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Abstract
We perform a rescaling analysis to analyze the future behavior of a class of 
T2-symmetric vacuum spacetimes. We show that on the universal cover, there 
is C0-convergence to a spatially homogeneous spacetime that does not satisfy 
the vacuum Einstein equations.

Keywords: backreaction, expanding, homogeneous

1. Introduction

In this paper we study the future behavior of an expanding vacuum spacetime (M, g) with 
compact spatial slices. A basic question is whether the gravitational dynamics, in the form 
of the equation Ric(g) = 0, force the solution to approach a locally spatially homogeneous 
spacetime in the future; see [17, part I] for discussion. To make the question precise, one must 
say what sort of limit one is considering.

We take the viewpoint that the relevant notion of convergence is that of a sequence of 
pointed vacuum spacetimes. Details are in section 2 but to give the idea, let { pi}∞i=1 be a 
sequence of points in M going to future infinity. Let {ci}∞i=1 be a sequence of positive numbers. 
Then {(M, cig, pi)}∞i=1 is a sequence of pointed vacuum spacetimes and we can ask whether 
there is a limit (M∞, g∞, p∞) in the pointed sense. The latter roughly means that we compare 
neighborhoods of pi of an arbitrary but fixed size, as i → ∞, to the corresponding neighbor-
hood of p∞. This notion is prevalent in Riemannian geometry and Ricci flow.

One basic issue is that the coordinates used to compute the future asymptotics of g may 
not be well adapted to describe the geometry around pi for large i. Hence in the definition of 
convergence, before taking a limit one allows i-dependent changes of coordinates. One can 
think of taking normal coordinates around pi.

There is some freedom in the choice of parameters {ci}∞i=1, which determine the scales 
at which we are making comparisons. They should have engineering dimension time−2 or 
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distance−2, so that cigi is dimensionless. By a ‘type-III rescaling’ we mean that ci is con-
structed using the proper time of pi from a fixed hypersurface, or the Hubble time t = − 3

H  
of pi with respect to a constant mean curvature (CMC) spatial foliation with mean curvature 
function H : (T0,∞) → (H0,∞), where H0  <  0. (The negativity of H is the expanding nature 
of the spacetime.)

One must also specify the sense in which the metric tensors converge. In [1, 14], it was 
shown that in the case of a CMC foliation, if the curvature has quadratic decay in the Hubble 
time then, after passing to a subsequence, there is a limit of the metrics in the pointed weak 
W2,q-topology, for any q ∈ [1,∞), with the limit being a vacuum spacetime. In such a case, 
we can also assume that the metrics converge in the pointed C1,α-topology for any α ∈ (0, 1).

In this paper we look instead at type-III rescalings of vacuum spacetimes that may not sat-
isfy the curvature decay condition. Although a limit is no longer guaranteed, we can still ask 
whether the pointed spacetimes have a limit (M∞, g∞, p∞), say in the pointed C0-topology. 
If (M∞, g∞) exists, and is locally spatially homogeneous, then it makes sense to say that the 
original (M, g) approaches a locally spatially homogeneous spacetime in the C0-topology, 
along the sequence {pi}. We will actually pass to the universal cover M̃ and ask whether the 
lifted spacetime (M̃, g̃) approaches a spatially homogeneous spacetime. It is quite possible 
that (M̃, g̃) approaches a spatially homogeneous spacetime in the C0-topology, but not in some 
stronger topology.

We perform this rescaling analysis for a class of vacuum spacetimes with compact spatial 
slices diffeomorphic to T3, and invariance under the action of the group T2. Such a spacetime 
is polarized if the Killing fields can be taken to be orthogonal, i.e. if the T2-invariance can be 
promoted to an (O(2)× O(2))-invariance. A T2-symmetric spacetime has a twist constant K; 
if K  =  0 then the spacetime is Gowdy. Future asymptotics of T2-invariant spacetimes were 
considered by Ringström in the Gowdy case [15, 16] and the nonGowdy case [18]. More pre-
cise asymptotics were obtained by LeFloch and Smulevici in the polarized nonGowdy case, 
for initial data that is sufficiently close to the asymptotic regime [11].

