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Local index theory over ¢€tale groupoids

By Alexander Gorokhovsky and John Lott at Ann Arbor

Abstract. We give a superconnection proof of Connes’ index theorem for proper
cocompact actions of étale groupoids. This includes Connes’ general foliation index theo-
rem for foliations with Hausdorff holonomy groupoid.

1. Introduction

This paper is concerned with a families index theorem in which the family of oper-
ators is parametrized by a noncommutative space which comes from a smooth Hausdorff
¢tale groupoid G. The relevant index theorem was stated by Connes in [8], Section I11.7.y,
Theorem 12. We give a superconnection proof of Connes’ theorem. The desirability of
having such a proof was mentioned in [6]. In the case of a foliation, by taking a complete
transversal, one recovers Connes’ general foliation index theorem for a foliation whose
holonomy groupoid is Hausdorff. For the history and significance of Connes’ foliation in-
dex theorem we refer to [8], Sections 1.5, 11.8-9 and II1.6-7, along with the references cited
therein.

For concreteness, let us first discuss the case when G is the cross-product groupoid
coming from the action of a finitely-generated discrete group I' on a smooth manifold B.
In this case the geometric setup for the index theorem consists of a manifold M on which
I acts, and a submersion 7 : M — B which is [-equivariant. In addition, we assume that
the action of ' on M is free, properly discontinuous and cocompact. Put M = M/T, a
compact manifold. (A relevant example is when M = R x S, B=S' and I' = Z, with the
action of ne Z on (r,e’) e R x S' given by n- (r,e’) = (r + n, e’™") for some o € R.
Then M = T?2.)

There is a quotient map M — B/I’, which will be the intuitive setting for our families
index theorem. In general B/I" is highly singular and, following Connes, we will treat it as
a “noncommutative space” B. We will give a superconnection proof of a families index
theorem in such a setting.
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Let us consider two special cases. If I' = {e} then we just have a submersion M — B
with M compact. In this case, the relevant index theorem is the Atiyah-Singer families
index theorem [1], for which a superconnection proof was given by Bismut [3]. At the other
extreme, if B is a point then we just have a covering space M — M of a compact manifold
M. In this case the relevant index theorem is due to Miscenko-Fomenko [22] and Connes-
Moscovici [9], and a superconnection proof was given by the second author [20]. To some
degree, the present paper combines the superconnection proofs of these two special cases in
order to deal with general I' and B. However, there are some new features, which we will
emphasize.

One motivation for giving a superconnection proof of Connes’ theorem is that the
superconnection formalism gives a somewhat canonical proof. In particular, it expresses
the Chern character of the index as an explicit differential form. This is one of the reasons
that the superconnection formalism allows extensions to the case of manifolds with
boundary. When I' = {e}, this is due to Bismut-Cheeger [4]. When B is a point, it is due
to the second author [21] and Leichtnam-Piazza [17]. Based on the present paper, it should
be possible to extend Connes’ index theorem to manifolds-with-boundary. In particular,
this would give an index theorem for a foliated manifold-with-boundary if the foliation is
transverse to the boundary.

We now describe in some detail Connes’ index theorem and the superconnection
approach to its proof. Before setting up the superconnection formalism, we must first
describe what we mean by functions and differential forms on the noncommutative base
space B. There is a clear choice for a class of “smooth functions” on B, namely the alge-
braic cross-product C*(B) > I'. The choice of ““differential forms™ on B is dictated by two
facts. First, if ' = {e}, i.e. in the commutative situation, we want to recover the smooth
compactly-supported differential forms Q(B). Second, the choice should extend to general
smooth Hausdorff étale groupoids G. This dictates that we should take the differential
forms to be elements of Q*(B,CT) = Q(B) ® Q*(CT'), where Q*(CT') is the graded dif-
ferential algebra of noncommutative forms on CI' ([19], Section 2.6), and the product in
Q*(B, CI') takes into account that I" acts on Q’(B).

Given these choices, we need to know that the ensuing “homology” of B is suffi-
ciently rich. This is shown in the following theorem. Let GT. (., denote the complex of
graded traces on Q*(B,CI") that are concentrated at the identity conjugacy class in I
(Only these graded traces will be relevant for the paper.) We let C,.(B) denote the currents
on B and we let %.(I') denote a certain complex of differential forms on ET, described in
(2.49).

Theorem 1. The homology of GT. ey is isomlqrphic to the homology of the total com-
plex of the double complex ((C ® %(F)) ® C*(B)) .

In particular, if # is a closed graded n-trace on Q* (B, CI'), concentrated at the identity
conjugacy class, then we obtain a corresponding cohomology class

®, e H4mB22((ET x B)/T;R),

where the 27 denotes an even-odd grading and the 7 denotes a twisting by the orientation
bundle of B. This shows our choice of differential forms gives the ‘“right” answer, as
(ET x B)/T is the classifying space BG for the groupoid G; compare the cyclic cohomology
calculations in [6], [8], Section I11.2.6, [10], [11].
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For analytic reasons arising from finite propagation speed estimates, we introduce a
slightly larger space of differential forms. Let || - || be a word-length metric on I" and put

(L.1) 3°= { >~ ¢ ¢ |¢,| decays faster than any exponential in ||y|| }
yell

Put C* (B, #”) = #° Qcr (C*(B) X I'). It contains C;*(B) < T as a dense subset. There
is a corresponding space of differential forms Q*(B, #“), defined in (3.30).

