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COLLAPSING AND THE DIFFERENTIAL
FORM LAPLACIAN: THE CASE OF A
SMOOTH LIMIT SPACE

JOHN LOTT

Abstract

We analyze the limit of the p-form Laplacian under a collapse, with bounded section
curvature and bounded diameter, to a smooth limit space. As an application, we ch:
acterize when the p-form Laplacian has small positive eigenvalues in a collapsir
sequence.

1. Introduction

A central problem in geometric analysis is to estimate the spectrum of the Laplaci
on a compact Riemannian manifdidl in terms of geometric invariants. In the case of
the Laplacian on functions, a major result is J. Cheeger’s lower bound on the small
positive eigenvalue in terms of an isoperimetric constant ($&@. [The problem of
extending his lower bound to the case of trdorm Laplacian was posed iri]].
There has been little progress on this problem. We address the more general ques
of estimating the eigenvalug$ p j (M)}Til of the p-form LaplacianA (counted
with multiplicity) in terms of geometric invariants dfl .

A basic fact, due to Cheeger and J. Dodziuk, is thaf (M) depends continu-
ously on the Riemannian metrigd M in the C%topology (see]7]). Then an imme-
diate consequence of tli&*-compactness theorem of M. Anderson and Cheefer [
is that for anyn € Z*,r € R, andD, ig > 0, there are uniform bounds on j (M)
among connected closeddimensional Riemannian manifold$ with Ric(M) > r,
diam(M) < D, and infM) > ig (cf. [10, Theorem 1.3],14, Theorem 0.4]). In par-
ticular, there is a uniform positive lower bound on the smallest positive eigenvalue |
the p-form Laplacian under these geometric assumptions.

The question, then, is what happens wheiiNhj — 0. For technical reasons,
in this paper we assume uniform bounds on the Riemannian curvatir&@hen we
wish to study how the spectrum of, behaves in the collapsing limit. By collapsing
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we mean the phenomenon of a sequence of Riemannian manifolds converging in
Gromov-Hausdorff topology to a lower-dimensional space. We refét3ohapters
1 and 3] for basic information about collapsing and14,[Section I], [L3], [21], and
[23, Chapter 6] for information about bounded curvature collapsing. In this paper w
analyze the behavior of the spectrumf under collapse, with bounded sectional
curvature and bounded diameter, to a smooth limit space. The answer is in ter
of a type of Laplacian on the limit space. As an application, we characterize whe
the p-form Laplacian has small positive eigenvalues in a collapsing sequence. In
subsequent paper we will extend the results to the case of singular limit space &
give additional applications.

From Hodge theory, diiKer(Ap)) = bp(M), the pth Betti number oM. Given
K > 0, let.#(M, K) be the set of Riemannian metrigoon M with ||[RM ||, < K
and dianiM, g) < 1. We say thaM has small positive eigenvalues of tipeform
Laplacian if

inf - Api(M,g)=0 1.1
e A p,i(M, Q) (1.1)

for somej > bp(M) and someK > 0. If this is the case, then we say thdthas (at
least)j small eigenvalues. Note that this is a statement about the (smooth) topologit
type of M.

There are no small positive eigenvalues of the Laplacian on functiod (see,
e.g., B]). B. Colbois and G. Courtois gave examples of manifolds with small posi
tive eigenvalues of the-form Laplacian forp > 0 (see [L4]). Their examples were
manifoldsM with free isometricT K-actions, which one shrinks in the direction of the
TX-orbits. In terms of the fiber bundl — M/ TX, this sort of collapsing is a case
of the so-called adiabatic limit. The asymptotic behavior of the small eigenvalues
the p-form Laplacian in the adiabatic limit was related to the Leray spectral sequent
of the fiber bundle in9], [1€], [18], and [26].

In another direction, K. Fukaya considered the behavior of the Laplacian on fun
tions in the case of a sequence of manifolds that converge in the Gromov-Hausdc
metricdgH to a lower-dimensional limit spack, the collapsing assumed to be with
bounded sectional curvature and bounded diameter ($e He found that in or-
der to get limits, one needs to widen the class of spaces being considered by adc
a Borel measure and to consider measured metric spaces. This is the case eve
X happens to be a smooth manifold. He defined a Laplacian acting on functions
the measured limit space and proved a convergence theorem for the spectrum of
Laplacian on functions, under the geometric assumption of convergence in the mi
sured Gromov-Hausdorff topology.

We consider the behavior of the spectrunzgfunder collapse with bounded sec-
tional curvature and bounded diameter. We find that we need a somewhat more refil
structure on the limit space, namely, a superconnection as introduced by D. Quill
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[27]. More precisely, we need a flat degree-1 superconnection in the sen8g of [
Suppose thaB is a smooth connected closed manifold and that @’J-“ZO Elisa
Z-graded real vector bundle d@h The degree-1 superconnectioNshat we need are
of the form

A = Ag + Ay + A (1.2)
where
- Ajg) € C>(B; Hom(E*, E*t1)),
. AEl] is a grading-preserving connecti®tt on E, and

. Ay € Q%(B; Hom(E*, E*™ 1)),

The superconnection extends by Leibniz’s rule to an operAtarn the E-valued
differential formsQ (B; E). The flatness conditiofA’)2 = 0 becomes

. (Ag?= (A’2]>2

. VEEAEZO] =VE A/‘z] = 0 and

. (VE)2 + A[O]A 2t A[2] A[O] 0.

In particular, A[O] defines a differential complex on the fibersibfLetg" B be a Rie-
mannian metric o8, and leth® be a graded Euclidean inner product®pmeaning
that E' is orthogonal toE! if i # j. Then there are an adjoif®’)* to A’ and a
LaplacianA® = A'(A)* + (A)*A onQ(B; E). Let AT be the restriction ohAF to
@a+b p Qa(B Eb)

Using theCP-continuity of the spectrum and the geometric results of Cheege
Fukaya, and M. Gromovlp], we can reduce our study of collapsing to certain spe-
cial fiber bundles. As is recalled in SectiGnan infranilmanifoldZ has a canonical
flat linear connectiorvaf. Let Aff(Z) be the group of diffeomorphisms & which
preservevaf,

Definition 1

An affine fiber bundlés a smooth fiber bundl® — B whose fiberZ is an infranil-
manifold and whose structure group is reduced from @iffto Aff(Z). A Rieman-
nian affine fiber bundlés an affine fiber bundle with the following:

. a horizontal distributio™ " M on M whose holonomy lies in AfiZ),

. a family g™ # of vertical Riemannian metrics that are parallel with respect tc
the flat affine connections on the fibetg, and

. a Riemannian metrig" B on B.

Fix a smooth connected closed Riemannian mani®ld-ukaya showed that any
manifold M that collapses t@, with bounded sectional curvature, is the total space
of an affine fiber bundle oveB (see RQ)). If M — B is an affine fiber bundle,
let THM be a horizontal distribution oM as above. LeT € Q2(M: T Z) be the
curvature ofT " M. There is @Z-graded real vector bundIE on B whose fiber over
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b € B is isomorphic to the differential forms on the fibg which are parallel with
respect to the flat affine connection @g. The exterior derivativel™ induces a flat
degree-1 superconnectigk on E. If M — B is in addition a Riemannian affine
fiber bundle, then we obtain a Riemannian megié¢! on M constructed frong" #,
g' B, andTH M. There is an inducet? inner produch® on E. DefineAE as above.
Let diam(Z) denote the maximum diameter of the fibé&,}necp in the intrinsic
metric, and letll denote the second fundamental forms of the fi§&kgpcg. Our
first result says that the spectru:erAE) of A% contains all of the spectrum of the
p-form LaplacianA'Q," which stays bounded a; (M, B) — 0.

THEOREM1
There are positive constants A, And C which depend only aiim(M) such that if
| R% |0 diam(Z)? < A/, then for all0 < p < dim(M),

o (A N[0, Adiam(Z) 72 — C(IRM oo + ITTIZ, + I T1IZ,))
=0 (A5) N[0, Adiam(Z)~% — C(|RM||oo + IITTIZ, + I TIZ)). (1.3)

WhenZ is flat, there is some intersection between Theoiteand the adiabatic limit
results of p], [16], [18], and [26]. However, there is the important difference that we
need estimates that are uniform with respectitge; (M, B), whereas the adiabatic
limit results concern the asymptotics of the eigenvalues under the collapse of a giv
Riemannian fiber bundle coming from a constant rescaling of its fibers.

We apply Theoren to estimate the eigenvalues of a general Riemannian man
fold M which is Gromov-Hausdorff close 1, assuming sectional curvature bounds
on M. Of course, we cannot say precisely whanM) is, but we can use Theorein
to approximate it to a given precisien> 0. We say that two nonnegative numbers
A1 and A aree-close ife €Ay < A1 < €12. We show that for a givea > O, if
deu (M, B) is sufficiently small, then there is a flat degree-1 superconneéiam
B whose Laplacian; has a spectrum that isclose to that ofA}, at least up to a
high level.

THEOREM2

Let B be a fixed smooth connected closed Riemannian manifold. Giéfim e >

0, and K > 0, there are positive constants(i ¢, K), A'(n, €, K), and C(n, ¢, K)
with the following property: if M is an n-dimensional connected closed Riemanniar
manifold with||RM||s, < K and &g (M, B) < A'(n, €, K), then there are

(1) aZ-graded real vector bundle E on B,

(2) aflat degreet superconnection 2on E, and

(3)  aEuclidean inner productfon E,
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such thatifAp j (M) is the jth eigenvalue of the p-form Laplacian on M, (B; E)
is the jth eigenvalue ofE, and

min (xp,j (M), Ap,j (B; E)) < AN, ¢, K)dgn(M, B)2—C(n,¢,K),  (1.4)

thenip j (M) is e-close toip j (B; E).

Using [2], one can also show that the eigenspace&ﬁfare L°°-close to those of
AE,", with respect to the embeddis(B; E) — Q(M).

In the case of the Laplacian on functions, oBYis relevant. Althougte? is the
trivial R-bundle onB with a trivial connection, its Euclidean inner prodtlmEt0 need
not be trivial and corresponds exactly to the measure in Fukaya'’s work.

In order to apply Theorers, we prove a compactness result for the superconnec
tion and the Euclidean metric.

Definition 2

Let . be the space of degree-1 superconnection&Epiet ¥z be the group of
smooth grading-preserving GE) gauge transformations of, and let g be the
space of graded Euclidean inner productfoie equip.vE and. ¢ with the C>°-
topology. Give(g x #)/%e the quotient topology.

THEOREM3

In Theoren?, we may assume that E is one of a finite number of isomorphism class
of real Z-graded topological vector bundld&;} on B. Furthermore, there are com-
pact subsets B C (g, x &, )/%e, depending on ne, and K, such that we may
assume that the gauge equivalence class of the(#dithF) lies in Dg.