Proposition 1.1. After passing to the universal cover, any vacuum spacetime of the type 
considered in [11] has a smooth type-III rescaling limit g∞, in the pointed C0-topology. The 
Lorentzian metric g∞ is spatially homogeneous but does not satisfy the vacuum Einstein 
 equations.

The effective stress–energy tensor T = Ricg∞ − 1
2 Rg∞g∞ of g∞ vanishes except for the 

T00 component, which is positive. (We do not claim that T has any physical meaning.) The fact 
that g∞ does not satisfy the vacuum Einstein equations implies that the convergence cannot be 
in the pointed (C0 ∩ H1)-topology, as otherwise the vacuum Einstein equations would make 
sense weakly and pass to the limit; see [13].

That a limit of vacuum spacetimes can have a nonzero stress–energy tensor is called back-
reaction [6, 8, 10]. In effect, fluctations of the geometry, with increasing frequency, can aver-
age out to zero in some parts of the Einstein equations, but give a nonzero contribution through 
nonlinearities to other parts. This phenomenon of increasing fluctuations also arose in the 
analysis of expanding spacetimes [14–16]. In [8], a framework was developed to analyze 
backreaction, with one of the main conclusions being that the effective stress–energy tensor is 
trace-free. We see that the framework of [8] does not apply to our rescaling examples.

The fact that T00 is positive in proposition 1.1 makes one wonder how generally a limit-
ing stress–energy tensor satisfies some positive energy condition. Motivated by the results of 
[5, 9], in section 4 we raise a purely Riemannian question about the behavior of scalar curva-
ture when taking a C0-limit of Riemannian metrics. In proposition 4.3 we show that a positive 
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answer to this question implies that if a sequence of CMC vacuum spacetimes converges in 
the pointed weak H1-topology and the pointed C0-topology, then the limiting spacetime has a 
nonnegative energy density.

The structure of the paper is the following. In section  2 we discuss rescaling limits of 
expanding vacuum spacetimes. In section 3 we analyze the polarized T2-symmetric space-
times of [11]. Section 4 has the link to questions of scalar curvature in Riemannian geometry. 
Section 5 has a short discussion of the results of the paper.

I thank Hans Ringström for references to the literature, and the referees for useful comments.

2. Rescaling limits

In this section we discuss notions of pointed convergence and rescaling for spacetimes. These 
notions are not new, at least in spirit; see [1, 2].

2.1. Rescaling limits of spacetimes

Let {(Mi, gi)}∞i=1 be a sequence of (n + 1)-dimensional Lorentzian manifolds. For the 
moment, we do not specify the regularity of the metrics. Let pi ∈ Mi be a basepoint. Let 
(M∞, g∞) be another such Lorentzian manifold, with basepoint p∞ ∈ M∞. We say that 
limi→∞(Mi, gi, pi) = (M∞, g∞, p∞) if there is

 • An exhaustion of M∞ by compact codimension-zero submanifolds-with-boundary 
p∞ ∈ K1 ⊂ K2 ⊂ . . ., and

 • Maps φi,j : Kj → Mi , with φi,j( p∞) = pi , that are diffeomorphisms onto their images for 
large i, such that

 • For all j, we have limi→∞ φ∗
i,jgi = g∞ on Kj.

Here the notion of convergence of metrics depends on the topology that we want to consider, 
e.g. C0, Ck, C∞, Wq,k, etc. If each (Mi, gi) is a C2-regular vacuum spacetime, i.e. Ric(gi) = 0, 
and g∞ is C2-regular, then (M∞, g∞) is a vacuum spacetime provided that the metric conv-
ergence is C0 ∩ H1, since the Ricci-flat condition then makes sense weakly.

