�(B; End(E)) usinghE

0 . The differentialdn comes from exterior
differentiation on the parallel forms on the fibers of the Riemannian affine fiber bun-
dle. Note that asA′ is flat,dn is parallel with respect to∇E. As we have a uniformn-,
ε- and K -dependent bound on the curvatures of the fibersZ, Lemma1 gives a uni-
form bound on the structure constants{ci

jk} and hence a uniform bound on‖dn
‖∞.

The operatoriT is also parallel with respect to∇E. From O’Neill’s formula (see [6,
(9.29)]), we obtain a uniform bound on‖iT‖∞. Thus we have uniformC∞-bounds
on A′

− ∇
E

∈ �(B; End(E)), and so we have compactness in the fibers ofp. As
the bounds can be made continuous with respect to[∇

E
] ∈ CE/OE, the proposition

follows.

Proof of Theorem3
Propositions3 and4 prove the theorem.

We need certain eigenvalue statements. LetE be aZ2-graded real topological vector
bundle on a smooth closed manifoldB. Let SE be the space of superconnections on
E , let GE be the GL(E ) gauge group ofE , and letHE be the space of Euclidean
metrics onE . Fix a Euclidean metrichE

0 ∈ HE . Given a pair(A′, hE ) ∈ SE × HE ,
we can always perform a gauge transformation to transform the Euclidean metric to
hE

0 . Let OE be the group of orthogonal gauge transformations ofE with respect to
hE

0 . Then we can identify(SE ×HE )/GE with SE /OE . GivenA′
∈ SE , let (A′)∗ be

its adjoint with respect tohE
0 , and put4A′ = A′(A′)∗ + (A′)∗ A′, acting on�(B; E ).

For j ∈ Z+, let µ j (A′) be the j th eigenvalue of4A′ , counted with multiplicity. It is
OE -invariant. Equivalently,µ j is GE -invariant as a function of the pair(A′, hE).



296 JOHN LOTT

Proof of Theorem4
As Ep admits a flat connection, there is somer ∈ N such that for allp, Ep

⊗ Rr is
topologically isomorphic to the trivial vector bundleB × Rr ·rk(E p). HenceE ⊗ Rr is
topologically isomorphic to theZ-graded trivial vector bundleE = B × Rr ·rk(E).

For simplicity, we omit reference top. In view of Theorem2, it suffices to show
that there is a positive constantD(n, ε, K ) such that|λ j (B; E)1/2

− λ′

j (B)1/2
| ≤

D(ε, n, K ).
The operator4E

⊗ Id on �(B; E) ⊗ Rr has a spectrum that is the same as that
of 4

E, but with multiplicities multiplied byr . Hence it is enough to compare the
spectrum of4E

⊗ Id, acting on�(B; E ⊗ Rr ), with that of the standard Laplacian
on�(B; E ).

From Theorem3, we may assume that the gauge equivalence class of the pair
(A′, hE) lies in a predetermined compact subsetD ⊂ (SE × HE)/GE. Put A′

1 =

A′
⊗ Id, acting on�(B; E ⊗ Rr ), and puth1 = hE

⊗ hRr
on E ⊗ Rr . Using the

isomorphismE ∼= E ⊗ Rr , we may assume that the gauge equivalence class of the
pair (A′

1, h1) lies in a predetermined compact subsetD1 ⊂ (SE × HE )/GE .
Let A′

2 be the trivial flat connection onE , and leth2 be the product Euclidean
inner product onE . With an appropriate gauge transformationg ∈ GE , we can trans-
form (A′

1, h1) to (g · A′

1, h2) without changing the eigenvalues. Under the identifica-
tion (SE × HE )/GE = SE /OE , we can assume that the equivalence class ofg · A′

1
in SE /OE lies in a predetermined compact subsetD2 ⊂ SE /OE .