We remark that there may well be a sequence of topologically distinct Riemannic
manifolds of a given dimension, with uniformly bounded sectional curvatures, whic
converge toB in the Gromov-Hausdorff topology (see Example 3). This contrast:
with the finiteness statement in Theorém

The eigenvalues OAE are continuous with respect @A, hE)] € (& x
J€)/%e. One application of Theoreri is the following relationship between the
spectra ofA'r‘)’I and the ordinary differential form Laplacian @

THEOREM4
Under the hypotheses of TheoréniEtA’p’j (B) be the jth eigenvalue of the Laplacian

on@®, 2" (B) ® RIMEP™) Then there is a positive constan(m ¢, K ) such that

e /2, ((B)Y2—D(n, e, K) < Apj(M)Y2 < /%0, 1 (B)/2+D(n, €, K). (1.5)
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Now consider a flat degree-1 superconnectfdron a realZ-graded vector bundle
E over a smooth manifold. As (A')2 = 0, there is a cohomology*HA') for the
action of A’ on Q(B; E), the latter having the total grading. There is a flagraded
“cohomology” vector bundle HA’[O]) on B. Furthermore, there is a spectral sequence
to compute H(A"), with Ex-term H*(B; H*(A[O])).

Suppose thaM is a connected closed manifold with at leastmall eigenval-
ues of Ap for j > bp(M). Consider a sequence of Riemannian metfg$;2°;
in .M, K) with limj . 1p j(M,g) = 0. There must be a subsequence of
{(M, gi)}2, which converges to a lower-dimensional limit spaeThat is, we are
in the collapsing situation. Suppose that the limit space is a smooth maBifélcbm
Theorems? and3, we can take a further subsequencé(®4, gi)}°, to obtain a sin-
gle vector bundleE on B, equipped with a sequen¢eA!, hiE)}i"il of superconnec-
tions and Euclidean inner products. Using the compactness result in Th8pvesn
can take a convergent subsequence of these pairs, modulo gauge transformation
obtain a superconnectidhl,, on E with dim Ker(A'S) > j. ThendimHP(AL)) > j.
It is no longer true that HA ) = H*(M; R) for this limit superconnection. How-
ever, we can analyze*lA’ ) using the spectral sequence. We obtain

j= ) dim(H3(B: HY (AL o). (1.6)
a+b=p
This formula has some immediate consequences. The first one is a bound on
number of small eigenvalues of the 1-form Laplacian.

COROLLARY 1

Suppose that M has j small eigenvalues of tHerm Laplacian with j> bi(M).

Let X be the limit space coming from the above argument. Suppose that X is a sma
manifold B. Then

j <bi(B) +dim(M) — dim(B) < by(M) + dim(M). (1.7)

The second consequence is a bound on the number of small eigenvaluespef the
form Laplacian for a manifold that is Gromov-Hausdorff close to a codimension-
manifold.

COROLLARY 2

Let B be a connected closéd — 1)-dimensional Riemannian manifold. Then for
any K > 0, there ared, ¢ > 0 with the following property: suppose that M is a
connected closed smooth n-dimensional Riemannian manifold|\&t., < K
and .sy (M, B) < 8. First, M is the total space of a circle bundle over B. lcebe
the orientation bundle of M- B, a flat real line bundle on B. Thexy, (M, g) > ¢
for j = bp(B) +bp_1(B; 0) + 1.
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The rest of our results concern small eigenvalues in collapsing sequences.

Definition 3

If M — B is an affine fiber bundle, a collapsing sequence associated to the affi
fiber bundle is a sequence of metrigp}°; € .#Z (M, K) for someK > 0 such that
limj_ (M, gi) = B in the Gromov-Hausdorff topology, and for some- 0, each
(M, gi) is e-bi-Lipschitz to a Riemannian affine fiber bundle structureMbr> B.

We show that there are three mechanisms to make small positive eigenvalues of
differential form Laplacian orM in a collapsing sequence. Either the differential
form Laplacian on the fiber admits small positive eigenvalues, the holonomy of tf
flat “cohomology” bundle orB fails to be semisimple, or the Leray spectral sequence
of M — B does not degenerate at tBe-term.

THEOREMS5

Let{(M, gi)}2, be a collapsing sequence associated to an affine fiber bundie M

B. Suppose thdimj_, Ap,j (M, gi) = 0 for some j> by(M). Write the fiber Z of

the affine fiber bundle as the quotient of a nilmanifglé= T'\N by a finite group F.

Then

(1)  for some qge [0, pl, bq(Z) < dim(A9(m*)F); or

(2) forallg € [0, p], by(2) = dim(A9(w*)F), and for some qge [0, p], the
holonomy representation of the flat vector bundiyZ; R) on B fails to be
semisimple; or

(3) forallq € [0, pl, bg(2) = dim(A9(n*)F) and the holonomy representation
of the flat vector bundlel9(Z; R) on B is semisimple, and the Leray spectral
sequence to compukt’(M; R) does not degenerate at the Erm.

Examples show that small positive eigenvalues can occur in each of the three case
Theorenb.

Theorem5 has some immediate consequences. The first is a characterization
when the 1-form Laplacian has small positive eigenvalues in a collapsing sequenc

COROLLARY 3

Let{(M, gi)}2, be a collapsing sequence associated to an affine fiber bundie M

B. Suppose thdim; ., 11,j (M, gj) = 0 for some j> by(M). Then

(1) the differential @ : HO(B; HY(Z; R)) — H?(B; R) in the Leray spectral se-
guence foH*(M; R) is nonzero; or

(2)  the holonomy representation of the flat vector burtd€Z; R) on B has a
nontrivial unipotent subrepresentation; or
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(3)  Zis almost flat but not flat and there is a nonzero covariantly constant sectic
of the flat vector bundIeHl(Ago’[O]))/(Hl(Z; R)so).

The differentiald, : HO(B; HX(Z; R)) — H?(B; R) can be considered to be a type
of Euler class; in the case of an oriented circle bundle over a smooth base, it gi\
exactly the Euler class.

The second consequence is a characterization of whep-tbem Laplacian has
small positive eigenvalues in a collapsing sequence over a circle.

COROLLARY 4

Let{(M, gi)}2, be a collapsing sequence associated to an affine fiber bundie M

St. Suppose thdim;_, » Ap,j(M, gi) = O0for some j> bp(M). Write the fiber Z of

the affine fiber bundle as in TheorémThen

(1) forsome ge {p — 1, p}, bq(Z) < dim(A9(m*)F); or

(2 forq e {p—1 p} bg(2) = dimA9@m*)F), and if &* € Aut(H*(Z; R))
denotes the holonomy action on the fiber cohomology, ¢rfear ®P~1 has a
nontrivial unipotent factor in its Jordan normal form.

The third consequence is a characterization of wherptfem Laplacian has small
positive eigenvalues in a collapsing sequence over a codimension-1 manifold.

COROLLARY 5

Let{(M, gi)}{2, be a collapsing sequence associated to an affine fiber bundie M
B with dim(B) = dim(M) — 1. Suppose thalim;_, . 1p j(M, gi) = 0 for some
] > bp(M). Let & be the orientation bundle of M- B, a flat real line bundle on
B. Lety e H2(B; &) be the Euler class of the circle bundle M B. Let.#, be
multiplication by . Then.#, : HP~1(B; ©) — HP*1(B;R) is nonzero or.z, :
HP-2(B; ¢) — HP(B; R) is nonzero.

Finally, we give a class of examples for which the inequalitylirb)is an equality.

THEOREM®6
Suppose that M— B is an affine fiber bundle with a smooth base B and fibet Z
Z/F, whereZ is a nilmanifoldC’\N and F is a finite group. Let

n:n/[O]Dnil]DDn/[S]DO (18)

be the lower central series of the Lie algehtalet ¢(n) be the center ohf. For
0<k<S,put
[k = Ny + () (1.9)
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and putrrg = npg/nk+1). Let P be the principalAff (Z)-bundle such that M=
P xatt(z) Z. Let G= P, GP be theZ-graded flat vector bundle on B with

S F
GP = P xaf(2) (Ab(@rﬁq)) . (1.10)
k=0

Then forany0 < p < dim(M), M hasza+b=pdim(Ha(B; GP)) small eigenvalues
of the p-form Laplacian.

The structure of the paper is as follows. In Sectione give examples of collapsing
which show that the superconnection formalism is necessary. In Sectiangive
some background information about infraniimanifoldsand show that the orthog-
onal projection onto the parallel forms @fis independent of the choice of parallel
Riemannian metric. In Sectiohwe give a detailed analysis of the spectrum of the
differential form Laplacian on an infranilmanifold. In SectiGrwe show that the
eigenvalues of the superconnection Laplacian are continuous with respect to the
perconnection, the Riemannian metric, and the Euclidean inner product. We then
alyze the differential form Laplacian on a Riemannian affine fiber bundle and proy
Theoreml. In Section6 we consider manifold# that are Gromov-Hausdorff close
to a smooth manifoldB and prove Theoremg, 3, and4. Section7 uses the com-
pactness results to prove Theorérand Corollaries. —5. We then prove Theore
More detailed descriptions appear at the beginnings of the sections.

2. Examples

For notation in this paper, i is a group that acts on a st we let X¢ denote
the set of fixed points. IB is a smooth manifold ané& is a smooth vector bundle
on B, we letQ(B; E) denote the smootk-valued differential forms oB. If n is

a nilpotent Lie algebra on which a finite grodp acts by automorphisms, therf
denotes the dual spacg;(n*) denotes the exterior algebra of the dual space, an
A*(n*)F denotes thé -invariant subspace of the exterior algebra.

Example 1

Let N be a simply connected, connected nilpotent Lie group, such as the
dimensional Heisenberg group. Liebe its Lie algebra of left-invariant vector fields,
let g™ N be a left-invariant Riemannian metric &h and letAN be the corresponding
Laplacian orf2*(N). (For simplicity of notation, we omit reference to the form degree
p.) The left-invariant differential formg\*(n*) form a subcomplex of2*(N) with
differentiald®, on whichAN restricts to a finite-dimensional operataf. If T is a
lattice inN, then the left-invariant forms oN push down to forms oZ = I'\N, giv-

ing a subcomplex af2*(Z) which is isomorphic taA* (n*). One knows that (Z; R)
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is isomorphic to the cohomology of this subcomplex (s&& Corollary 7.28]). We
see that the spectrusm(A™) of A" is contained in the spectrua(A <) of the differ-
ential form Laplacian o12*(2).