Let us now state Connes’ index theorem. Let M and M be as above. The I'-covering
M — M is classified by a '-equivariant continuous map x: M — ET, defined up to I'-
homotopy. Let ¥ : M — ET x B be (u,7) and let v: M — (ET x B)/T be the -quotient
of ¥, a classifying map for the action of the groupoid G on M.

Let Z denote a fiber of the submersion 7 : M — B and let TZ denote the vertical
tangent bundle, a T-invariant vector bundle on M. There is a foliation # on M whose
leaves are the images of the fibers Z under n. The tangent bundle to the foliation is
T = (TZ)/T, a vector bundle on M. Choose a smooth I'-invariant vertical Riemannian
metric 7% on M. Assume that TZ has a T-invariant spin structure, with corresponding
spinor bundle S%. Let ¥ be a T-invariant vector bundle on M, with T'-invariant Her-
mitian connection V¥. Put V = 17/ T, a vector bundle on M, and put E=S2Q V.

There is an ensuing [-invariant family D of Dirac-type operators which act fiberwise
on C*(M;E). Equivalently, the family D is G-invariant. Let Ind(D) denote the index of
this family; we will say more about it later. Let # be a closed graded trace on Q" (B, #“)
which is concentrated at the identity conjugacy class. In particular, # restricts to a closed
graded trace on Q*(B,CT). In this situation, Connes’ index theorem ([8], Section IIL.7.y,
Theorem 12) becomes the statement that

(1.2) (ch(Ind(D)),n) = [ A(TF)ch(V)v'®,.

As mentioned before, special cases of Connes’ index theorem are the Atiyah-Singer families
index theorem and the covering-space index theorem.

The goal of the paper is to give a superconnection proof of (1.2). A key ingredient will
be the CI'-vector bundle & = (M x CI')/T on M, where I acts diagonally on M x CT. By
construction, C* (M; &) = C*(M). The natural flat connection V"'? on & sends f € C* (M)
to df. An important part of our proof is a certain differentiation

(1.3) VOl 2 (M) — QY(CT) ®cr C* (M)

in the “noncommutative” directions. The explicit formula for V! is given in Section 2.
The sum of V!** and V*! is a nonflat connection

(1.4) Ve L G (M) — QUM CT) @ gy € (M).

Choose a I-invariant horizontal distribution 7 M on M. Suppose that Z is even-
dimensional. For s > 0, there is an ensuing Bismut superconnection A55™u on the sub-
mersion M — B ([2], Section 10.3, [3], Section IIla). Our noncommutative superconnection
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is simply A = 4Bsmut 1 vO1 Tet Q*(B, #%),, be the quotient of Q*(B, #“) by the closure
of its graded commutator. We show that the Chern character Tr; <g>(e*A3 ) of the super-
connection A, is well-defined in Q*(B, #?),,. It is a closed form and its cohomology class is
independent of s. The next result gives its s — 0 limit.

Let ¢ € C*(M) be such that S y-¢=1. Let # be the rescaling operator on
yell
Qeen(B, %), which multiplies an element of Q* (B, #),, by (2zi) ™"

Theorem 2.

(1.5)  lim 2 Tr, ) (e A7) = [ A(VT?) ch(V") ch(V™) € Q*(B, B°),,.
VA

The proof of Theorem 2 is by local index theory techniques.

In order to prove (1.2), it remains to relate <Tr, (y(e%), %) to (ch(Ind(D)), 7).
Let Cy(B) >, T" be the reduced cross-product C*-algebra. A technical problem is that the
Dirac-type operator D, when considered as an operator on a Cy(B) >, I'-Hilbert module,
may not have closed range. This problem also arises in the superconnection proof of the
families index theorem [3]. Recall that in the families index theorem, a special case is when
the kernels and the cokernels of the fiberwise operators form vector bundles on the base. In
this case, one defines the analytic index to be the difference of these two vector bundles, as
an element of the K-theory of the base. If the kernels and the cokernels do not form vector
bundles then one can deform the fiberwise operators in order to reduce oneself to the case
in which they do [1].