If we start with a single smooth Lorentzian manifold (M, g), and a sequence { pi}∞i=1 in 
M, then we may want to take Mi  =  M and gi = cig for some constants ci  >  0. The goal is to 
find constants ci and maps φi,j : Kj → M so that there is a limit (M∞, g∞). We want ci to have 
engineering dimension time−2 or distance−2, so that gi is dimensionless. If one takes {ci}∞i=1 
increasing sufficiently quickly then one can always get a flat limit in the smooth topology, but 
this would be considered uninteresting.

2.2. Rescaling limits of CMC spacetimes

Going back to the sequence {(Mi, gi)}∞i=1, suppose that each (Mi, gi) is smooth and that there is 
a globally hyperbolic foliation Mi = (Ti,∞)× Xi by spatial hypersurfaces. We can generally 
perform spatial diffeomorphisms to write

gi = −L2
i (t)dt2 + hi(t), (2.1)

where Li(t) ∈ C∞(Xi) is the lapse function and hi(t) is a Riemannian metric on Xi; for exam-
ple, we can always put gi in this form if Xi is compact. Write pi = (ti, xi).

Let M∞ = I∞ × Y  be a putative limit space, for some open interval I∞ ⊂ R, with base-
point (u∞, y∞). One may wish to consider comparison maps that preserve the structure 
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(2.1). To do so, let u∞ ∈ C1 ⊂ C2 . . . be an exhaustion of I∞ by compact intervals. Let 
σi,j : Cj → (Ti,∞) be a map with σi,j(u∞) = ti that is a diffeomorphism to its image for large i. 
Let y∞ ∈ K′

1 ⊂ K′
2 ⊂ . . . be an exhaustion of Y by compact codimension-zero submanifolds-

with-boundary. Put Kj = Cj × K′
j . Given maps ηi,j : K′

j → Xi with ηi,j(y∞) = xi that are diffeo-
morphisms to their images for large i, we define φi,j : Kj → Mi  by φi,j(u, y) = (σi,j(u), ηi,j(y)). 
Then φ∗

i,jgi has the form (2.1). If the convergence limi→∞ φ∗
i,jgi = g∞

∣∣
Kj

 is C0 for each j, then 
g∞ also has the form (2.1).

A special case is when for each t ∈ (Ti,∞), the hypersurface {t} × Xi  has constant mean 
curvature Hi(t). Then φ∗

i,jgi also has a constant mean curvature (CMC) foliation. If the conv-
ergence limi→∞ φ∗

i,jgi = g∞
∣∣
Kj

 is C1 for each j then g∞ acquires a CMC foliation.
We say that (M, g) is an expanding CMC spacetime if H : (T0,∞) → (H0, 0) is bijective 

and increasing, where H0 < ∞. Then we can assume that the time parameter t of M satisfies 
t = − n

H , i.e. t is the Hubble time of the CMC foliation.

2.3. Type-III rescalings

Continuing with an expanding CMC spacetime M = (T0,∞)× X , parametrized by Hubble 
time t, and a sequence pi = (ti, xi) with limi→∞ ti = ∞, we say that a type-III rescaling is 

when Mi  =  M, Xi  =  X, I∞ = (0,∞), u∞ = 1, Cj =
[

1
j , j

]
, σi,j(u) = tiu (for all i sufficiently 

large that ti > T0j) and ci = t−2
i . Then u is the Hubble time for the CMC foliation of φ∗

i,jg. If 
the convergence limi→∞ φ∗

i,jg = g∞
∣∣
Kj

 is C1 then u is also the Hubble time for the CMC folia-
tion of g∞.

Define a curvature norm for (M, g), at a point m ∈ M , as follows [1, 0.7]. Let {ei}n
i=0 be an 

orthonormal basis for TmM with e0 = (−g(∂t, ∂t))
− 1

2 ∂t. Put

|Rm|(m) =

√√√√
n∑

α,β,γ,δ=0

R(eα, eβ , eγ , eδ)2. (2.2)

Assuming that each (X, h(t)) is complete, and |Rm| = O
(
t−2

)
, we can use the type-III scaling 

to extract a subsequential limit (M∞, g∞, p∞) [14, corollary 3.4]. The limit is in the pointed 
weak W2,q-topology for all q ∈ [1,∞), but Y may be an étale groupoid rather than a manifold, 
if there is ‘collapsing’. In some cases, such as if X is compact and aspherical, one can stay in 
the world of manifolds by lifting g to the universal cover (T0,∞)× X̃  and taking a pointed 
limit there.