Suppose thafl'j}°; is a sequence of lattices N with quotientsZ; = T'j\N
such that lin, o diam(Z;) = 0. Then{Z;}7°, obviously converges to a point, with
bounded sectional curvature in the collapse. We see that there are eigenvalifes of
which are constant in, namely, those that come frosM A"™). By Proposition2, the
other eigenvalues go to infinity as— oo. If N is nonabelian, then there are positive
eigenvalues of\% which are constant in

In terms of Theoren®, B is a point,E* = A*(n*), andA' = AEO] = d". This
shows that the term\/[o] does appear in examples. In fa.él{o] = 0ifand only if N
is abelian.

By choosing different left-invariant metrics dw, we can make (A") arbitrarily
close to zero while keeping the sectional curvature bounded. (In fact, the sectiol
curvature goes to zero.) This is a special case of Thearaie see that, in general,
there is no nontrivial lower bound on the first positive eigenvalue\ 6funder the
assumptions of bounded sectional curvature and bounded diameter.

Example 2

Let M be a compact manifold with a fréek-action. Letg™™ be aTX-invariant Rie-
mannian metric oM. Then fore > 0, there is a Riemannian metg¢ M obtained by
multiplying g™ in the direction of theT k-orbit by €. Clearly, lim._.o(M, gI M) =
M/TX, the collapse being with bounded sectional curvature (58 [This collaps-
ing is an example of the so-called adiabatic limit, for which the eigenvalues of th
differential form Laplacian have been studiedih, [16], [18], and [2€]. Let E be the
flat “cohomology” vector bundle oM/ TK with fiber H*(TX; R); in fact, it is a trivial
bundle. The results of the cited references imply that as 0, the eigenvalues of
AM which remain finite approach those of the LaplaciarssiiM / T¥; E). In partic-
ular, the number of eigenvalues of theform Laplacian which go to zero as— 0

is Y 4 p_p dim (H2(M/T¥; EP))), which is also the dimension of tH&-term of the
Leray spectral sequence for computin§(t¥; R). This is consistent with Theorems
5and6. Let A, be the superconnection di coming from Theoren?, usinggET'V'.
Then lim_ A, = VE.

Example 3

Suppose thatM is the total space of an oriented circle bundle, with &h
invariant Riemannian metric. Fdr € Z*, consider the subgroufix c S'. Then
limk_ oo M/Zx = M/St, the collapse obviously being with bounded sectional cur-
vature. By Fourier analysis, one finds thatkas> oo, the spectrum ofA\M/Zk ap-
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proaches the spectrum of the Laplacian®invariant (not necessarily basic) dif-
ferential forms onM. In terms of Theoren?, B = M/S! and E is the direct sum
of two trivial R-bundles onB. Let T be the curvature 2-form of the fiber bundle
M — M/SL. Then one finds that the Laplacian acting®invariant forms orM is
isomorphic to the Laplacian® = A’ (A')" + (A')" A, whereA' is the extension of
the superconnection dd*°(B; E) = C*°(B) @& C>°(B) given by

vE T
A = . 2.1

Here VE® and VE' are product connections. This shows that the tét‘[glw does ap-
pear in examples. Note thatM is simply connected, thefM/Z}° ; are mutually
nondiffeomorphic.

3. Infranilmanifolds

In this section we first recall some basic facts about infranilmanifolds. Then in Prop
sition 1 we show that the orthogonal projection onto the parallel differential forms o
Z comes from an averaging technique and so is independent of the choice of para
metric onZ, a result that is crucial in what follows.

Let N be a simply connected, connected nilpotent Lie group. Followiri, [
when N acts on a manifold on the left, we denote it By, and when it acts on a
manifold on the right, we denote it Y. As in [12], let us recall the elementary but
confusing point that the right action &f on N generates left-invariant vector fields,
while the left action ofN on N generates right-invariant vector fields.

There is a flat linear connectiov®® on N which is characterized by the fact that
left-invariant vector fields are parallel. The group @) of diffeomorphisms ofN
which preserva7af is isomorphic toN| X Aut(N).

Suppose thar is a discrete subgroup of AfN) which acts freely and cocom-
pactly onN, with " 1 N_ of finite index inI". Then the quotient spacé = I'\N is
an infranilmanifold modeled oM. We have the short exact sequences

1— N_ —> Aff(N) —% Aut(N) —> 1 (3.1)

and
1—TNN.—T 5% p0) — 1. (3.2)

Putl. = ' N N_ andF = p(I'). ThenF is a finite group. There is a normal cover
Z= f\N of Z with covering groupF.

The connectiorv@® descends to a flat connection @rZ, which we again de-
note byVaff. Let Aff(Z) denote the affine group d, let Affo(Z) denote the con-
nected component of the identity in Af), and let affZ) denote the affine Lie al-
gebra ofZ. Any element of AffZ) can be lifted to an element of Af). That is,
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Aff (Z) = T'\(NrAff (N)), whereNrAff (N) is the normalizer of” in Aff (N). Sim-
ilarly, Affo(Z) = C(I')\(CrAff(N)), whereCrAff(N) is the centralizer of” in
Aff (N) andC(T") is the center of . There is a short exact sequence

1— Affg(Z2) — Aff(Z) — Out(l') — 1. (3.3)

As affine vector fields oZ can be lifted toF -invariant affine vector fields o,
we have affz) = aff(Z)F. If C(N) denotes the center M, then Affy(Z) = (T' N
C(NR)\NR. In particular, ifn is the Lie algebra oN, thenF acts by automorphisms
onnand affZ) = nk.

The F-invariant subspaca*(n*)F of A*(n*) is isomorphic to the vector space
of differential forms onZ which are parallel with respect 162 or, equivalently, to
the (N X F)-invariant subspace @&*(N).

Let g"Z be a Riemannian metric od which is parallel with respect t&2f.
Such metrics correspond f-invariant inner products on. Let diamZ) denote the
diameter ofZ, let VZ denote the Levi-Civita connection &, and letR? denote the
Riemann curvature tensor &f

Let 2 : Q*(Z) — A*(n*)F be the orthogonal projection onto parallel differen-
tial forms.

PROPOSITIONL
The orthogonal projectior is independent of the parallel metrid §.

Proof

We first consider the case whén= {e}, so thatZ is a nilmanifoldT"\N. As N is
nilpotent, it has a bi-invariant Haar measwréWWe normalizeu so thatfr\N du = 1.
Givenw € Q*(2), letw € Q*(N) be its pullback toN. If Ly denotes the left action
ofg e NL onN, thenforally e T,

Lygo = LgL,o = Lgo. (3.4)
Hence it makes sense to defie= Q*(N) by
® = / (L) du(Q). (3.5)
\NL
Forh e N,
LiB= [ L@@ = [ @) du@
'\NL_ \NL

=/ (L’é?o)du(gh‘l)zf (Li@) du(g) = &. (3.6)
\N_ ANL
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Thus @ is N_-invariant and, in particular, descends to a fomne Q*(Z). Put
P(w) = @. ThenP is idempotent, with IniP) being the parallel differential forms.
By construction,P is independent of the choice of 2. It remains to show that
P is self-adjoint. Givery € Q*(Z), let i be its lift to N. Consider the function
f : N x N — R given by

f(g,n) = (7, Lgo)n = ((n), @(gn),. 3.7)

Fory e I', we havef(yg,n) = f(gy~t yn) = f(g,n). It follows that we can
write

(n. Poz = [ (7, Li@)n dia(@) dia(n), (3.8)
I'x)\(Nx N)

where the action of x ' on N x N is (y1, ¥2) - (g, n) = (ylgyz_l, yon). Changing
variable tog’ = gn, we have

(n, Pw)z—/ f (7. Ly a®n du(@'n™h) dpe(n) (3.9)
I\NL JI'\NL

=[ [ L L@ @) ducy
I\NL JI'\NL
/ / (Lo, La/a)edﬂ(g/) du(n)
I\NL JI'\NL

f f (L5, Liedu() du(g)
I\NL JI'\NL

={w, Pn)z = (Pn, w)z.

ThusP is self-adjoint.

In the case of generd#, we can apply the above argument equivariantlyZon
with respect toF. As F acts isometrically orZ, it commutes with the orthogonal
projection on Z. As F preservegt, it also commutes with the averaging operator
P on Z. The proposition follows. O

4. Eigenvalue estimates on infranilmanifolds
In this section we show in Propositidhthat if an infranilmanifoldZ has bounded
sectional curvature and a diameter that goes to zero, then all of the eigenvalifes of
go to infinity, except for those that correspond to eigenforms which are parall&l on
Let N be a simply connected, connectedimensional nilpotent Lie group with
a left-invariant Riemannian metric. L¢&}_, be an orthonormal basis af De-
fine the structure constants ofby [g, €j] = ZE 1ck &. Take the corresponding
left-invariant basige }n 1 of T N, with dual basis of 1-formér’ }i_,. Then the com-
ponent&u‘ >R 1a)Jk‘c K of the Levi-Civita connection 1- form) > otk are
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the constant matrices

i~ L
@ik = =5 (Cjk = Cix — Cij)-

LEMMA 1
Letx denote the scalar curvature of Z. Then

> (€)= —4

ij.k=1

Proof

JOHN LOTT

(4.1)

(4.2)

As Zin,j,k=1(0ijk)2 is independent of the choice of orthonormal basis, we compute |
using a special orthonormal basis. Recall the definitiangfrom (1.9). In particular,
nrs) = ¢(n). Following the notation ofZ0, 86], we take an orthonormal bas‘,Es}i”:l

of n such thaty e njo(); for some nondecreasing function

O:{1,...,n}—>{0,..., S},

andg L nNo(@)+1-

(4.3)

For a general Riemannian manifold, we have the structure equations

i i j
dr' = ij/\t,
J
i i m
Qj—dwj—i-Za)m/\a)J.
m

Then

| - |
Qj=d) o+ ey nof
| m

(4.4)

(4.5)

=> @D AT + ) odt™+ > ol AT
kil m

k,I,m

This gives the Riemann curvature tensor as

Ry = &'y — aolj + Y [—0jnof + ojnof + oo — o] (4.6)
m

Then

i PN i m i m i m i m
k=) @ —ejay) + Y [=anof + oljpof + ool — o]
i

i,j,m

=) _@aj; — o) + ) (0o} + ool
¥

i,j,m

(4.7)
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In our case, the components of the connection matrix are constant. Alsds as

nilpotent,
i

Then one obtains N
i,jk=1

Separatingoijk into components that are symmetric or antisymmetri¢ andk, and
using ¢.1), we obtain

1 1 &
_ J K \2 i \2
K==z E (Cix +Cij)° + ry E (Ck) (4.10)
i,j,k=1 i,j,k=1
1 1 .
]~k 2
[5ehet + 350

n
i,j,k=1

As n is nilpotent, it follows thatfkc'fj = 0. This proves the lemma. O

Let Z be an infraniimanifold with an affine-parallel metric. Let? denote the
Laplacian acting or2*(2). Let A" be the finite-dimensional Laplacian acting on
A*(n*)F.