In order to carry out this deformation argument at the level of superconnection
Chern characters requires a pseudodifferential operator calculus ([3], Section 2d). In our
context one can set up such a calculus for a class of operators on Cy(B) >, I"-vector
bundles. However, this would not be enough for our purposes, as we would need such a
calculus for operators on C* (B, #“)-vector bundles. There seem to be serious problems in
constructing such a calculus, as C* (B, #4“) is generally not closed under the holomorphic
functional calculus in Cy(B) >, T

To get around this problem, we use a method which seems to be new even in the case
of the families index theorem. The idea, which is due to Nistor [25], is to define Ind(D) to
be the K-theory element represented by the difference between the index projection p and a
standard projection py, and then relate the Chern character of [p — po| to the superconnec-
tion Chern character. In order to relate the two, Nistor works in a universal setting and
shows that a certain cyclic cohomology group is singly generated, which implies that the
two expressions are related by a computable constant. Unfortunately, Nistor’s assumptions
do not hold in our setting and his argument does not seem to be adaptable. Instead, we
give a direct proof relating [p — po] to the superconnection Chern character. We show that
the pairing of # with [p — po] can be written as the pairing of # with the Chern character
of a certain Z,-graded connection V’. We then homotop between the connection V' and
the superconnection A;. Of course one cannot do so in a purely formal way, as the vector
bundles involved are infinite-dimensional. However, we show that one can write things so
that one has uniformly smoothing operators inside the traces during the homotopy, thereby
justifying the formal argument. In this way we prove



Gorokhovsky and Lott, Index theory over étale groupoids 155

Theorem 3. For all s > 0,

(1.6) (ch(Ind(D)),7) = (B Tr, (o (e %), 7> € C.
Equation (1.2) follows from combining Theorems 2 and 3.

Equation (1.2) deals with closed graded traces 7 on Q" (B, %4“). On the other hand, the
geometric and topological consequences of index theory involve the K-theory of Cy(B) >, I.
Equation (1.2) is in some ways a stronger result than the analogous K., (Cy(B) >, I')-valued
index theorem, as the underlying algebra in (1.2) is C* (B, 4“) < Cy(B) >, I'. However, in
order to obtain geometric consequences from (1.2), one must consider certain “smooth”
algebras .7 such that C*(B, #“) < o/ < Cy(B) <, I'. The requirements on .o/ are that it
should be closed under the holomorphic functional calculus in Cy(B) >, I, and that 5
should extend to a continuous cyclic cocycle on .o7. The existence of such subalgebras .o/ is
discussed in [8], Chapter III and we do not have anything new to say about it in this paper.

We give the extensions of Theorems 2 and 3 to the setting of smooth Hausdorff étale
groupoids. As mentioned above, our proof applies to foliations, to give a superconnec-
tion proof of Connes’ general foliation index theorem. There has been some previous
work along these lines. Theorem 2 was proven by Heitsch, using 435 in the special case
when # comes from a holonomy-invariant transverse current to the foliation [14]. A corre-
sponding analog of Theorem 3 was proven by Heitsch and Lazarov when # comes from a
holonomy-invariant transverse current and under some additional technical assumptions
regarding the spectral densities of the leafwise Dirac-type operators [15]. In [18], Liu and
Zhang gave an adiabatic limit proof of a certain case of a vanishing result of Connes for
foliations with spin leaves of positive scalar curvature. (Connes’ result is a corollary of his
general foliation index theorem.) The additional assumptions in [18] were that the foliation
is almost-Riemannian and that the pairing object comes from the Pontryagin classes of the
normal bundle. The adiabatic limit is closely related to superconnections.

The methods of [14], [15] and [18] have the limitation that the dimension of the pair-
ing objects is at most the codimension of the foliation, as they come from the normal
bundle to the foliation. Consequently, one misses the noncommutative features of the foli-
ation, which lead to the phenomenon that the dimension of the leaf space, treated as a
noncommutative space, can be greater than the codimension of the foliation. For example,
a manifold with a codimension-1 foliation has a Godbillon-Vey class which is a three-
dimensional cohomology class. One important aspect of Connes’ foliation index theorem
is that it allows a pairing between the foliation index and the Godbillon-Vey class ([8],
Section I11.6). One would miss this pairing if one treated the foliation in a “commutative”
way.

Let us also mention the paper [24] which proves (1.2) in the case when M = Z x S',
B = S!, the action of " on S! preserves orientation, V is trivial and # corresponds to the
Godbillon-Vey class. The method of proof of [24] is to represent Ind(D) by means of a
“graph” projection and then compute the pairing of this projection with a cyclic cocycle
representing the Godbillon-Vey class.

Not all foliations have a holonomy groupoid that is Hausdorff. We expect that our
results can be extended to the nonHausdorff case, but we have not worked this out in de-
tail. Relevant treatments of the cyclic cohomology of an étale groupoid algebra, in the
nonHausdorff case, are in [10], [11] and [12].
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The results of this paper are valid in the generality of a smooth Hausdorff étale
groupoid G with a free, properly discontinuous and cocompact action on a manifold M.
For simplicity of notation, we first present all of the arguments in the case of a cross-
product groupoid B > I". We then explain how to extend the proofs to general G.

The structure of the paper is as follows. In Section 2 we prove Theorem 1. In Sec-
tion 3 we define a class of fiberwise-smoothing operators on M — B and construct their
Q" (B, #%),,-valued traces. In Section 4 we define the superconnection A4, and prove The-
orem 2. In Section 5 we prove Theorem 3 and give some consequences.

In Section 6 we give the extension of the preceding results to general étale groupoids.
The extension is not entirely straightforward and the expressions in Section 6 would be
unmotivated if it were not for the results of the preceding sections. In Subsection 6.1 we
show how in the case of a cross-product groupoid, the expressions of Section 6 reduce to
expressions of the preceding sections. The reader may wish to read Subsection 6.1 simul-
taneously with the rest of Section 6.