Example 2.3. Consider a Kasner spacetime (0,∞)× Tn with metric

g = − 1
n2 dt2 +

n∑
k=1

t2pk(dxk)2, (2.3)

where 
∑n

k=1 pk =
∑n

k=1 p2
k = 1. Then t is the Hubble time. Passing to the universal cover, we 

take xk ∈ R. Put M∞ = (0,∞)× Rn, with p∞ = (1, 0). Writing a point x ∈ Rn as x  =  (xk), 
define ηi,j(y) ∈ Rn to be the point whose kth-coordinate is t1−pk

i yk + xk
i . Then φ∗

i,jgi is the Kas-
ner metric on M∞, now with time parameter u. Hence in this case the rescaling limit exists on 
the universal cover.

If the foliation M = (T0,∞)× X  may not be a CMC foliation, an alternative type-III 
rescaling uses the proper time from a fixed hypersurface [1]. Fixing T1 ∈ (T0,∞), define 
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τ : [T1,∞) → R by saying that τ(t) is the maximal length of causal curves from the time-T1 
hypersurface to the time-t hypersurface. We reparametrize M by τ. Putting τi = τ(ti), we can 
rescale using σi,j(u) = τiu and ci = τ−2

i .

2.4. Type-II rescalings

Again in the case of an expanding CMC spacetime, parametrized by Hubble time t, if |Rm| is 
not O

(
t−2

)
 then it makes sense to do a type-II rescaling. Put I∞ = R, u∞ = 0 and Cj = [−j, j]. 

Given a sequence pi = (ti, xi) with limi→∞ ti = ∞, put σi,j(u) = |Rm( pi)|−
1
2 u + ti (for all i 

sufficiently large that ti − |Rm( pi)|−
1
2 j > T0) and ci = |Rm( pi)|. By construction, the curva-

ture tensor of gi at pi has norm one. With the right choice of { pi}∞i=1, there is a subsequential 
limit g∞ in the pointed weak W2,q-topology for any q ∈ [1,∞) [14, proposition 2.51]. Two 
caveats must be made. First, in the collapsing case, Y may be an étale groupoid rather than 
a manifold. Second, the limiting lapse function L∞ may vanish. If this happens then g∞ is a 
static solution of the constraint equations.

If the second fundamental form K of g satisfies an inequality |K|2 � const.H2 then L∞ > 0 
[14, proposition 4.1]. If in addition n  =  3 then g∞ turns out to be a flat static spacetime 
[14, corollary 4.6]. The interpretation is that there are increasing fluctuations of the curvature 
 tensor, at least in neighborhoods of the points pi, that average out the normalized curvature to 
become zero in the weak limit.

3. Polarized T2-symmetric nonGowdy spacetimes

We now take n  =  3 and X  =  T3, with linear coordinates (θ, x, y) ∈ (R/2πZ)3. We assume that 
there is an (O(2)× O(2))-symmetry, acting on the (x, y)-factor. Take the time parameter R so 
that the area of the T2-orbit is R2. As in [11, 2–2], the metric can be written

g = e2(η−U)(− dR2 + a−2dθ2) + e2U(dx + Gdθ)2 + e−2UR2(dy + Hdθ)2,
 

(3.1)

where η, U, a, G and H are functions of R and θ. Let K be the twist constant. We assume that 
K �= 0. Let 〈η〉(R) denote the average value of η(R, θ) with respect to θ ∈ R/2πZ, and simi-
larly for 〈U〉(R). From [11, theorem 7.1 and (2–8)], if the initial data are close enough to the 
asymptotic regime then the leading asymptotics of the metric parameters are

|K2e2η − R2| = O
(

R
7
4

)
,

|η − 〈η〉| =O
(

R− 1
2

)
,

|a−1 − 2√
5

C
1
2∞R

1
2 L(θ)| =O

(
R−1) ,

|U − CU| = O
(

R− 1
2

)
,

|G − G(θ)| = 0,

|H − 4
K
√

5
C

1
2∞R

1
2 L(θ)| = O

(
R

1
4

)
,

 