PROPOSITION2
There are positive constants A and, Alepending only omdim(Z), such that if
| R? |l diam(Z)? < A/, then the spectrum (A%) of AZ satisfies

a(A%) N[0, Adiam(Z)3) = o (A™) N [0, Adiam(Z)2). (4.11)

Proof
Recall the definition of2Z from Propositionl. It is enough to show that under the
hypotheses of the present proposition, the spectrum%bn Ker %) is bounded
below by Adiam(Z)~2.

As Z isometrically coversZ with covering groupF, the spectrum ofAZ on
Ker(22) c Q*(Z) is contained in the spectrum af? on Ker %) c Q*(?).

LEMMA 2
There is a functiom : N — N such that

diam(Z) < n(|F|) diam(2). (4.12)



282 JOHN LOTT

Proof

LetZ, 2, € Z be such that diag¥) = d(Z1, 2»). Itis easy to see thak(@y, F - 2,) <
diam(Z). Let z, € Z be the projection ok, € Z.Thenitis enough to bounifl- |lgeo
from above onr1(Z, z) = F, that is, to bound the minimal lengths of curves in
the classes of1(Z, z2). From 23, Proposition 3.22], there is a set of generators of
m1(Z, z2) on which|| - |Igeois bounded above by 2 digi@). Givenr € N, there is a
finite number of groups of order, up to isomorphism, and each of these groups ha:
a finite number of generating sets. The lemma follows. O

Furthermore, there is a universal boyid < const(dim(Z)) (see P]). Hence, with-
out loss of generality, we may assume that {e}, so thatZ is a nilmanifoldI"\ N.

Let E' denote exterior multiplication of2*(Z) by ', and letl' denote interior
multiplication byg . From the Bochner formula, if € 2*(Z), then

(n, A%n)z = (V n,VZn>z+Z/ R (E'11n, EXI'p)dvolz . (4.13)
ijkl
Using the left-invariant vector fields dW, there is an isometric isomorphism
Q*(Z) Z C®(Z) @ A*(n*). (4.14)

With respect to this isomorphism,

ViZ=(o ®Id)+(|d®ZwkIE'I . (4.15)
j.k
whereE! and! ¥ now act onA*(n*). It follows that

(V. Vn)z 2 3 (@ ® ldn. (& @ Id)), Z(Zwk,Ell n‘ (4.16)

Let Ag be the ordinary Laplacian o8°°(Z). With respect to4.14), consider the
operatorA ® Id. We have

(n. (AF @ 1d)n), =D (& @ 1d)n, (& ® Id)n),. (4.17)
i
Using @.1), (4.13), (4.16), (4.17), and Lemmal, we obtain
(n, A%n)z = (n, (A& ® I1d)y), — const | R? [|o|113. (4.18)

Interms of ¢.14), Ker(2) = 1-@ A*(n*), where 1 denotes the constant function
on Z. Thus ify € Ker(2), then(n, (A§ ® Id)n)z > Xo,2Inl5, whereio  is the first
positive eigenvalue of the function Laplacian &nThere is a lower bound

o2 > diam(Z) =2 f (J|R? |l diam(Z)?) (4.19)
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for some smooth functiorf with f(0) > 0 (see B]). Thus the spectrum ofZ on
Ker(Z?) is bounded below by

diam(Z) [ f (| R? || diam(Z)?) — const || R ||« diam(Z)?]. (4.20)

Taking A = (3/4) f (0), the proposition follows. O

5. Affine fiber bundles
In this section we first show that the eigenvalues of a superconnection Laplacian :
continuous with respect to the superconnection, the Riemannian metric, and the |
clidean inner product. We then construct the superconnedioassociated to an
affine fiber bundleM — B and prove Theorerm.

Let B be a smooth connected closed Riemannian manifoldH et @T‘:O El
be aZ-graded real vector bundle dB. For background information about super-
connections, we refer tol] Chapter 1.4], 7], [8], and 27]. Let A’ be a degree-1
superconnection of. That is, A’ is anR-linear map fromC*(B; E) to Q(B; E)
with a decomposition

dim(B)
A=Y Ay (5.1)
k=0
where
. A[l] is a connectioVE on E which preserves thg-grading;

5 for k # 1, Afy, € QX(B; Hom(E*, E*t17K)).
We can extendd to anR-linear map orf2 (B; E) using the Leibniz rule. We assume
that A is flat in the sense that

(A)?2 =0. (5.2)

LethE be a Euclidean inner product @such thatE! is orthogonal taE1" if j # j’.
Let (A)* be the adjoint superconnection with respedt g and put

AF = A (A + (A)*A. (5.3)

ThenAFE preserves the totdl-grading onQ (B; E) and decomposes with respect to
the grading a&\® = 9, AF. By elliptic theory, AT has a discrete spectrum.
If g{ B andg] B are two Riemannian metrics dd ande > 0, we say thag; &
andg) B aree-close if
egP<gi®<eg” (5.4)

Similarly, if hE andhf are two Euclidean inner products &) we say thaht and
hE aree-close if
e “hE < hE <ehf. (5.5)
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If S = {Arj} andS = {X2j} are two countable nondecreasing ordered sets o
nonnegative real numbers, then we say thaand S, aree-close if for all j,

€ ‘Aoj <A1j <€Ar2j. (5.6)

For simplicity we omit the subscript, the form degree, in this section when its
role is obvious.

LEMMA 3

There is an integer 3= J(dim(B)) > 0 such that if d B and g B are e-close, and
hE and hE are e-close, then the corresponding Laplacian and A have spectra
that are J-close.

Proof
As in [17, Proposition 3.1], using a trick apparently first due to Cheeger, we can writ
the spectrum ofAE on Im((A)*) as

Aj=inf sup  sup {%72; n= A’@}, (5.7)

V ev—{0)0eq(B:E) \ (
whereV ranges ovelj-dimensional subspaces of (#). As the Riemannian metric
and Euclidean inner product enter only in definiqg:), the lemma follows as in

[17]. O

We also need a result about how the spectrum ®Bfdepends on the superconnection
A'. Given X € Q(B; End(E)), let || X|| be the operator norm for the action Xfon

the L2-completion of2 (B; E). If A] and A, are two superconnections as above, then
A — A, € Q(B; End(E)). Fix g B andhE.

LEMMA 4
Forall j € Z™,

|2 (ADYZ = (AYY2] < 2+ V2)IIA] — Ayl (5.8)

Proof
Putx = ||A] — AS|l. If w € Q(B; E) is nonzero, then

‘IAlwl IAwI‘ (A} — A’g)wl (5.9)

|l

and

’I(A/l)*wl I(A’z)*wl‘ [((AD* = (AYH)wl -

|l

(5.10)
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Definety, v» € R? by

L (Il (Ao
L= ) A1
B (|w|’ ol ) (510
Then £.10 and 6.11) imply that
|12l = 191D | < 192 — 9]l < V2x. (5.12)
Hence

152017 = 192112 = (UIv2ll — 1921 - (T2ll + 1921 < V2] 2]l + v2x),  (5.13)

o)
15112 = [15211® — 2v/2x V2| — 2x° (5.14)
= (2] — V2% — 4x%.
Thus
152112 = max(0, ([[32]] — v2x)% — 4x), (5.15)
or equivalently,
(w, AA/lw) (w, Ap w)\ 1/2 2
— 0 s> max(0, ((—2—)" —v2x) —4x?). 5.16
(w,w) ( (( (w, ) ) ) ( )
The minmax characterization of eigenvalues
. , A p
Aj(A) =inf sup {M} (5.17)
Viopev—{op \ (o, )
whereV ranges ovelj-dimensional subspaces Qf(B; E), implies
A (A = max(0, (] 2(Ap) — V2x)? — 4x?). (5.18)
An elementary calculation then gives
A (ADY2 — 0 (AYY2 = —(2+ V2)x. (5.19)
Symmetrizing inA] and A, the proposition follows. O

Let M be a closed manifold that is the total space of an affine fiber bundle, as
Definition 1. Let THM be a horizontal distribution oM so that the correspond-
ing holonomy onB lies in Aff(Z). If m e Zp, then usingT" M, we can write
AN (THM) = A* (TS B)@A*(Tn’qzb). That is, we can compose differential forms on
M into their horizontal and vertical components. Correspondingly, there is an infinit
dimensionalZ-graded real vector bundi&/ on B such that2*(M) = Q(B; W) (see
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[8, Section llI(a)]). A fiberW, of W is isomorphic toQ2*(Z,). We callC*>*(B; W)
the vertical differential forms. The exterior derivatid® : Q*(M) — Q*(M),
when considered to be an operatdf : Q(B; W) — Q(B; W), is the extension
to Q(B; W) of a flat degree-1 superconnection\dh From [8, Proposition 3.4], we
can write the superconnection as

d? +vW +it, (5.20)
where
. dZ e C®(B; Hom(W*; W*t1)) is vertical differentiation,
. vW . C>®(B; W) - Q1(B; W) comes from Lie differentiation in the hori-
zontal direction, and
. iT € Q2(B; Hom(W*; W*~1)) is interior multiplication by the curvature 2-

formT € Q3(M; T Z) of THM.
Acting onQ*(M), we have

dM =d% +d¥ + i, (5.21)

wheredW : Q*(B; W) — Q*t1(B; W) is exterior differentiation o8 usingvV"W.

Let E be the finite-dimensional subbundle Wf such thatE, consists of the
elements of2*(Zy) which are parallel orZy. The fibers ofE are isomorphic to
A*(n*)F, andC>(B; E) is isomorphic to the vertical differential forms dvh whose
restrictions to the fibers are parallel. Furthermore, the superconnegtitihestricts
to a flat degree-1 superconnectidhon E, as exterior differentiation oM preserves
the space of fiberwise-parallel differential forms. Fran?(),

A =d" 4+ VE +ig, (5.22)

whered" is the differential om\* (n*)F andVE comes froniT ' M through the action
of Aff (Z) on A*(n*)F. Acting onQ2(B; E), we have

A =d"+dF +it, (5.23)

wheredE is exterior differentiation o2 (B; E) usingVE.

Remark.The connectiorVE is generally not flat. AgX is flat, we have
(VEY2 = —d"it +itd"). (5.24)

Thus the curvature 0¥ E is given by Lie differentiation with respect to the (negative
of the) curvature 2-fornT. More geometrically, giveil € B, lety be a loop inB
starting fromb, and leth(y) € Aff (Zp) be the holonomy of the connectidh! M
aroundy. Then the holonomy o¥E aroundy is the action oh(y) on the fiberEp.
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In particular, the infinitesimal holonomy 7€ lies in the image of the Lie algebra
aff(Z) in End(Ep). From the discussion afteB (), aff(Z) lies innr. As the elements
of Ep areN| -invariant forms onN, they are generally not annihilated by @.