The eigenvalues of the Laplacian associated to the superconnectionA′

1 and the
Euclidean inner producth2 are unchanged when the group of orthogonal gauge trans-
formationsOE acts onA′

1. Consider the functionl : SE × SE → R given by

l (A′

1, A′

2) = inf
g′∈OE

‖g′
· A′

1 − A′

2‖. (6.16)

An elementary argument shows thatl is continuous. Hence it descends to a continuous
function on(SE /OE ) × (SE /OE ). When Lemma4 is applied tog′

· (g · A′

1) and
A′

2, the compactness ofD2 and the finiteness statement in Theorem 3 give the desired
eigenvalue estimate. The theorem follows.

7. Small positive eigenvalues
In this section we characterize the manifoldsM for which thep-form Laplacian has
small positive eigenvalues. We first describe a spectral sequence that computes the
cohomology of a flat degree-1 superconnectionA′. We use the compactness result of
Theorem3 to show that ifM has j small eigenvalues of thep-form Laplacian with
j > bp(M), and M collapses to a smooth manifoldB, then there is an associated
flat degree-1 superconnectionA′

∞ on B with dim(Hp(A′
∞)) ≥ j . We then use the

spectral sequence ofA′
∞ to characterize when this can happen. In Corollary1 we give
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a bound on the number of small eigenvalues of the 1-form Laplacian. In Corollary2
we give a bound on the number of small eigenvalues of thep-form Laplacian when
one is sufficiently close to a smooth limit space of dimension dim(M) − 1. Theorem
5 describes when a collapsing sequence can have small positive eigenvalues of thep-
form Laplacian, in terms of the topology of the affine fiber bundleM → B. Corollary
3 gives a precise description of when there are small positive eigenvalues of the 1-
form Laplacian in a collapsing sequence. In Corollaries4 and5 we look at collapsing
sequences with limit spaces of dimension 1 or dim(M)−1, respectively. Finally, given
an affine fiber bundle, in Theorem6 we give a collapsing construction that produces
small eigenvalues of thep-form Laplacian.

In the collapsing arguments in this section, when the limit space is a smooth
manifold, we can always assume that its Riemannian metric is smooth. At first sight
the smoothness assumption on the metric may seem strange as the limit space of a
bounded sectional curvature collapse, when a smooth manifold, generally only has a
C1,α-metric. The point is that we are interested in the case when an eigenvalue goes
to zero, which gives a zero eigenvalue of4

E in the limit. The property of having a
zero eigenvalue is essentially topological in nature and so is also true for a smoothed
metric. For this reason, we can apply smoothing results to the metrics and so ensure
that the limit metric is smooth.

Let B be a smooth connected closed manifold. LetE =
⊕m

j =0 E j be aZ-graded
real vector bundle onB, and letA′

=
∑

i ≥0 A′

[i ] be a flat degree-1 superconnection
on E. Let Hp(A′) denote the degree-p cohomology of the differentialA′ on�(B; E),
where the latter has the total grading. Givena, b ∈ N, we writeωa,b for an element
of �a(B; Eb).

In order to compute Hp(A′), let us first consider the equationA′ω = 0. Putting

ω = ωp,0
+ ωp−1,1

+ ωp−2,2
+ · · · , (7.1)

we obtain

(A′

[0]
+ A′

[1]
+ A′

[2]
+ · · · )(ωp,0

+ ωp−1,1
+ ωp−2,2

+ · · · ) = 0 (7.2)

or

A′

[0]
ωp,0

= 0,

A′

[0]
ωp−1,1

+ A′

[1]
ωp,0

= 0,

A′

[0]
ωp−2,2

+ A′

[1]
ωp−1,1

+ A′

[2]
ωp,0

= 0,

... (7.3)

We can try to solve these equations iteratively.
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Formalizing this procedure, we obtain a spectral sequence to compute Hp(A′).
Put Ea,b

0 = �a(B; Eb), and defined0 : Ea,b
0 → Ea,b+1

0 by d0ω
a,b

= A[0]ω
a,b. For

r ≥ 1, put

Ea,b
r =

{{ωa+s,b−s
}
r −1
s=0 : for 0 ≤ s ≤ r − 1,

∑s
t=0 A′

[s−t]ω
a+t,b−t

= 0}

{{ωa+s,b−s}r −1
s=0 : ωa+s,b−s =

∑s
t=0 A′

[s−t]ω̂
a+t,b−t−1 for some{ω̂a+s,b−s−1}

r −1
s=0}

.