(3.2)

where CU , C∞ are constants with C∞ > 0, and G(θ),L(θ) are functions with L(θ) > 0.
The constant-R slices are generally not CMC. The maximal length of causal curves between 

a constant R0-slice and a constant R-slice is asymptotic to
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∫ R

R0

e〈η〉(r)−〈U〉(r) dr ∼ const.
∫ R

R0

r dr ∼ const.R2; (3.3)

see [16, proof of proposition 3]. Changing variable from R to t  =  R2, the asymptotic behavior 
of g is

g ∼− 1
4

K−2e−2CU dt2 +
4
5

K− 2e− 2CU C∞L2t
3
2 dθ2 + e2CU (dx + Gdθ)2

+ e− 2CU t
(

dy +
4

K
√

5
C

1
2∞Lt

1
4 dθ

)2

.
 

(3.4)

That is, when restricted to a future time interval t ∈ [c,∞), the two sides of (3.4) are 
(1 + o(c))-biLipschitz.

Let pi = (ti, xi) be a sequence with limi→∞ ti = ∞. The choice of points xi ∈ T3 will be 
irrelevant. Putting t  =  tiu gives

t−2
i g ∼− 1

4
K−2e−2CU du2 +

4
5

K− 2e− 2CU C∞L2t−
1
2

i u
3
2 dθ2 + e2CU

(
t−1
i dx + t−1

i Gdθ
)2

+ e− 2CU u
(

t−
1
2

i dy +
4

K
√

5
C

1
2∞Lt−

1
4

i u
1
4 dθ

)2

.

 

(3.5)

Passing to the universal cover, we take (θ, x, y) ∈ R3. For simplicity, we just take the spatial 

basepoint to be 0 ∈ R3. We define θ̂ , x̂  and ŷ  by dθ̂ = t−
1
4

i Ldθ, x̂ = t−1
i x and ŷ = t−

1
2

i y. 

Then

t−2
i g ∼− 1

4
K−2e−2CU du2 +

4
5

K− 2e− 2CU C∞u
3
2 dθ̂2 + e2CU (dx̂ + GL−1t−

3
4

i dθ̂)2

+ e− 2CU u
(

dŷ +
4

K
√

5
C

1
2∞u

1
4 dθ̂

)2

.

 

(3.6)

Since limi→∞ ti = ∞, there is a limit limi→∞ t−2
i gi = g∞ in the pointed C0-topology:

g∞ =− 1
4

K−2e−2CU du2 +
4
5

K− 2e− 2CU C∞u
3
2 dθ̂2 + e2CU dx̂2

+ e− 2CU u
(

dŷ +
4

K
√

5
C

1
2∞u

1
4 dθ̂

)2

.
 

(3.7)

We see that g∞ has a spatial R3-symmetry. Redefining u = R̂2 gives

g∞ = e2(η̂−Û)(− dR̂2 + â−2dθ̂2) + e2Û(dx̂ + Ĝdθ̂)2 + e−2ÛR̂2(dŷ + Ĥdθ̂)2,
 (3.8)

where

e2η̂ = K−2R̂2,

â−1 =
2√
5

C
1
2∞R̂

1
2 ,

Û =CU ,

Ĝ = 0,

Ĥ =
4

K
√

5
C

1
2∞R̂

1
2 .