Suppose in addition tha¥l is a Riemannian affine fiber bundle, as in Definition
Theng' 2 induces ar_? inner produch" on W and a Euclidean inner produicE

on E. Let diam(Z) denote the maximum diameter of the fibé&,}bep in the in-
trinsic metric, and lefl denote the second fundamental forms of the fibers. Fron
g"4, THM, andg" B, we obtain a Riemannian meti¢ M on M. Let AM denote the
Laplacian acting oi®2*(M), and defineAE, acting onQ2(B; E), as in £.9). Let RM
denote the Riemann curvature tensogot.

Let 2P be fiberwise orthogonal projection frod(B; W) to Q(B; E). We
claim that 2™ commutes withdM. Looking at 8.5, 2 clearly commutes with
dZ. Using the fact that the holonomy @t M lies in Aff(Z), it follows from (3.5)
and the proof of Propositio that 2f1® commutes withvW. As T takes values in
parallel vector fields orz, it follows from (3.5 and the proof of Propositiof that
2 commutes withit. Thus 221 commutes wittd™. As the fiberwise metrics are
parallel on the fibers, it follows tha?® also commutes witiid™)*.

Then with respect to the decompositi@fi(M) = Im(221) @ Ker(2fP), AM is
isomorphic toAE ¢ AM |Ker(yﬁb).

Proof of Theorenmi

From Propositior?, there is a constamh > 0 such that for alb € B, the spectrum
of A%b |Ker(e@) is bounded below by - diam(Z,) 2. It suffices to show that there is a
constantC as in the statement of the theorem such that

o (M |germy) € [Adiam(Z)™2 = C(IRM oo + ITTIZ, + ITI,), 00).  (5.25)

We use the notation oB[ Section IlI(c)] to describe the geometry of the fiber
bundleM. In particular, lowercase Greek indices refer to horizontal directions, low
ercase italic indices refer to vertical directions, and uppercase italic indices refer
either. Let{z'}"™® and {z*}2™® be a local orthonormal basis of 1-forms as in
[8, Section III(c)] with dual basige }*™? and{e,}2™® . Let E? be exterior mul-
tiplication by 7, and letl J be interior multiplication byaJ The tensordT and T
are parts of the connection 1-form componefjt = >, rJ + 250, rﬂ with
symmetries

Wokj = Wajk = —Wjak = —Wkaj,

Waj = —Wap] = —Wqjp = Wjap = Wpja = —Wjpa- (5.26)
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Givenn € Q*(M), the Bochner formula gives

. AMpym = (VM. VM)m+ Y | REorgEP19, ERISy) dvoly .
pPQRs'M
(5.27)

Here

VM. C®(M; A*T*M) —» C®(M; T*M ® A*T*M) (5.28)
is, of course, the Levi-Civita connection &h. We can writevM = vV + vH where

VYV i C®(M; A*T*M) — CO(M; TY*'M @ A*T*M) (5.29)
denotes covariant differentiation in the vertical direction and

vH . C®(M: A*T*M) — C®(M: T"'"M ® A*T*M) (5.30)
denotes covariant differentiation in the horizontal direction. Then

m, aMmym = vV, VVin)m

+ (Vi vin)m +/M >~ R¥orgE" 1%, ERISy) dvolu
PQRS

> (VVn, VVn)m — const | RM oo (n, ) m
:f / [IVV512(2) — const | RM||so[1(2)[?] d volz, d volg . (5.31)
BJZ,
Let
VTZ2:C%(M; A*(T*Ye™M)) — C®(M; T*M ® A*(T*'"™M))  (5.32)

denote the Bismut connection acting ot (T*Ve"™M) (see [, Proposition 10.2],
[7, Definition 1.6]). On a given fibeZy, there is a canonical flat connection on
Thorm |Zb' Hence we can use ' ¢ to vertically differentiate sections af*(T*M) =

A*(THVEMMHYRA*(T*NO"M). That is, we can define
VTZ:C®(M; A*(T*M)) — C®(M; T*YeM ® A*(T*M)). (5.33)
Explicitly, with respect to a local framing,

Veln=en+) ol El* (5.34)
j,k
and

Vn=ViZn+Y ol Bl + Y o E + Y % E¥ 1Py, (5.35)
je ak off
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Then from §£.34) and 6.35),

vV, VVinwm

> /B /Z [IVT%012(2) — const(| Toll2 + I TT6)1%)n|%(2)] d volz, d volg.  (5.36)
b
On a given fibeiZy, for nz, € Q*(Zp), we have
(nzy AN02,) 2, =/Z |VT%52,12(2) dvolz,
b

+> | RE(E EXI'y) dvolz,. (5.37)
ijki 7 Zb J

If nz, € Ker(#), then
(n, A%n)z, > Adiam(Z) ~2(n, n) z,. (5.38)
Hence

VT 252,122 dvolz, >

] (Adiam(Zy) =2 — const || R?®[|oo) (1, 1) 2, (5.39)
b

From (.31), (5.36), and £.39), if n € Ker(21™), then

(m,aMpym

> (Adiam(Z)~2 — const(|| RM e + IT11Z, + ITTIZ, + IR ll00)) {0, M) M-
(5.40)

Using the Gauss-Codazzi equation, we can estithRfe| . in terms of|| RM ||, and
| T1]|,. The theorem follows. O

6. Collapsing to a smooth base

In this section we prove Theoremconcerning the spectrum of the LaplaciaM on

a manifoldM which is Gromov-Hausdorff close to a smooth manif@8dWe prove
Theorem3, showing that the pair6A’, hE) that appear in the conclusion of Theorem
2 satisfy a compactness property. We then prove Thedrariating the spectrum of
AM to the spectrum of the differential form Laplacian on the base space

Proof of Theoren2

For simplicity, we omit reference tp. Let ggM denote the Riemannian metric &
From [17] or Lemmag3, if a Riemannian metrig] M on M is e-close tog] M, then
the spectrum oAM, computed witlg] M, is Je-close to the spectrum computed with
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g¢ M. We use the geometric results 6f] to find a metricg] M on M which is close
to gJ M and to which we can apply Theorem

First, as in 2, (2.4.1)], by the smoothing results of U. Abresch and others (se
[12, Theorem 1.12]), we can find metrics bhandB which arec-close to the original
metrics such that the new metrics sati$fy' Rl < Ai(n, €) for some appropriate

sequencgA; (n, €)};2,. By rescaling, we may assume tHdM || < 1, |RB|ls0 <
1,andin{B) > 1. Leth M denote the new metric o. We now apply |2, Theorem
2.6], with B fixed. It implies that there are positive constangs) andc(n, ¢), so that
if dgn (M, B) < A(n), then there is a fibratioh : M — B such that

(1) diam(f (b)) < c(n, e)dgH(M, B),

(2) f is ac(n, ¢)-almost Riemannian submersion,

(3) ITT¢-1(p)lloc < C(N, €).

As in [20], the Gauss-Codazzi equation, the curvature bouniomnd the second
fundamental form bound ori ~1(b) imply a uniform bound or{|| Rf_l(b)uoo}beg.
Along with the diameter bound ofh~1(b), this implies that ifdg (M, B) is suffi-
ciently small, thenf ~1(b) is almost flat.

From [1L2, Propositions 3.6 and 4.9], we can find another mg}i?ﬁ' on M which
is e-close togIM so that the fibrationf : M — B givesM the structure of a Rie-
mannian affine fiber bundle. Furthermore, ihg,[Proposition 4.9], there is a sequence
{A/(n, )}, so that we may assume tigft™ andg] ™ are close in the sense that

IV M — gIM)lloo < A(N, €) daH (M, B), (6.1)

where the covariant derivative i.(l) is that of the Levi-Civita connection cgg i
(see also30, Theorem 1.1] for an explicit statement). In particular, there is an uppe
bound onl|RM (gJ M) ||« in terms of B, n, ¢, andK.

We now apply Theorerh to the Riemannian affine fiber bundle with meg'}:“".
It remains to estimate the geometric terms appeariniy.i).(We have an estimate on
ITT||s as above. Applying O'Neill’'s formula (seé,[ (9.29¢)]) to the Riemannian
affine fiber bundle, we can estimdl€||2, in terms of||RM ||, and||RB||». Putting
this together, the theorem follows. O

The vector bundle€ and Euclidean inner productss which appear in Theorem
2 are not completely arbitrary. For exampl? is the trivial R-bundle onB. More
substantially, ifE is a realZ-graded topological vector bundle @ let g be the
space of grading-preserving connectiondntet % be the group of smooth grading-
preserving GICE) gauge transformations df, and letsZ¢ be the space of graded
Euclidean inner products of. We equip%e and.#& with the C*-topology. Give
(Y x E)/¥9e the quotient topology. LeZE denote the connection pa@{l] of A
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PROPOSITION3

In Theorem? we may assume that E is one of a finite number of isomorphism class
of real Z-graded topological vector bundld&;} on B. Furthermore, there are com-
pact subsets € C (¢E, x #;)/% depending on n¢, and K, such that we may
assume that the gauge-equivalence class of the(®dit, hF) lies in Cg.

Proof
As the infinitesimal holonomy of the connecti®i! M lies in aff(Z) = nE, its action
on n, which is through the adjoint representation, is nilpotent. Hence its action c
A*(n*)F is also nilpotent. Givel € B, it follows that the local holonomy group of
THM atb acts unipotently otfE,. Then the structure group & can be topologically
reduced to a discrete group, and Badmits a flat connection. The rank Bfis at
most 2imM)—-dim(B) By an argument of G. Lusztig, only a finite number of isomor-
phism classes of real topological vector bundles @&ef a given rank admit a flat
connection (seeR, p. 22]). This proves the first part of the proposition.

To prove the second part of the proposition, we first reduce to theFcasde}.
Recall thatZ is a nilmanifold that cover&, with covering groupF. Giveng €
Aff (Z), we can lift it to somej € Aff(f). There is an automorphisty € Aut(F)
such that for allf € F andZ e Z,

5(f)-2= (@ g H®@. (6.2)

Considering the different possible liftings gf we obtain a well-defined homomor-
phism Aff(Z) — Out(F). Then there is an exact sequence

1 — Aff(2)F — Aff(Z) — Out(F). (6.3)

Let P be the principal AftZ)-bundle such thaM = P xaf(z) Z. Put M =
P X aft (2)F Z. ThenM is an affine fiber bundle that regularly covéds with the order
of the covering group bounded in terms|&f. Again, there is a uniform upper bound
on |F| in terms of dim{Z) (see P]). Instead of consideriniy, it suffices to consider
M and work equivariantly with respect to the covering group. Thus we assumé that
is a nilmanifold withl' ¢ N andF = {e}.