(7.4)

Define a differentialdr : Ea,b
r → Ea+r,b−r +1

r by

dr {ω
a+s,b−s

}
r −1
s=0 =

{ r −1∑
t=0

A′

[r +s−t]ω
a+t,b−t

}r −1

s=0
. (7.5)

ThenEr +1 ∼= Ker(dr )/ Im(dr ). The spectral sequence{E∗,∗
r }

∞

r =0 has a limitE∗,∗
∞ with

Hp(A′) ∼=

⊕
a+b=p

Ea,b
∞ . (7.6)

From [8, Proposition 2.5], for eachb ∈ N, Hb(A′

[0]
) is a flat vector bundle onB. Then

Ea,b
0 = �a(B; Eb),

Ea,b
1 = �a(B; Hb(A′

[0]
)
)
,

Ea,b
2 = Ha (B; Hb(A′

[0]
)
)
. (7.7)

Example 4
If M → B is a fiber bundle,E is the infinite-dimensional vector bundleW of vertical
differential forms (see [8, Section III(a)]), andA′ is the superconnection arising from
exterior differentiation onM , then we recover the Leray spectral sequence to compute
H∗(M; R).

Example 5
If M → B is an affine fiber bundle,E is the vector bundle of parallel differential
forms on the fibers, andA′ is as in (5.22), then it follows from [28, Corollary 7.28]
that E∗,∗

r is the same as the corresponding term in the Leray spectral sequence for
H∗(M; R) if r ≥ 1.

Suppose thatM is a connected closed manifold with at leastj small eigenvalues of
4p for some j > bp(M). Consider a sequence of Riemannian metrics{gi }

∞

i =1 in
M (M, K ) with limi →∞ λp, j (M, gi ) = 0. As in the proof of Theorem2, for any
ε > 0 there is a sequence{Ak(n, ε)}∞k=0, so that for alli we can find a new metricg′

i
on M which isε-close togi , with ‖∇

k RM (g′

i )‖∞ ≤ Ak(n, ε). Fix ε to be, say, 1/2.
From [17] or Lemma3, we have thatλp, j (M, g′

i ) is Jε-close toλp, j (M, gi ) for some
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fixed integerJ. Thus, without loss of generality, we may replacegi by g′

i . We relabel
g′

i asgi .
As j > bp(M), there must be a subsequence of{(M, gi )}

∞

i =1 which Gromov-
Hausdorff converges to a lower-dimensional limit spaceX. That is, we are in the
collapsing situation. Suppose that the limit space is a smooth manifoldB. From
[12, Section 5], the regularity of the metrics onM implies that B has a smooth
Riemannian metricgT B. (We are in the situation in which the limit spacěX of
the frame bundles, a smooth Riemannian manifold, has anO(n)-action with a sin-
gle orbit type.) From Theorem2, for large i there are vector bundlesEi on B, flat
degree-1 superconnectionsA′

i on Ei , and Euclidean inner productshEi on Ei such
that λp, j (M, gi ) is ε-close toλp, j (B; Ei ). From Theorem3, after taking a subse-
quence, we may assume that all of theEi ’s are topologically equivalent to a sin-
gle vector bundleE on B and that the pairs(A′

i , hEi ) converge after gauge trans-
formation to a pair(A′

∞, hE∞). Then from Lemmas3 and 4, the Laplacian asso-
ciated to(A′

∞, hE∞) satisfies dim Ker(4E
p ) ≥ j . Applying standard Hodge the-

ory to the superconnection Laplacian4E, we obtain dim(Hp(A′
∞)) ≥ j . On the

other hand, looking at theE2-term of the spectral sequence gives dim(Hp(A′
∞)) ≤∑

a+b=p dim
(

Ha(B; Hb(A′

∞,[0]
))
)
. Thus

j ≤

∑
a+b=p

dim
(

Ha(B; Hb(A′

∞,[0]
))
)
. (7.8)