More detailed information is given at the beginnings of the sections.

Background information on superconnections and index theory is in [2]. For back-
ground results we sometimes refer to the relevant sections in [2], [8] or [19], where references
to the original articles can be found.

We thank Victor Nistor for discussions of [6] and [25]. We thank the referee for useful
suggestions, and Eric Leichtnam and Paolo Piazza for corrections to an earlier version
of this paper. The second author thanks the Max-Planck-Institute-Bonn and the Mathe-
matical Sciences Research Institute for their hospitality while part of this research was
performed.

2. Closed graded traces

In this section we compute the homology of GT, (. We show in Proposition 1
that it is isomorphic to the homology of the total complex of a certain double complex
7.« We then construct a morphism from this double complex to the double complex
((C ®%.(I) ® C. (B)) In order to construct this morphism, we first describe the con-
nection V" on & = (M x CI')/T, along with its Chern character. Taking M to be ET’, we
obtain a connection V""", whose Chern character implements the morphism. We show that
the morphism induces an isomorphism between the E!-terms of the two double complexes.
It follows that it induces an isomorphism between the homologies of the total complexes.

The material in this section is necessarily of a technical nature. A trusting reader may
be willing to take the main result of the section, Corollary 1, on faith. To read the rest of
the paper, it is also worthwhile to read the important digression of the section, which is
labeled as such.

Let # be a unital algebra over C. Let Q" (%) denote its universal graded differential
algebra (GDA) ([16], Section 2.24). As a vector space,

(2.1) Q" (%3) =23 ® (®"(%/C)).
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As a GDA, Q" (%) is generated by # and d% with the relations
(2.2) dl =0, d*=0, d(oww)=(do)o + (-1 w(dw)

for wy € QX(A), w, € Q'(#). Tt will be convenient to write an element w; of Q(%) as
a finite sum w; = > bodb;...dby. Let [QQ*(#),Q"(#)] denote the graded commutator

Q" (%
of Q*(#) and let Q*(%),, = (%)

c ol @@
*( g — * *( :
Q(B),, CoQ@).9@) Let HDR*(%#) and HDR* (%) denote the cohomologies of

the differential complexes Q*(%),, and Q*(%),,,, respectively. Then HDR*(%) ~ HDR* (%)
if * > 1, and there is a short exact sequence 0 — C — HDR’(#) — HDR’(#) — 0. Fur-

thermore, Connes and Karoubi showed that HDR*(%) is expressed in terms of reduced
cyclic and Hochschild homology ([19], Theorem 2.6.7) by

denote the abelianization of Q*(#4). Put

(2.3) HDR*(#) =~ Ker(B : HC,(#) — HH..\(%)).

If I' is a discrete group and 4 is the group algebra CI, i.e. finite sums ) ¢,y, let us

yell
recall the calculation of HDR*(CT'). It breaks up with respect to the conjugacy classes of
I', as do the Hochschild and cyclic cohomologies of CI', and we will only be interested in
the component HDR7,,(CI') corresponding to the identity conjugacy class. Let H.(I'; C)
denote the group homology of I" and let H.(I'; C) denote the reduced group homology, i..

H.(I'; C) = H.(BI', %; C). Then it follows from Burghelea’s work that the reduced Hoch-
schild and cyclic homologies of CI', when considered at the identity conjugacy class, are

W*K@(CF) = H*(F; C)
and

(24) H_C*,@((CF) = gaoﬁ*_z,‘(r; C),

with the map B : HC, (,,(CT') — HH.1 (»»(CI') vanishing ([19], Section 7.4). Hence

Hy(T"; C) if =0,
(2.5) HDR{,,(CT') = { @ H. »(T;C) if x> 0.
i=0

If # is a locally convex topological algebra then there is a natural completion of
the algebraic GDA Q*(4) to a locally convex GDA ([16], Section 5.1). For simplicity of
notation, when the context is clear we will also denote this completion by Q*(%). We will
also denote by Q*(4),, the quotient of Q*(#) by the closure of [Q*(%), Q" (#)], where
the quotienting by the closure is done in order to obtain a Hausdorff space. In general, we
take the tensor product of two locally convex topological vector spaces to be the projective
topological tensor product and we let ® denote a graded (projective) tensor product.

Let B be a smooth manifold on which a finitely-generated discrete group I' acts on
the right, not necessarily freely or properly discontinuously. Given y € I', let R, € Diff(B)
denote the action of y on B. We let I' act on C*(B) on the left so that y- f = R f, Le.
(y- f)(b) = f(by). Given y € T, let B” denote the subset of B which is pointwise fixed by 7.
Given b € B, let I', = I be the isotropy subgroup at b for the action of I' on B.
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Let C*(B) < I' denote the cross product algebra, whose elements are finite sums
> Sy, with f, € C(B). We wish to define an appropriate GDA whose zeroth-degree

%%l;llponent equals C*(B) < TI. One’s first choice might be the universal GDA
Q" (C*(B) = T). The corresponding de Rham cohomology is expressed in (2.3) in terms of
the cyclic and Hochschild homologies of C*(B) < I'. Now such homologies have been
computed in [8], Section II1.2.9, [6], [10] and [11] in cases of increasing generality. In par-
ticular, the periodic cyclic cohomology of C*(B) > I' contains a factor consisting of the
twisted equivariant cohomology of B. This implies that the space of closed graded traces on
Q" (C*(B) = T) is sufficiently rich for our purposes.