As the fiber ofE! is Al (n*), it suffices to prove the second part of the proposition
for E with fiber n*. Let us consider instead for a momef!)* with fiber n. With
respect to the lower central seridsf) of n, Iet(El)’[“k] be the vector bundle associated
to P with fibern’[k]. Then there is a filtration

(EY* = (EYFy D (EHY; D -+ D (ENig D 0. (6.4)
Let Spl be the set of splittings of the short exact sequences

0— (ENiiy — EDfg — (EDS/(EDfiy — 0. (6.5)
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Put i = (EDf/(EDf,q and

s
7 = . (6.6)
k=0

Let 27y be the set of graded Euclidean inner products onZI’rgraded real vector
bundle . A Euclidean inner produdtE"Y" determines splittingssc}—o of (6.9
and a Euclidean inner produest” € .77, . Conversely, one recovehéE ) from the
splittings{s}_y andh”". Thus there is an isomorphispfg1). = Splx .5 .

Let %5 denote the set of connections @&')* which preserve the filtratior6(4).
Let ¥y be the set of connections ofi which are grading-preserving with respect to
(6.6). Let End=(¥") be the set of endomorphisms®fwhich are strictly lower trian-
gular with respect tod6). Given(VED* hEYy ¢ & x Hgry, leti  (EDH* — 7
be the isomorphism induced b§E"". Theni oVEY 0i =1 € @, x Q1(B; End=(¥)).
In this way there is an isomorphism

Gl x A1y = Gy x Q1 (B End=(¥)) x Splx.#y. (6.7)

Let %; be the set of filtration-preserving gauge transformation&dj*, and let
4,y be the set of grading-preserving gauge transformations. dote that the set of
splittings of ©.5) is acted upon freely and transitively by the gauge transformation
of (E1)f, which preserve(El)E‘kH] and act as the identity o(rEl)’[kk]/(El)’[“kH]. It
follows that Kex%; — ¥4y ) acts freely and transitively on Spl. Then

(Gl x Hg1y) | Ker @i — Gy) = €y x Q1 (BiEnd~ (7)) x #y,  (6.8)
and so
(G x Hgay) /%0 = (€5 x QHB; End~(¥)) x #y) /Dy . (6.9)

There is an obvious continuous méggi x H(g1y) /Gl = (1) X H(g1y«) /Y1)

As Aff (Z) preserves the lower-central-series filtratiomofn our case the dual
connection tovE" lies in %71. Then considering dual spaces h9), it is enough for
us to show that there is a compact subset of

(Gy+ x QYB; End” (¥7%)) x Hy+) | Gys (6.10)

in which we may assume that the gauge equivalence of the{‘ﬁéllr, hEl) lies. We
can then map the compact subset i(#@:1 x #¢1)/Ye:1.

As the local holonomy oE! comes from arNg-action, it factors through the
coadjoint action oN onn*. LettingV”" = @le v’ be the component ofE' in
€y ~, it follows that the local holonomy of " is trivial and sov " is flat. We first
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claim that there is a compact subﬁ?a,y{kJ C (%«,/m X %y/lkj)/%/lkj such that we may

assume that the gauge equivalence class of the(‘ﬁgl'n lkJ) liesin Ca,/*]

For simplicity of notation, fixk € [0, S] and let& denote“// . Let %~ be the
space of flat connections aefy, with the subspace topology froﬁﬁg. We show that
there is a compact subset@¥ ¢ x #%)/9s in which we may assume that the gauge
equivalence class of the paWv¢, h?) lies. Then the claim follows from mapping the
compact subset int6s x #z)/Ys.

Let & be the lift of & to the universal coveB of B. Fix a basepoinby € B with
projectionby € B, and Iet<§’b be the fiber of5’ overby. Then a flat connectioR®
gives a trivialization® = B x £’b0 Letp : m1(B, bg) — Aut(&bo) be the holonomy
of V¢. Then a Euclidean inner produef on & can be identified with a Euclidean
inner produch® on & which satisfies

h (4 =18) = p()ThE B)p () (6.11)

for all y € m1(B, bp) andb e B. In short, we can identify.Z7 ¢ x jfp)/%p with the
pairs(p, h‘p) satisfying ¢.11), modulo Au(@’”‘b ). We can use the A(tﬁ”bo) -action to

identify @@bo with RN, with the standard inner produc®" . If we put

Xs = {(p.h%) € Hom (1(B. bo), GL(N, R)) x 5, g : h* (Bp) = h®"
and for ally e m1(B. b) andb e B, h? (y=16) = p(») The B)p (1)},
(6.12)

then we have identifiedZ s x #%)/9s with Xo/O(N). Let {yj} be a finite gen-
erating set ofr1(B, bg). The topology onX,e comes from the fiber bundle structure

Xg — Hom(m1(B, bo), GL(N, R)), (6.13)
whose fiber ovep € Hom(rr1(B, bg), GL(N, R)) is

(% e A5 g - b (Bp) = hE" and for ally e 71(B, bp) andb e B,
h (b)) = p()Th* Dp()}. (6.14)

Here Honirr1(B, bp), GL(N, R)) has a topology as a subspace of(@lL.R){*i}, and
the fiber 6.14 has theC>-topology. Thus it suffices to show thgt, h?) lies in a
predetermined compact sub§®t of X .

By [20, (1)-(7)], we may assume that we have uniform bounds on the se
ond fundamental fornTl of the Riemannian affine fiber bundlé, along with
its covariant derivatives. A§l determines how the Riemannian metrics on nearby
fibers vary (with respect t@ " M) and hE' comes from the inner product on the
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parallel differential forms on the fiber&Zp}pes, we obtain uniform bounds on
(hE1)~1(VEthEr) and its covariant derivatives. In particular, we also have a uniforr
bound on(h®)~1(v¢h®) and hence orth?)~1(dh?). For the finite generating set
{ri}, using the fact thah? (by) = hR" we obtain in this way uniform bounds on
{héa(yj_lﬁo)}. The equivarianceg(11) then gives uniform bounds qrp(yj)Tp(yj)}

and hence orip(yj)}. Thusp lies in a predetermined compact subset of the rep-
resentation space Hamy (B, bp), GL(N, R)). Given p, the uniform bounds on the
covariant derivatives df¢ over a fundamental domain i show that we have com-
pactness in the fibe6(14). As these bounds can be made continuouys, ithe claim
follows.

Fix a Euclidean inner produtt)” on 7*. Given a pair(v’",h”") € €y« x
Fy+, We can always perform a gauge transformation to transform the Euclidean inr
product tohg/ *. Let 0y~ be the orthogonal gauge transformations with respehlg/ to
Then we can identifY 6y« x 56y«) /Gy« With €y« | Oy«. Similarly,

(G x QLB ENd” (¥) x Hy) | Gys = (€ x QHB; End (7)) O+
(6.15)
There is a singular fibratiop : (€« x QY(B; End™ (¥%))) /Oy« — Cy«/COy.
The fiber over a gauge equivalence clggg | is Q1(B; End” (¥*))/G, whereG is
the group of orthogonal gauge transformations that are parallel with respeét to
In particular, upon choosing a basepdigte B, we can viewG as contained in the
finite-dimensional orthogonal group(”//b*;).

From what we have already shown, we know that we are restricted to a comp:s
subset of the bas@y« x y+) /%Gy« = Cy+ /Oy~ Of the singular fibratiorp. Let
(VEYT be the adjoint connection t§E" with respect thE'. The uniform bounds
on (hEHY~1(VE'hE') and its derivatives give unifor@>-bounds on the part 6f E*
which does not preserve the methi , that is, onvE' —(VE")T e Q1(B; End(EY)).

In particular, using the upper triangularity o', we obtain uniformC>-bounds on
the part of VE" in Q1(B; End” (¥*)). As the bounds can be made continous with
respect tdV” "] € €y+/0y+, we have shown that there is a fixed compact subse
of (%/* x QL(B; End” (¥*)) x %y/*) /%y~ in which we may assume that the pair
(VE', hE) lies.

To summarize, we have shown that the topological vector buBdlbas a flat
structure*, with flat connectionv””. We showed that there are bounds on the
holonomy of V”"™ which are uniform im, €, andK . We then showed thatE' and
VE' — V7" areC®-bounded in terms of, ¢, andK. (More precisely, we showed
that these statements are true after an appropriate gauge transformation is made.)
proposition follows. O

Let .7 be the space of degree-1 superconnectioni omith the C*-topology.
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PROPOSITION4

With reference to Propositios, there are compact subsetsDC (S, x HE,)/YE,
depending on g, and K such that we may assume that the gauge-equivalence cla
of the pair(A’, hE) lies in Dg.

Proof

Let E be as in Propositior8. As in the proof of Propositior8, upon choosing
hg, we have identification$¢e x g)/% = ¢g/0 and (Y x HE)/% =
Ye/Cg. There is a singular fibratiop : “g/0c — %g/0g coming from the
projection A’ — A/[l]. The fiber of p over a gauge equivalence claggF] is
Daip_1 2%(B; EndE*, E**tb))/G, whereG is the group of orthogonal gauge trans-
formations that are parallel with respectVi& .

From Propositior3 we know that we are restricted to a compact subset of the
base(¢e x #€)/%e = ¢e/0C. The superconnection da has the form%.22). We
measure norms of? (B; End(E)) usinghg. The differentiald™ comes from exterior
differentiation on the parallel forms on the fibers of the Riemannian affine fiber bur
dle. Note that ag\ is flat,d™ is parallel with respect t&¥ E. As we have a uniform-,

e- andK-dependent bound on the curvatures of the filkBreemmal gives a uni-
form bound on the structure constamﬁk} and hence a uniform bound ¢ial" || ».
The operatoit is also parallel with respect t8E. From O'Neill's formula (seef,
(9.29)]), we obtain a uniform bound dfiT||». Thus we have uniforn€>°-bounds
on A — VE € Q(B; End(E)), and so we have compactness in the fiberp.oAs
the bounds can be made continuous with respef?fg € €&/ 0k, the proposition

follows. O
Proof of Theoren3
Propositions3 and4 prove the theorem. O

We need certain eigenvalue statements.4 & aZ,-graded real topological vector
bundle on a smooth closed manifdi Let.”¢ be the space of superconnections on
&, let %, be the GL&) gauge group of’, and let.Z, be the space of Euclidean
metrics oné’. Fix a Euclidean metrihg € #». Given a paifA, h®) € Sp x He,

we can always perform a gauge transformation to transform the Euclidean metric
hg . Let ¢ be the group of orthogonal gauge transformationg’ afith respect to
hg. Then we can identify.s x %) /%s With .Fs /O ¢. Given A € S, let (A)* be

its adjoint with respect thg, and putA 4 = A'(A)* + (A)* A/, acting onQ(B; &).
Forj € Z*, let uj (A) be thejth eigenvalue ofA o/, counted with multiplicity. It is
Og-invariant. Equivalentlyy j is %¢-invariant as a function of the pai’, hE).
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Proof of Theorer

As EP admits a flat connection, there is some N such that for allp, EP @ R" is
topologically isomorphic to the trivial vector bundBx R' TK(EP) HenceE @ R' is
topologically isomorphic to th&-graded trivial vector bundlg = B x R" k(&)

For simplicity, we omit reference tp. In view of Theoren?, it suffices to show
that there is a positive constaBi(n, €, K) such thatlxj(B; E)Y/2 — », (B2 <
D(e, n, K).