 

(3.9)
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To check whether g∞ satisfies the vacuum Einstein equations, we can plug (3.9) into  
[11, 2–3–2–8]. One finds that these equations are satisfied except for the constraint  equation  
[11, 2–6], which instead becomes

η̂R̂ +
K2

4R̂3
e2η̂ − âR̂

(
â−1Û2

R̂ + âÛ2
θ̂

)
=

5

4R̂
. (3.10)

The left-hand side of (3.10) is proportionate to (Ric∞ − 1
2 R∞g∞)

(
∂R̂, ∂R̂

)
. We conclude that 

g∞ satisfies the Einstein equations, except for the nonvanishing of (Ric∞ − 1
2 R∞g∞)

(
∂R̂, ∂R̂

)
.

Remark 3.11. One can also consider rescaling limits of Gowdy spacetimes, i.e.  T2-symmetric 
spacetimes with spatial slices diffeomorphic to T3, and vanishing twist constant. For such spa-
cetimes, the curvature decays like the inverse square of the proper time function, as measured 
from a fixed hypersurface [16, theorem 2]. Hence we expect that they have type-III rescal-
ing limits that are vacuum spacetimes. If the metric is independent of the parameter θ of 
S1 = T3/T2 then before rescaling, the solution on the universal cover is a spatially homogene-
ous Kasner spacetime. In this case the rescaling limit exists and is also a Kasner spacetime; 
see example 2.3. If the metric is not θ-independent then asymptotics were given in [15, 16]. 
Some rough calculations indicate that the rescaled metrics should approach a flat metric (in 
the weak W2,q-topology). However, it does not seem to be possible to prove this rigorously 
from the known asymptotics.

Another interesting vacuum spacetime is the Bianchi VIII solution. The so-called non-
NUT type does not have curvature that decays like the inverse square of the Hubble time (or 
the proper time) [16, theorem 3]. Based on some calculations in terms of the coordinates from 
[7, section 4.3] or [12, section 3.3.5], there does not appear to be a type-III rescaling limit in 
the C0-topology.

4. Nonnegativity of induced energy density

We recall that in section 2.3, there was a subsequential rescaling limit of a CMC vacuum 
spacetime with quadratic curvature decay, that exists in the pointed weak W2,q-topology for all 
q ∈ [1,∞). This is related to the fact from Riemannian geometry that a sequence of complete 
pointed Riemannian manifolds, with uniformly bounded curvature, has a subsequential limit 
in the pointed weak W2,q-topology.

In Riemannian geometry, if one weakens the curvature assumptions to a uniform lower 
bound on the Ricci curvature, and a uniform lower bound on the injectivity radius, then there 
is a subsequential limit in the pointed weak W1,q-topology for all q ∈ [1,∞), and hence also 
a subsequential limit in the pointed Cα-topology for all α ∈ (0, 1) [3]. Motivated by this, we 
consider a sequence of CMC vacuum spacetimes (Ti,∞)× Xi, as in section 2.2, so that for 
each u ∈ I∞,

 • The pullback metrics hi(u) and the pullback lapse functions Li(u) converge in the pointed 
weak H1-topology and the pointed C0-topology, and

 • The pullback second fundamental forms Ki(u) converge in the pointed weak L2-topology.

In Riemannian geometry, there is a general principle that curvature can only go up when 
taking limits. In the case of scalar curvature, a precise statement along these lines is the fol-
lowing result.

J Lott Class. Quantum Grav. 35 (2018) 035010
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Theorem 4.1 ([5, 9]). Let Y be a smooth manifold. Given κ ∈ C(Y), let {gi}∞i=1 be a  
sequence of C2-regular Riemannian metrics on Y with scalar curvature function bounded be-
low by κ. If {gi}∞i=1 converges on compact subsets in the C0-topology to a C2-regular Rie-
mannian metric g∞, then g∞ has scalar curvature function bounded below by κ.