Proof of Corollary1
In the casep = 1, we obtain

j ≤ dim
(

H1(B; H0(A′

∞,[0]
))
)
+ dim

(
H0(B; H1(A′

∞,[0]
))
)
. (7.9)

As H0(A′

∞,[0]
) is the trivialR-bundle onB, dim

(
H1(B; H0(A′

∞,[0]
))
)

= b1(B). As

A′

∞,[0]
acts by zero onE0, there is an injection H1(A′

∞,[0]
) → E1. Then

dim
(

H0(B; H1(A′

∞,[0]
))
)

≤ dim
(

H1(A′

∞,[0]
)
)

≤ dim(E1) ≤ dim(M) − dim(B).

(7.10)
Thus j ≤ b1(B) + dim(M) − dim(B). On the other hand, the spectral sequence for
H∗(M; R) gives

H1(M; R) = H1(B; R) ⊕ Ker
(

H0(B; H1(Z; R)) → H2(B; R)
)
. (7.11)

In particular, b1(B) ≤ b1(M). The corollary follows.

Remark. Using heat equation methods (see [3]), one can show that there is an in-
creasing functionf such that if Ric(M) ≥ −(n − 1)λ2 and diam(M) ≤ D, then the
number of small eigenvalues of the 1-form Laplacian is bounded above byf (λD).
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This result is weaker than Corollary1 when applied to manifolds with sectional cur-
vature bounds, but it is more general in that it applies to manifolds with just a lower
Ricci curvature bound.

Proof of Corollary2
From Fukaya’s fibration theorem, if a manifoldMn with ‖RM

‖∞ ≤ K is suffi-
ciently Gromov-Hausdorff close toB, then M is the total space of a circle bun-
dle over B. Suppose that the claim of the corollary is not true. Then there is a
sequence of connected closedn-dimensional Riemannian manifolds{(Mi , gi )}

∞

i =1
with ‖RMi (gi )‖∞ ≤ K and limi →∞ Mi = B which provides a counterexample.
As there is a finite number of isomorphism classes of flat real line bundles onB,
after passing to a subsequence, we may assume that eachMi is a circle bundle
over B with a fixed orientation bundleO and that limi →∞ λp, j (Mi , gi ) = 0 for
j = bp(B) + bp−1(B; O) + 1. Following the argument before the proof of Corollary
1, we obtainE = E0

⊕ E1 on B, with E0 a trivial R-bundle andE1
= O, and a

limit superconnectionA′
∞ on E with A′

∞,[0]
= 0 andA′

∞,[1]
= ∇

E, the canonical
flat connection. Then, as in (7.8), we obtain

j ≤ bp(B) + bp−1(B; O), (7.12)

which is a contradiction.

Proof of Theorem5
As in the proof of Theorem2, without loss of generality we may assume that
each(M, gi ) is a Riemannian affine fiber bundle structure on the affine fiber bun-
dle M → B. Suppose that for eachq ∈ [0, p], bq(Z) = dim(3q(n∗)F ) and the
holonomy representation of the flat vector bundle Hq(Z; R) on B is semisimple. Let
E → B be the real vector bundle associated to the affine fiber bundleM → B as in
Section5. ThenE ∼= H∗(Z; R). The superconnectionA′

E on E, from Section5, has
A′

E,[0]
= 0 andA′

E,[1]
= ∇

E, the canonical flat connection onE ∼= H∗(Z; R). As the
affine fiber bundle is fixed, eachEi equalsE and eachA′

i equalsA′

E. However, the
Euclidean metrics{hE

i }
∞

i =1 on E vary. There is a sequence of gauge transformations
{gi }

∞

i =1, so that after passing to a subsequence, limi →∞ gi · (A′

i , hE
i ) = (A′

∞, hE
∞)

for some pair(A′
∞, hE

∞). Clearly, A′

∞,[0]
= 0 andA′

∞,[1]
= lim i →∞ gi · ∇

E. As the
holonomy representation of Hq(Z; R) is semisimple forq ∈ [0, p], the connection
A′

∞,[1]

∣∣
Eq is gauge equivalent to∇Eq

. That is, the connection does not degenerate.
(In the complex case this follows from [25, Theorem 1.27], and the real case follows
from [29, Theorem 11.4].)