On the other hand, the choice of Q*(C*(B) > I') as the GDA is inconvenient from
the point of view of superconnections. In the case when I' is the trivial group, and one
is dealing with a fiber bundle M — B, the usual superconnection formalism uses the
graded differential algebra Q’(B). It appears that it would be quite cumbersome to redo
the superconnection proof of the Atiyah-Singer families index theorem using the non-
commutative differential forms Q" (C*(B)) instead of Q}(B).

For this reason, instead of using Q*(CfO (B) > F) as the GDA, we replace it by an
appropriate quotient. By universality, there will be a map from the closed graded traces
on the quotient GDA to the closed graded traces on Q*(CcOO (B) > F). We want this
map to have a sufficiently large image. It turns out that an appropriate GDA is
Q*(B,CT') = Q(B) ® Q*(CT), the graded algebraic tensor product over C, where the
multiplication in Q" (B, CI") takes into account that CI" acts on Q;(B).

Then Q*(B,CT) is a GDA, with Q°(B,CT’) = C*(B) < T'. We wish to compute
the homology of the complex of graded traces on Q*(B, CI'), or at least the part of the
homology which is concentrated at the identity conjugacy class. Let GT,, (., be the graded
traces on Q*(B, CI') which are concentrated on the elements

Z wyo,.‘.,y,z 0 dyl dyn'

Y05 Vnt Yoo Vn=€

Letd': GT, ¢y — GT,_1 ¢ be the boundary operator. A closed graded trace is an element
of Ker(d").

Consider the space of maps 7 : I'**!' — C. We now define certain operators that
arise in the computation of the cyclic homology of CI'" [16], Section 2.21. Namely, put

(26) (tr)k(Vanl,'“ayk ( 1) Tk(ylv'-'aykayO)a

Ot o - > Vks1) = Tk o -+ > Vi1 Do Vie 15 -+ 5 Yk

) =
)
(001 (70 -3 Vk1) = Doy -5 205 Vis -+ V1)
(BoT)j—1(Pos - -+ V1) = (V=15 70 -+ » Pi—1)-

Put
k

(2.7) (bf)k+1 = Z(_l)i(éir)kﬂ'

i=0

The operator Byb + bBj acts by
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(2.8)  ((Bob +bBo)1), (7os---7%) = (05« -+ 7%) — (=) Tk (s 05 -+ Vot
+ (_l)kfk(ykﬂﬁ’o’---7Vk71)~

Let C.(B) be the currents on B. We denote the pairing of w € Q. (B) with ¢ € C.(B)
by {w,c). The de Rham boundary 0 : C.(B) — C._i(B) satisfies {dw,¢) = {w, dc). The
action of I' on C,(B) is such that {y - w,y - ¢) = {w, c).

Let CX(T) be the vector space of C-valued functions on T**!. Let % ; be the ele-
ments 7 € C¥(I') ® C;(B) which are normalized in the sense that (g;7), ; =0 for all
0 < i < k, and which are I'-invariant in the sense that

(2.9) (Y0 ?) =V (Vos - -+ k)
Put 4, = € %k,. The operators d, b and By can be defined on %, . in the natural way.

k+I=n
Let 7. . be the double complex given by

(2.10) Tk = Ker(b) nKer(bBy + Bob) < €.
with boundary operators (—1)'By and 0.

Proposition 1.  The vector space GT, (> is isomorphic to €@ T, ;. Under this iso-
morphism, the action of d' on GT, (. is equivalent to the action of]gj—:’é—l)lBo on kEP Tl

+i=n

Proof. Given 17 € %,, write it as 7 = i T, with tx € €k ,—x. We obtain a linear
functional ¥, on Q*(B, CI'"), which is concerft:rgted at the identity conjugacy class, by the
formula

0, T (Yo, PoV1s - V0 -+ Vi1, €)> Al poyy v =e,

2.11) Y (wyydy,...dy :{ .
(211) (o dy 2 0 if yoy; .- 7 Fe

Conversely, all linear functionals on Q*(B,CI"), which are concentrated at the identity
conjugacy class, arise in this way.