Question 4.2. Let Y be a smooth manifold. Let {gi}∞i=1 be a sequence of C2-regular 
 Riemannian metrics on Y that C0-converges on compact subsets to a C2-regular Riemann-
ian metric g∞ on Y. Suppose that on any compact subset, the scalar curvatures of {gi}∞i=1 are 
uniformly bounded below. Is it true that for every nonnegative compactly supported smooth 
density ω on Y, the scalar curvature Rg∞ satisfies 

∫
Y Rg∞ω � lim inf i→∞

∫
X Rgiω? 

A positive answer to question 4.2 clearly implies theorem 4.1.

Proposition 4.3. Consider a sequence of expanding CMC vacuum spacetimes 
(Ti,∞)× Xi, as in section  2.2, that by assumption converges in the sense of the bullet-
points above to a CMC spacetime I∞ × Y , equipped with a C2-regular metric g∞ that is 
also parametrized by the  Hubble time Then a positive answer to question 4.2 implies that (
Ricg∞ − 1

2 Rg∞g∞
)
(∂u, ∂u) � 0.

Proof. On a given u-slice of the limit space, the Gauss equation gives

(Ricg∞ − 1
2

Rg∞g∞)(∂u, ∂u) =
1
2
(
Rh∞ − |K∞|2 + H2

∞
)

. (4.1)

By assumption, H∞ = − n
u. Choose a nonnegative compactly supported smooth density ω on 

Y. Then
∫

Y

(
(Ricg∞ − 1

2
Rg∞g∞)(∂u, ∂u)

)
ω =

1
2

∫

Y

(
Rh∞ − |K∞|2 + n2

u2

)
ω. (4.2)

For large i, we can pullback hi and Ki to supp(ω), so we assume that everything lives on Y. The 
constraint equations give

Rhi − |Ki|2 +
n2

u2 = Rhi − |Ki|2 + H2
i = 0. (4.3)

In particular, Rhi is bounded below in terms of u. A positive answer to question 4.2 implies that
∫

Y
Rh∞ω � lim inf

i→∞

∫

Y
Rhiω = lim inf

i→∞

∫

Y

(
|Ki|2 −

n2

u2

)
ω. (4.4)

Then
∫

Y

(
(Ricg∞ − 1

2
Rg∞g∞)(∂u, ∂u)

)
ω

�
1
2
lim inf

i→∞

∫

Y

(
|Ki|2 − |K∞|2

)
ω

=
1
2
lim inf

i→∞

∫

Y

(
|Ki − K∞|2 + 2〈Ki − K∞, K∞〉

)
ω.

 

(4.5)

As limi→∞ Ki = K∞ in the weak L2-topology on supp(ω), it follows that
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lim
i→∞

∫

Y
〈Ki − K∞, K∞〉ω = 0. (4.6)

From (4.5), we obtain that
∫

Y

(
(Ricg∞ − 1

2
Rg∞g∞)(∂u, ∂u)

)
ω � 0 (4.7)

for every nonnegative compactly supported smooth density ω on Y. This implies that 
(Ricg∞ − 1

2 Rg∞g∞)(∂u, ∂u) � 0. □ 

5. Discussion

In this paper we described a notion of rescaling limits for Lorentzian spacetimes. For a class 
of T2-symmetric vacuum spacetimes, we showed that on the universal cover, there is a rescal-
ing limit in the pointed C0-topology that is smooth and spatially homogeneous, but does not 
satisfy the vacuum Einstein equations.

The paper [8] showed that under certain assumptions, a weak limit of a 1-parameter family 
of vacuum spacetimes has an effective stress–energy tensor that is traceless. The assumptions 
are about the asymptotics of the metric tensors as the parameter λ goes to zero; we refer to [8] 
for the details. In our examples, the effective stress–energy tensor is not traceless. Hence the 
assumed asymptotics of [8] do not hold. One could try to perform a more detailed analysis.

More generally, one could look at rescaling limits of other solutions of the Einstein equa-
tions. In this paper, we focused on the future behavior of expanding solutions. One could also 
consider rescaling limits as a singularity develops or, similarly, as one goes backward in time 
toward an initial singularity. There is some relation here to the paper [4].
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