Equation (7.8) now implies

j ≤

∑
a+b=p

dim
(

Ha(B; Hb(Z; R))
)
. (7.13)
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If the Leray spectral sequence to compute H∗(M; R) degenerates at theE2-term, then

bp(M) =

∑
a+b=p

dim
(

Ha(B; Hb(Z; R))
)
, (7.14)

which contradicts the assumption thatj > bp(M).

Example 6
Let Z be an almost flat manifold as in Example 1. PutM = Z × B. If there is a
sequence of affine parallel metrics onZ which give it r p small eigenvalues of the
p-form Laplacian, thenM has

∑
a+b=p ra · bb(B) small eigenvalues of thep-form

Laplacian. This gives an example of Theorem5.1.

Example 7([24])
Let N be the Heisenberg group of upper-diagonal unipotent(3 × 3)-matrices, and let
0 be the integer lattice inG. Put M = 0\N. ThenM fibers overS1, the fiber being
T2 and the monodromy being given by the matrix

(
1 1
0 1

)
. One has b1(M) = 2, but for

anyK > 0,a1,3,K = 0. That is, one can collapseM to a circle by a sequence of affine
parallel metrics, while producing 3 small eigenvalues of the 1-form Laplacian. This
gives an example of Theorem5.2.

Example 8
ConsiderM as in Example 2. If the Leray spectral sequence to compute Hp(M; R)

does not degenerate at theE2-term, then there are small positive eigenvalues of the
p-form Laplacian onM . This gives an example of Theorem5.3.

Proof of Corollary3
The affine fiber bundleM → B induces a vector bundleE → B and a flat degree-1
superconnectionA′

E, as in Section5. As in Example 5, the spectral sequence asso-
ciated toA′

E is the same as the Leray spectral sequence for computing H∗(M; R).
Let A′

∞ denote the limit superconnection arising as in the proof of Theorem5. The
spectral sequence for H∗(A′

∞) gives

H1(A′
∞) = H1(B; R) ⊕ Ker

(
H0(B; H1(A′

∞,[0]
)) → H2(B; R)

)
. (7.15)

In particular,

dim
(

H1(A′
∞)
)

= b1(B) + dim
(

Ker(H0(B; H1(A′

∞,[0]
)) → H2(B; R))

)
. (7.16)

We wish to compare this with the corresponding spectral sequence for H∗(A′

E), that
is, (7.11).
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Suppose that the differentiald2 : H0(B; H1(Z; R)) → H2(B; R) vanishes. Then
from (7.11),

b1(M) = b1(B) + dim
(

H0(B; H1(Z; R))
)
. (7.17)

By assumption, dim(H1(A′
∞)) = j > b1(M). This implies that

dim
(

H0(B; H1(A′

∞,[0]
))
)

> dim
(

H0(B; H1(Z; R))
)
. (7.18)

In terms of the original superconnectionA′

E, we have that H1(Z; R) is a flat
subbundle of H1(A′

E,[0]
). After taking limits, we obtain a flat subbundle H1(Z; R)∞

of H1(A′

∞,[0]
). Here the fibers of H1(Z; R)∞ are again isomorphic to the first real

cohomology group ofZ, but the flat structure could be different from that of the
bundle which we denoted by H1(Z; R). In particular,

dim
(

H0(B; H1(Z; R)∞)
)

≥ dim
(

H0(B; H1(Z; R))
)
. (7.19)