YW, will be a graded trace if and only if it satisfies
(2.12) Y. (ywyody, dy, ... dy,) = Yo(wypydy,dy, ... dy,y)
and
(2.13) Y. (dy, wypody, dy,...dy_;) = (—l)k_1+‘w|‘l’f(wy0 dy,dy,...dy;).
Equation (2.12) is equivalent to
(2.14) P ((7- @)prody dy, ... dyy)
=Y. (@lpody dy,y ... d(yey) = vodyidyy .- d(pe_yyi) dy

o (=D e dyy - dydy).
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This is equivalent to
(2.15) <y, T(7P0; 770715+ PP0 - - Va-15€)D
= <60,T(V0,V0V1,-..,V().--kal,e) _T(y07y0y17~-~7y()---yk,27]/0-~yk,€)
k
e (=D Ty Vo e Ve €)s
which is equivalent to
(2.16) (Y0, Yor1s--3%0 - Pk1>P0 - -+ Vi)
=T(V0s Y0715+ 70 - Vi=1:€) = T(V0s VoP1s -+ 570 -+ - Vk2: 70 - - - Vi €)
k
o (D T Goris -0 V0 )

which is equivalent to

(2.17) 0= (—1)k[T(Y0V1w--770--~7kve)
o (=D 0 070 T2 Vo - a0 €)
+ (=D (0, 707120 - Vh10€)
+ (=D o, 2071270 Vi1 V0 - - 7))

After a change of variable and using the '-invariance of 7, this is equivalent to bt = 0.

Next,
(218)  (=1)“N(dypody  dy, ... dy_y)
=Y (- @) dypodyydys ... dy )
=¥ ((yc - @) d(pero) dyr dy, ... dyiy)
- ‘Pr((Vk @)y dygdyydy, .. 'dyk—l)
= Pk - 0, k(€ 7Y, PkVOV 1> - -+ VYo - - - Vk—2:€)D
= 0k O Tk (Vies ViV0s ViVOV1s -+ -5 VY0 - -+ Vie2:€))
=<0, (Yo -+ Vk=1>705 Y0715+ - -+ V0 - - - Vi—1)
= T(€,70, Y0715+ -+ V0 - - - V—1) -

Thus (2.13) is equivalent to
(2.19) (Do - Pk—1:Y0: VP15 %0 -+ Vim1) — Th(€5 205 Vo¥1s -+ -5 70 -+ - V1)
k—1
= (=" %o, 70715 Vo -+ Vi-1,€)-
By a change of variables, this in turn is equivalent to

(2.20) Tk (Gk-1,90, 915 - - s Gk—1) — Tk (€, 90, - - - Ji—1)

= (_l)k_lfk(g(% cee )gkflae)
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Using the I'-equivariance, this is equivalent to

(2.21) Tk (Gk=1,90, 915 - - - Jk—1) — Tk (Gk> G0, - - -, Gi—1)
= (=) "% (go, -, g1, 90,
which, from (2.8), is equivalent to (Byb + bBy)t = 0.

~ Finally, given 1e CKI)® C(B), let wyydy,...dy,, be an element of
Q"(B) ® Q¥ (CI"). Then

(2.22)  (d"Yo)(wpdy, ...dy) = Yo (doyydy, ... dy + (=) wdy,.. dy).
Ifk'=kand!'=1/—1 then

(2.23)  (d"¥)(@podyy .. dy) = Ao, T (70, VoPrs -+ Vo -5 Vhe1:€)D
= @, 0T(Y0, PoV15 -+ Vo -+ -1 Vk—15€)
= Yoc(wyody, ... dypr).

If k' =k —1and !’ = then

(2.24)  (d"F)(@podyy ... dy) = (1) o, 7(e,70,- 0,70 Vo1, €))
= (=1)"<0, (BD) (g, 70+ i1, €))
=¥ g (@rodyy .. dyp).

This proves the proposition. []

From Proposition 1, (2.7) and (2.8), we see that any antisymmetric group cocycle for
I', which takes values in the closed currents on B, gives a closed graded trace on Q" (B, CI').
In this way, we have a map H*(T'; Z;(B)) — Hy/(GT (0, d"). In particular, if k = 0 then
we obtain closed graded traces on Q*(B, CI') from I'-invariant closed currents on B. We
now use Proposition 1 to describe all of the homology of the complex GT. (.

Consider the E'-term of the double complex 7 .. That is, E} , is the k-th homology
group of the complex .7, ; with respect to the differential (—1)IBO. We first want to compute
this homology group. To do so, we follow the general method of proof of [8], Section
II1.1.5, Theorem 22. We fix / for the moment.

Let us define operators b’, 4 and B on C*(I') ® C;(B) by the usual formulas

(2.25) By = 3 (<1 G0,

i=0
k -
(A7), = 3(=1)'t's,

i=0

B = A4B,.

(The “B” in this Connes B-operator should not be confused with the manifold B.)
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Lemma 1. Acting on 6. ;, we have Ker(b) n Ker(By) = Ker(b) n Ker(1 — 7).
Proof. If t€ %, and (1 —t)r = 0 then Byt = 0. Thus
Ker(b) nKer(1 —t) < Ker(b) n Ker(By).
On the other hand, the identity b'By + Bob = 1 — ¢ shows that
Ker(bh) nKer(By) < Ker(b) nKer(1 — 7). O

Lemma 2. An element t € Iy lies in the image of By : Ty1,1 — Tk, if and only if
© = B¢ for some ¢ € Ker(b) < €j1,.