The operator\E ® I1d on 2(B; E) ® R" has a spectrum that is the same as that
of AE, but with multiplicities multiplied byr. Hence it is enough to compare the
spectrum ofAE ® Id, acting onQ2(B; E ® R"), with that of the standard Laplacian
onQ(B; &).

From TheorenB, we may assume that the gauge equivalence class of the pe
(A, hE) lies in a predetermined compact subBetc (Vg x #E)/%. PutA, =
A ® Id, acting onQ(B; E ® R"), and puth; = hE @ h®" on E ® R". Using the
isomorphism& = E ® R", we may assume that the gauge equivalence class of th
pair (A}, hy) lies in a predetermined compact subBetC (Fs x %) /Y.

Let A, be the trivial flat connection o#, and leth; be the product Euclidean
inner product or’. With an appropriate gauge transformatgpe ¥, we can trans-
form (A, hy) to (g - A, hy) without changing the eigenvalues. Under the identifica-
tion (S x Hx)/9s = S¢/0s, we can assume that the equivalence clags-o&]
in %¢ /0 lies in a predetermined compact subBetC .%¢ /0.

The eigenvalues of the Laplacian associated to the superconnégtiand the
Euclidean inner produdt, are unchanged when the group of orthogonal gauge trans
formations& acts onA;. Consider the functioh: .7, x .#» — R given by

[(AL, Ay) = A 9" Ay — A5l (6.16)

An elementary argument shows th& continuous. Hence it descends to a continuous
function on(S¢/0s) x (Z¢/0s). When Lemmat is applied tog’ - (g - A}) and
A,, the compactness @ and the finiteness statement in Theorem 3 give the desire
eigenvalue estimate. The theorem follows. O

7. Small positive eigenvalues

In this section we characterize the manifoldsfor which the p-form Laplacian has
small positive eigenvalues. We first describe a spectral sequence that computes
cohomology of a flat degree-1 superconnec#dénWe use the compactness result of
Theorem3 to show that ifM hasj small eigenvalues of thp-form Laplacian with

j > bp(M), andM collapses to a smooth manifol, then there is an associated
flat degree-1 superconnectig¥, on B with dim(HP(A),)) > j. We then use the
spectral sequence & to characterize when this can happen. In Coroliamne give
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a bound on the number of small eigenvalues of the 1-form Laplacian. In Coréllary
we give a bound on the number of small eigenvalues ofpiierm Laplacian when
one is sufficiently close to a smooth limit space of dimension(tim— 1. Theorem

5 describes when a collapsing sequence can have small positive eigenvaluep-of th
form Laplacian, in terms of the topology of the affine fiber buridle> B. Corollary

3 gives a precise description of when there are small positive eigenvalues of the
form Laplacian in a collapsing sequence. In Corollafiend5 we look at collapsing
sequences with limit spaces of dimension 1 or@vin— 1, respectively. Finally, given
an affine fiber bundle, in Theorefnwe give a collapsing construction that produces
small eigenvalues of thp-form Laplacian.

In the collapsing arguments in this section, when the limit space is a smoo
manifold, we can always assume that its Riemannian metric is smooth. At first sig
the smoothness assumption on the metric may seem strange as the limit space
bounded sectional curvature collapse, when a smooth manifold, generally only ha
Cl2-metric. The point is that we are interested in the case when an eigenvalue g
to zero, which gives a zero eigenvalue®f in the limit. The property of having a
zero eigenvalue is essentially topological in nature and so is also true for a smoott
metric. For this reason, we can apply smoothing results to the metrics and so ens
that the limit metric is smooth.

Let B be a smooth connected closed manifold. Ee& @T o E! be aZ-graded
real vector bundle o, and letA” = ) ;. [I] be a flat degree-1 superconnection
on E. Let HP(A') denote the degrep-cohomology of the differentia’ on 2 (B; E),
where the latter has the total grading. Giverb € N, we writew®P for an element
of Q2(B; EP).

In order to compute FI(A'), let us first consider the equatidiw = 0. Putting

o =P+ Pl P22 ... (7.1)
we obtain
(Ao + Ay + Ay + - ) (@PP+ 0P P4 P22 4.y =0 (7.2)
or

0 _
[O]a)p =0,
A[O]wp—“ + A wP’O =0,

(7.3)

We can try to solve these equations iteratively.
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Formalizing this procedure, we obtain a spectral sequence to compg#)H
PutEZ" = Q2(B; EP), and definaly : E3? — EZ! by dow?P = Ajgw?P. For
r>1, put

{{wa+5~b—5};:(1) cforo<s<r—1,%7, A/ wdttb—t — g

Ea,b _ = -
r {{wa+s,b—5};;é L Atsb-s = 38 A fe t]'*a—&-t b—t— 1 for some{@a+s.b—s— 1}r 1}
(7 4)
Define a differentiat), : EZ° — E3"P~" 1 py
r-1 r_1
b— 1 t,b—t
dr {0® SO T5 = [ Alr 410" }s:o' (7:5)
t=0

ThenE, .1 = Ker(d;)/ Im(d ). The spectral sequen¢E,” }oo has a limitExy" with

HP(A)= P EZP. (7.6)

atb=p

From [8, Proposition 2.5], for each € N, Hb(AEOJ) is a flat vector bundle oB. Then

E2P — (B H (A[O]))
ES® = H3 (B; HP(Alg)). (7.7)

Example 4

If M — B is afiber bundleE is the infinite-dimensional vector bundi¢ of vertical
differential forms (seeq, Section lll(a)]), andA’ is the superconnection arising from
exterior differentiation oM, then we recover the Leray spectral sequence to comput
H*(M; R).

Example 5

If M — B is an affine fiber bundleE is the vector bundle of parallel differential
forms on the fibers, and’ is as in £.29), then it follows from P8, Corollary 7.28]
that E/** is the same as the corresponding term in the Leray spectral sequence
H*(M;R) ifr > 1.

Suppose thaM is a connected closed manifold with at leagsgmall eigenvalues of
Ap for somej > bp(M). Consider a sequence of Riemannian met{®$°; in
A (M, K) with limj_o Ap j(M, gi) = 0. As in the proof of Theorenz, for any
e > Othere is a sequendéx(n, €)}22 ,, so that for ali we can find a new metrig/
on M which ise-close tog;, with ||V"R'V'(gi’)||oO < Ak(n, €). Fix € to be, say, 12.

From [17] or Lemma3, we have thak j (M, gf) is Je-close torp j (M, g;) for some
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fixed integerd. Thus, without loss of generality, we may replagéy g. We relabel
g asgi.

As j > bp(M), there must be a subsequence{@¥, gi)}°, which Gromov-
Hausdorff converges to a lower-dimensional limit spaceThat is, we are in the
collapsing situation. Suppose that the limit space is a smooth mariolérom
[12, Section 5], the regularity of the metrics M implies thatB has a smooth
Riemannian metrigg" B. (We are in the situation in which the limit spac)ve of
the frame bundles, a smooth Riemannian manifold, ha® ar-action with a sin-
gle orbit type.) From Theorer, for largei there are vector bundles; on B, flat
degree-1 superconnectiod¢ on E;j, and Euclidean inner products on E; such
thatAp j(M, gi) is e-close toip j(B; Ej). From TheorenS, after taking a subse-
guence, we may assume that all of thgs are topologically equivalent to a sin-
gle vector bundleE on B and that the pairgA/, h&) converge after gauge trans
formation to a pair(A., hEx). Then from Lemmas3 and 4, the Laplacian asso-
ciated to (A, , hE~) satisfies dim Ke(rAE) > j. Applying standard Hodge the-
ory to the superconnection LaplaciarF, we obtain dinfHP(A.)) > j. On the
other hand, looking at th&-term of the spectral sequence gives ¢itfi(A.)) <
Y ab—p dim (H3(B; Hb(A;o’[o]))). Thus

j= ) dim(H3(B: HY (AL ;o). (7.8)
atb=p

Proof of Corollary1
In the casep = 1, we obtain

j < dim (H'(B; HY(A, o)) + dim (HO(B; HY (AL, (o)) (7.9)
As HO(Agoy[O]) is the trivial R-bundle onB, dim (H(B; HO(AgOy[O]))) = by(B). As

0 : L i
A/oo,[O] acts by zero ort”, there is an injection HAQO,[O]) — EL Then

dim (HO(B; HY(AL, ;o)) < dim (HY (A o)) < dim(E") < dim(M) — dim(B).
(7.10)
Thus|j < by(B) + dim(M) — dim(B). On the other hand, the spectral sequence fol
H*(M; R) gives

HY(M; R) = H!(B; R) ® Ker (H°(B; HY(Z; R)) — H?(B; R)). (7.11)
In particular, h(B) < by(M). The corollary follows. O
Remark. Using heat equation methods (s&})[ one can show that there is an in-

creasing functionf such that if Ri¢M) > —(n — 1)A? and dianiM) < D, then the
number of small eigenvalues of the 1-form Laplacian is bounded above(by).
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This result is weaker than Corollafywhen applied to manifolds with sectional cur-
vature bounds, but it is more general in that it applies to manifolds with just a lowe
Ricci curvature bound.