Clearly,
dim

(
H0(B; H1(A′

∞,[0]
))
)

≥ dim
(

H0(B; H1(Z; R)∞)
)
. (7.20)

Then from (7.18) we must have

dim
(

H0(B; H1(Z; R)∞)
)

> dim
(

H0(B; H1(Z; R))
)

(7.21)

or
dim

(
H0(B; H1(A′

∞,[0]
))
)

> dim
(

H0(B; H1(Z; R)∞)
)
. (7.22)

If (7.21) holds, then the holonomy representation of the flat vector bundle
H1(Z; R) must have a nontrivial unipotent subrepresentation (see [29, Theorem 11.4
and Proposition 11.14]). If (7.22) holds, then there is a nonzero covariantly con-
stant section of the vector bundle(H1(A′

∞,[0]
))/(H1(Z; R)∞) on B, where the flat

connection on(H1(A′

∞,[0]
))/(H1(Z; R)∞) is induced from the flat connection on

H1(A′

∞,[0]
). This proves the corollary.

Proof of Corollary4
Suppose that forq ∈ {p − 1, p}, bq(Z) = dim(3q(n)F ). From the Leray spectral
sequence, Hp(M) ∼= Ker(8p

− I ) ⊕ Coker(8p−1
− I ). Let H∗(Z; R)∞ denote the

limiting flat vector bundle onS1, as in the proof of Corollary3, with holonomy8p
∞ ∈

Aut(Hp(Z; R)). The spectral sequence for H∗(A′
∞) gives Hp(A′

∞) ∼= Ker(8p
∞ −

I ) ⊕ Coker(8p−1
∞ − I ). We have dim(Ker(8p

∞ − I )) ≥ dim(Ker(8p
− I )) and

dim(Coker(8p
∞ − I )) ≥ dim(Coker(8p

− I )). By assumption,j = dim(Hp(A′
∞)) >

dim(Hp(M; R)) = bp(M). If dim(Ker(8p
∞ − I )) > dim(Ker(8p

− I )), then8p

must have a nontrivial unipotent subfactor. Similarly, if dim(Coker(8p
∞ − I )) >

dim(Coker(8p
− I )), then8p−1 must have a nontrivial unipotent subfactor.



COLLAPSING AND THE DIFFERENTIAL FORM LAPLACIAN 303

Example 9
Suppose that the affine fiber bundleM → S1 has fiberZ = T2. If M has a Sol
geometry or anR3-geometry, then Corollary4 implies that there are no small positive
eigenvalues in a collapsing sequence associated toM → S1. On the other hand, ifM
has a Nil geometry, then Example 7 shows that there are small positive eigenvalues of
the 1-form Laplacian. (See [24] for further examples of homogeneous collapsings.)

Proof of Corollary5
The E2-term of the spectral sequence for computing H∗(M; R) consists ofEp,0

2 =

Hp(X; R) andEp,1
2 = Hp(X; O). The differential isMχ . The corollary now follows

from Theorem5.

Proof of Theorem6
As in [20, §6], we can reduce the structure group of the fiber bundleP → B so
that the local holonomy lies in a maximal connected compact subgroup of Aff(Z), a
torus group. Choose a horizontal distributionT H M on M whose local holonomy lies
in this torus group. Add vertical Riemannian metricsgT Z, parallel along the fibers,
and a Riemannian metricgT B on B to give M → B the structure of a Riemannian
affine fiber bundle. We use Theorem1 to make statements about the eigenvalues of
the differential form Laplacian onM .

There is a vector space isomorphismn∗ ∼=
⊕S

k=0 r∗
[k]

. Define a number operator
onn∗ to be multiplication by 3k onr∗

[k]
. Extend this to a number operator on3∗(n∗)F

and to a number operatorN on the vector bundleE∗ over B.
For ε > 0, rescalegT Z to a new metricgT Z

ε by multiplying it by ε3k
on r[k] ⊂ n.