Proof. Suppose that 7 € J ; satisfies 7 = By¢ for some ¢ € 741 ;. Then Byt = 0. By

1 1
—— At = — B¢.
i T

the previous lemma 7 = ¢7 and so 7 =
Now suppose that 7 € J}; satisfies 1 = B¢ for some ¢ € Ker(b) < %41,. Put

1
k—i—lT'

(2.26) © = Byg —

Note that By¢ € Ker(By) < ;. Also, as T = B¢, it follows that = ¢z which, along with

the fact that t € 7 ;, implies that 7 € Ker(By). Hence © € Ker(By) < %,;. As A® =0,
k

we can write ©® =y —ny where € Ker(By) < %, is given by ¥ = —%HZ it'®.
i=0

Then O = (1 — )y = (b'By + Bob)y = Bobyy. Put ¢’ = ¢ —bpy. Then from (2.26),

= (k+ 1)By¢'. Furthermore, b¢’' =b(¢p—by) =bp=0 and (k+ 1)bByp’ = bt = 0.
Hence ¢’ € F1,;. This proves the lemma. []

Put
(2.27) Cf(T; C(B)) = Ker(By) n Ker(Bob + bBy) < .

From (2.6) and (2.8), the elements of C¥ (T'; Ci(B)) can be considered to be cyclic cochains
which are reduced if k£ > 0. Put

(228)  Z¥(T; Ci(B)) = Ker(b: C5(T; C(B)) — CSTH(T; Ci(B))),
BY(T;Ci(B)) =Im(b: C57'(T;Ci(B)) — CF(T; C(B))),
HY(T; C(B)) = Z5(T; C(B)) /BL (T; Ci(B)).

We define the Hochschild objects CH*(T'; C/(B)), ZH*(T'; C;(B)), BH*(T'; C;(B)) and
HH* (F; C;(B)) similarly, but without the cyclic condition. The Connes B-operator induces
amap B: HH*(T; C;(B)) — Hf ' (T; C(B)).

We now prove a result which, when B is a point, amounts to the dual of (2.3), when
applied to # = CI" and considered at the identity conjugacy class.

Lemma 3. There is an isomorphism

(2.29) HY7.,) = Hf(T; C/(B))/Im(B : HH*"'(T; C,(B)) — H}(T; Ci(B))).
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Proof. By Lemma 1, Ker(By) = 7, is isomorphic to Z§ (I'; C;(B)). By Lemma 2,
(230)  Im(By : Tks1s — Zkg) = Im(B: ZH""'(T; Ci(B)) — Fi).-

Also,
(2.31) BY(T; C(B)) = Im(B : ZH*"(T; C/(B)) — Tx.1),

asif t = by with € C¥~!(T'; C(B)) then y = By’ for some y' € CH*(T'; C;(B)) ([8], Sec-
tion I11.1.8, Corollary 20), and so t = bByy' = —Bby’. The lemma follows. []

Let H*(F; C/(B)) denote the group cohomology of I' with coefficients in the
I-module C;(B). Let H*(T; C;(B)) denote the reduced group cohomology with coefficients
in C;(B). That is, let ET|g) be the set of vertices in EI'. Then H*(I'; C;(B)) is the coho-
mology of the complex (C*(ET, ETg)) ®; Ci(B))" .

We now give a result which, when B is a point, amounts to the dual of (2.4).

Lemma 4.
H(T; Ci(B)) if k=0,
(2.32) HH"(T; C/(B)) = { Hk((r- CIIEB))g ij:k >0
and
H°(I; Ci(B)) if k=0,
(2.33) Hf (F; Cz(B)) ~ D ﬁkfzi(l—*; C[(B)) if k>0,
i=0

with B : HH*"1(T'; C;(B)) — H(T; Ci(B)) vanishing.

Proof. The proof of this follows algebraically from the method of proof of (2.4).
That is, we have the same sort of cyclic structures. We omit the details. []

Putting together Lemmas 3 and 4, we have shown

Proposition 2.  The E'-term of 7., is given by

1 H"(T; Ci(B)) if k=0,
(2.34) =9 @H%(I,G(B) if k> 0.
i=0

Clearly the differential & ; : EJ ; — E} ,_, is induced from .

Important digression. To digress for a moment, let M be a smooth manifold on
which I' acts freely, properly discontinuously and cocompactly. Put M = M /T", a closed
manifold. We construct a connection

(2.35) Ve CF (M) — QY (M, CT) ®@cx 31y wr € (M).
Let us note that
(236)  Q'(M,CT) ®cs(yynr C (M)
= (Q(M) @4y CF (M) @ (Q'(CT) ®cr € (M)
is isomorphic to Q! (M) ® (Q'(CT) ®¢r C*(M)).
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Lemma 5 ([20], Prop. 9). Let he C*(M) satisfy 3. y-h = 1. Define V" by
yell

(2.37) vy —dM e S dy®@h(y™ - f)

yell
for f € C*(M). Then V™ is a connection on C*(M).
One sees that
(2.38)  (V)?e Hom, ..y XF(CT(M) Q*(M,CT) ®cx ()= C*(M))

acts on C* (M) as left multiplication by a 2-form ® which commutes with C* (M) > T..
Explicitly,

(239) @ =Y dM(y-hydy ™ = X (' -h)(y-h)dydy' (')

yell y,p' el
=— ZrdM(y" hyy~dy - Zr((w’)*l W) (N R () dydy'
Ve 7,7 €

Note that if I is infinite then ® does not lie in Q*(M,CT), as the sums involved are infinite.
Nevertheless, it sends C* (M) to Q*(M, CT) ®ce(ary«r € (M). Put

(2.40) ch(VE™) = 5 € Endg. 7. cr (' (M, CT) @ (1) ur € (M)).