Proof of Corollary2

From Fukaya’s fibration theorem, if a manifod” with |RM | < K is suffi-
ciently Gromov-Hausdorff close t®, then M is the total space of a circle bun-
dle over B. Suppose that the claim of the corollary is not true. Then there is
sequence of connected closedlimensional Riemannian manifoldsM;, gi)}7°,;
with ||[RMi(g)]le < K and lim_. Mi = B which provides a counterexample.
As there is a finite number of isomorphism classes of flat real line bundld3, on
after passing to a subsequence, we may assume thatMach a circle bundle
over B with a fixed orientation bundle and that lim_, . Ap j(Mj, gi)) = 0 for

] = bp(B) + bp_1(B; ©) + 1. Following the argument before the proof of Corollary
1, we obtainE = E° @ E! on B, with E? a trivial R-bundle andE! = &, and a
limit superconnectiorA, on E with Aéo o =0 andAﬁ>O 1 = = VE, the canonical
flat connection. Then, as i7 (), we obtain

j <bp(B)+bp-1(B; 0), (7.12)

which is a contradiction. O

Proof of Theoren®
As in the proof of Theoren®?, without loss of generality we may assume that
each(M, gi) is a Riemannian affine fiber bundle structure on the affine fiber bun
dle M — B. Suppose that for eadhp < [0, p], bq(Z) = dim(A9(n*)F) and the
holonomy representation of the flat vector bundfg B R) on B is semisimple. Let
E — B be the real vector bundle associated to the affine fiber buvidie B as in
Section5. ThenE = H*(Z R). The superconnectioAr on E, from Sectior5, has
AE o = = 0 andAg E 1= = VE, the canonical flat connection &= H*(Z; R). As the
affine fiber bundle is fixed, eadh equalsE and eachA! equalsA;. However, the
Euclidean metr|c$hE} °, on E vary. There is a sequence of gauge transformation:
{gi}72,, so that after passing to a subsequence, limg; - (A, hlE) = (A, hE)
for some painA._, ht). Clearly, Ao = 0andA ;= limi_ g - VE. As the
holonomy representation of¥iZ; R) is semisimple foig € [0, p], the connection
Ago’[l]}Eq is gauge equivalent t¥ E°. That is, the connection does not degenerate.
(In the complex case this follows from2%$, Theorem 1.27], and the real case follows
from [29, Theorem 11.4].)

Equation {.8) now implies

j < ) dim(H¥B: H(Z: Ry)). (7.13)
a+b=p
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If the Leray spectral sequence to computé M ; R) degenerates at tHey-term, then

bp(M) = > dim (H(B; H°(Z; R))), (7.14)
a+b:p
which contradicts the assumption that- by(M). O

Example 6

Let Z be an almost flat manifold as in Example 1. Rit= Z x B. If there is a
sequence of affine parallel metrics @which give itr, small eigenvalues of the
p-form Laplacian, therM hasza+b:p ra - bp(B) small eigenvalues of thp-form
Laplacian. This gives an example of Theorerh.

Example 71[24])

Let N be the Heisenberg group of upper-diagonal unipotgnt 3)-matrices, and let

I" be the integer lattice is. PutM = I'\N. ThenM fibers overS!, the fiber being
T2 and the monodromy being given by the maif}). One has p(M) = 2, but for
anyK > 0,a;3k = 0. Thatis, one can collapsé to a circle by a sequence of affine
parallel metrics, while producing 3 small eigenvalues of the 1-form Laplacian. Thi
gives an example of Theoreh2.

Example 8

ConsiderM as in Example 2. If the Leray spectral sequence to compité&/HR)
does not degenerate at the-term, then there are small positive eigenvalues of the
p-form Laplacian orM. This gives an example of Theoren8.

Proof of Corollary3

The affine fiber bundl& — B induces a vector bundlé — B and a flat degree-1
superconnectiod, as in Sectiorb. As in Example 5, the spectral sequence asso-
ciated toAg is the same as the Leray spectral sequence for computioy HR).

Let A, denote the limit superconnection arising as in the proof of Thedrehhe
spectral sequence foridA ) gives

HY(AL) = HY(B; R) @ Ker (H(B; HY(AL (o)) — H(B; R)). (7.15)
In particular,
dim (HY(A,)) = by(B) + dim (Ker(H°(B; HY (A o)) — H*(B: R))). (7.16)

We wish to compare this with the corresponding spectral sequence’ {éh, that

is, (7.11).
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Suppose that the differentidp : H(B; H1(Z; R)) — H?(B; R) vanishes. Then
from (7.11),
bi(M) = b1(B) + dim (H%(B; HY(Z; R))). (7.17)

By assumption, diH(A._)) = j > by(M). This implies that
dim (H(B; HY(AL, (o)) > dim (HO(B; HY(Z: R))). (7.18)

In terms of the original superconnectidk:, we have that HZ;R) is a flat
subbundle of I-"i(A’E’[O]). After taking limits, we obtain a flat subbundle"Z; R)
of Hl(Ago’[o]). Here the fibers of I Z; R),, are again isomorphic to the first real
cohomology group ofZ, but the flat structure could be different from that of the
bundle which we denoted by%¥Z; R). In particular,

dim (H(B; HY(Z; R)oo)) > dim (HO(B; HY(Z; R))). (7.19)
Clearly,
dim (HO(B: HY(AL, ;o)) = dim (HO(B; HY(Z; R)o)). (7.20)
Then from (.18 we must have
dim (H°(B; HY(Z; R)oo)) > dim (HO(B; HY(Z; R))) (7.21)
or
dim (HO(B; HY(AL, (o)) > dim (HO(B; HY(Z: R)so)). (7.22)

If (7.21) holds, then the holonomy representation of the flat vector bundl
H(Z; R) must have a nontrivial unipotent subrepresentation (3@€elheorem 11.4
and Proposition 11.14]). If/(22 holds, then there is a nonzero covariantly con-
stant section of the vector buncﬂHl(Ago,[oj))/(Hl(Z; R)s) On B, where the flat
connection or(Hl(Ago’[O]))/(Hl(Z; R)so) is induced from the flat connection on

Hl(Af)o’[o]). This proves the corollary. O

Proof of Corollary4

Suppose that foq € {p — 1, p}, bg(Z) = dim(A9(n)F). From the Leray spectral
sequence, (M) = Ker(®P — |) @ Coker®P~1 — |). Let H*(Z; R)« denote the
limiting flat vector bundle or8!, as in the proof of Corollar§, with holonomy®2, e
Aut(HP(Z; R)). The spectral sequence for'tl, ) gives H(A) = Ker(®h, —
1) @ Coke @2t — I). We have diniKer(®2, — 1)) > dim(Ker(®P — 1)) and
dim(Coker®, — 1)) > dim(Coke®P — 1)). By assumptionj = dim(HP(A..)) >
dim(HP(M; R)) = bp(M). If dimKer(®2, — 1)) > dim(Ker(®P — 1)), then®P
must have a nontrivial unipotent subfactor. Similarly, if dDoker(®, — 1)) >
dim(Coker(®P — 1)), then®P~1 must have a nontrivial unipotent subfactor. O
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Example 9

Suppose that the affine fiber bundié — St has fiberz = T2. If M has a Sol
geometry or afR3-geometry, then Corollargimplies that there are no small positive
eigenvalues in a collapsing sequence associatéti t& S'. On the other hand, i1

has a Nil geometry, then Example 7 shows that there are small positive eigenvalue:
the 1-form Laplacian. (Se@f{] for further examples of homogeneous collapsings.)

Proof of Corollary5

The Ex-term of the spectral sequence for computingM; R) consists ofEZp’0 =
HP(X; R) and Eg’l = HP(X; 0). The differential is#, . The corollary now follows
from Theorenb. O

Proof of Theoren®

As in [20, 86], we can reduce the structure group of the fiber buftlle> B so
that the local holonomy lies in a maximal connected compact subgroup G Af
torus group. Choose a horizontal distributibif M on M whose local holonomy lies

in this torus group. Add vertical Riemannian metrigs?, parallel along the fibers,
and a Riemannian metrig' ® on B to give M — B the structure of a Riemannian
affine fiber bundle. We use Theoreimo make statements about the eigenvalues of
the differential form Laplacian oM.

There is a vector space isomorphigin= @E:o t’[“k]. Define a number operator
onn* to be multiplication by 8 on tjy- Extend this to a number operator ari(n*)F
and to a number operatdt on the vector bundI&* over B.

Fore > 0, rescalay” Z to a new metri@ Z by multiplying it by ¢ on g  n.
Letg! M be the corresponding Riemannian metridnThe rescaling does not affect
dM. The adjoint ofd™ with respect to the new metric i@")* = eN@M)*e—N.
Putting

@ = e N/2gMN/2.
Cl = eN2dMy*e=N/2, (7.23)

we have thatC, is a flat degree-1 superconnection, w@tli being its adjoint with
respect tay" #. The Laplaciam\M coming fromg] M is conjugate taC.C/ + C/C..
By [20, 86], lim._.o(M, g M) = B with bounded sectional curvature in the
limit. (The proof in 20, 86] uses a scaling beyek, but the proof goes through for a
scaling bye3k. The phrase “The elemeitt of g, through the right action o8, ...”
in [20, p. 349, line b9] should read *. the left action ofG, ...".) Let A. denote the
superconnection ot constructed by restricting, to the fiberwise-parallel forms.
We show that linn_,o A, = VC, the flat connection ofs. The theorem then follows
from Theoreml and Lemmé&.



304 JOHN LOTT

ConsiderA, . It acts on a fiber of by e~N/2d"eN/2. Consider first its action
on a fiber(n*)F = @E:o(tﬁq)': of EL. Asd" acts onAl(n*) by the dual of the Lie
bracket and(iq, vyl C Dm=maxk,1) timl, We haved™ v C By mtig A tiy- It
follows that

& AT o (tfm])': = (tjjg A tﬁ])F (7.24)

is 0(¢@"-¥-3)/2) \We obtain that the action & o OnEtis O(eY?2) ase — 0.
A similar argument shows that the actionA&f o, on E* is O(eY/?),

Now considera. , = ¢ "N/2VEeN/Z PutRy = P xafr(z) (tf)F, so thatE! =
EBE:O F¢. (Here thex in F¢ denotes an adjoint, notZgrading.) Consider first the
action ofCéﬁ[l] onC>(B; E1). As the holonomy 0¥ & comes from an AffZ) action,
we haveVE : C®(B; Fo) — @< C>(B; F") (see the proof of Propositics). If
| <k, then the component

e N/2yEN/2. ¢ (B; F¥) — C®(B: F") (7.25)

of e "N/2vEeN/2is O(e%/2). On the other hand, the componéft : C*(B; F) —
C>®(B; Fy) is the restriction of the flat connectiovi® from G* to F. A similar
argument applies to all ¢ to show thatas — 0, A 3, = V© + O(e™/?).

Finally, considerA. , = e N/2j:eN/2 The curvatureT of the fiber bundle
M — B is independent of. As T acts by interior multiplication on the fibers &,
the action ofe ~N/2j1eN/2 on (tf‘k])F c Elis 0(€372). A similar argument applies
to all of E to show that as — 0, A |, = O(¢'/?).

The theorem follows. O

Note. After this paper was finished, we learned of the preprint versiofigfjhich,
among other things, contains proofs of Corollatiemnd5 in the case wheiM andB
are oriented. Pape®{] is also related to the present paper.

Acknowledgmentsl thank Bruno Colbois, Gilles Courtois, and Pierre Jammes for
corrections to an earlier version of this paper. | thank the referee for a very caref
reading of the manuscript and many useful remarks, among these suggesting a ¢
plification of the proof of Propositiof.
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