Let gT M
ε be the corresponding Riemannian metric onM . The rescaling does not affect

dM . The adjoint ofdM with respect to the new metric is(dM )∗ε = εN(dM )∗ε−N .
Putting

C′
ε = ε−N/2 dMεN/2,

C′′
ε = εN/2(dM )∗ε−N/2, (7.23)

we have thatC′
ε is a flat degree-1 superconnection, withC′′

ε being its adjoint with
respect togT Z. The Laplacian4M coming fromgT M

ε is conjugate toC′
εC′′

ε + C′′
ε C′

ε .
By [20, §6], limε→0(M, gT M

ε ) = B with bounded sectional curvature in the

limit. (The proof in [20, §6] uses a scaling byε2k
, but the proof goes through for a

scaling byε3k
. The phrase “The elementYi of g, through the right action ofG, . . .”

in [20, p. 349, line b9] should read “. . . the left action ofG, . . .”.) Let A′
ε denote the

superconnection onE constructed by restrictingC′
ε to the fiberwise-parallel forms.

We show that limε→0 A′
ε = ∇

G, the flat connection onG. The theorem then follows
from Theorem1 and Lemma4.
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ConsiderA′

ε,[0]
. It acts on a fiber ofE by ε−N/2dnεN/2. Consider first its action

on a fiber(n∗)F ∼=
⊕S

k=0(r
∗

[k]
)F of E1. As dn acts on31(n∗) by the dual of the Lie

bracket and[r[k], r[l ]] ⊂
⊕

m>max(k,l ) r[m], we havednr∗
[m]

⊂
⊕

k,l<m r∗
[k]

∧ r∗
[l ]. It

follows that
ε−N/2dnεN/2

: (r∗
[m]

)F
→ (r∗

[k]
∧ r∗

[l ])
F (7.24)

is O(ε(3m
−3k

−3l )/2). We obtain that the action ofA′

ε,[0]
on E1 is O(ε1/2) asε → 0.

A similar argument shows that the action ofA′

ε,[0]
on E∗ is O(ε1/2).

Now considerA′

ε,[1]
= ε−N/2

∇
EεN/2. PutF∗

k = P ×Aff (Z) (r∗
[k]

)F , so thatE1 ∼=⊕S
k=0 F∗

k . (Here the∗ in F∗

k denotes an adjoint, not aZ-grading.) Consider first the
action ofC′

ε,[1]
onC∞(B; E1). As the holonomy of∇E comes from an Aff(Z) action,

we have∇E
: C∞(B; F∗

k ) →
⊕

l≤k C∞(B; F∗

l ) (see the proof of Proposition3). If
l < k, then the component

ε−N/2
∇

EεN/2
: C∞(B; F∗

k ) → C∞(B; F∗

l ) (7.25)

of ε−N/2
∇

EεN/2 is O(ε1/2). On the other hand, the component∇
E

: C∞(B; F∗

k ) →

C∞(B; F∗

k ) is the restriction of the flat connection∇G from G1 to F∗

k . A similar
argument applies to all ofE to show that asε → 0, A′

ε,[1]
= ∇

G
+ O(ε1/2).

Finally, considerA′

ε,[2]
= ε−N/2iTεN/2. The curvatureT of the fiber bundle

M → B is independent ofε. As T acts by interior multiplication on the fibers ofE,
the action ofε−N/2iTεN/2 on (r∗

[k]
)F

⊂ E1 is O(ε3k/2). A similar argument applies

to all of E to show that asε → 0, A′

ε,[2]
= O(ε1/2).

The theorem follows.

Note. After this paper was finished, we learned of the preprint version of [15] which,
among other things, contains proofs of Corollaries2 and5 in the case whenM andB
are oriented. Paper [24] is also related to the present paper.

Acknowledgments.I thank Bruno Colbois, Gilles Courtois, and Pierre Jammes for
corrections to an earlier version of this paper. I thank the referee for a very careful
reading of the manuscript and many useful remarks, among these suggesting a sim-
plification of the proof of Proposition2.
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