Then the abelianization of ch(V®") is closed. This can be seen by writing ® = dA — A2,
where

(2.41) A=Y dyhy ==X (" -h)y dy

yell yell

Then d® = —[®, 4] and dch(V®") = —[ch(V"), 4]. Also, the cohomology class of
ch(V*") is independent of the choice of /.

In the construction of ch(V®*"), we can allow /4 to be a Lipschitz function on M (see
[20], Lemma 4, where ch(V") is called @;). Let ET be the bar simplicial complex for T’
(with degenerate simplices collapsed ([5], Chapter 1.5, Exercise 3b)). We formally replace
M by ET. There is a complex Q*(ET) of C-valued polynomial forms on ET defined as in
[26], p. 297. Let j € C(ET) be the barycentric coordinate corresponding to the vertex e € ET
([20], (94)). Then > y-j =1 (]20], Lemma 5). (The support of j may not be compact, but

el .
this will not be a i)eroblem.) Define V'™ as in (2.37), replacing / by j.
Let ch(V'iY) = ™27 denote the explicit form constructed using j. Then ch(V'Y) lies

n

(2.42) ﬁ é QFI(ET) @ Q' (CT).
k=0 =0

Looking at the formula for ch(V""), we see that in fact it lies in
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(2.43) ﬁ [(Z"(El") ® k) @ é(gk’ (ET) ® QF (@r))].

k=0

Letne @ CUT')® Cy(B) be a graded n-trace on Q*(B, CT"). We can pair ch(V"™") and
a+b=n
n with respect to CI', to obtain

(244)  Ch(V™™) ) e @ [(zkwr) ® Goi(B) © D@ (ET) © cnk,w))} .

k=0 =1
End of important digression.

Lemma 6. The element constructed in (2.44) is T-invariant.

Proof. With respect to (2.42), let us write ch(V'"™) in the form
ch(V'"™) =>"w; ® o}, with w; € Q"(ET) and ! e Q*(CI'). As ® commutes with T,

it follows that for all y e T,

(2.45) S o®ao] =Y o) @y

1

Given ¢ € Q7 (B), we can define the pairing {{ch(V"™Y), >, ¢> € Q*(ET). Then for any
yel,

(2:46)  (h(V™)m).y-¢> = V(- © o))
= ;y-win(y-qﬁ@wﬁy")
=27 om@®we))
=2r-om(l @)y ]+ @)
= Zl_jy-wm(qﬁ@wf)
=7+ {eh(V*™), 1>, 6.
This proves the lemma. []

Equivalently, define a complex %, (I") by
(2.47) % () = Z¥(ET) ® P Q2 (ET),
I=1

with the natural chain map of degree —1. Then

(248) (h(V'™), 1> e @ (%a(T) ® Cy(B))"

a+b=n
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To take into account the normalization of Q*(CI'), let ET ) denote the vertices of ET and
put

(2.49) % (T) = Ker ( <Zk(EF) ® é Qk=2 (EF))
=1

=1

— <Z"(EF(0)) &) é Q" (ET ))) .

Consider the complex C @ %, ("), where the factor C is in degree zero. Then pairing with
ch(V"™) gives a linear map from the gre}ded traces on Q*(B, CI') to the total space of the
double complex (((C @ (g*(l")) ® C*(B)) )

Lemma 7. Pairing with ch(V"™) gives a morphism from the complex of graded traces
on Q*(B,CT) to the total complex of the double complex ((C (@) (Z*(F)) ® C*(B))r.

Proof. Given ¢ € Q;(B), we have an equality in Q*(ET):
(2.50)  d<<{ch(V"™), >, ¢> — <Lch(V"™), ), dp) — {{ch(V'"™),d'n), ¢>
= d ch(V"™), ), ¢> = [ch(V"™), 4], 7>, $).

Let us write ch(V'") =3 w; ® ! and A:Zaj(;bq;, with w;,a; € Q*(ET") and

- j
w;,a; € Q7 (CI'). Note that ch(V"™) and A are concentrated at the identity conjugacy class
of I', so we can assume the same about ] and a;. Then

(251)  [ch(V"™), 4] = 3 [0 ® 0}, 4; @ a]] = 3 wig; ® [w], a]].
ij LJ
Hence
(2.52) eh(VI™), 4], 1), 6> = £3- wia[o], ¢ ® ajl, 0,
i.j

which vanishes as # is a graded trace. The lemma follows. []

We note that by the construction of %., the E'-term E} , of the double complex
(C@%.(I') ® C.(B )) i.e. the k-th homology of ((C @ .(I' )) ® C;(B)) with respect
to the differential of C ® %(F), is isomorphic to (2.34).

Lemma 8. Pairing with ch(V"™) induces an isomorphism from the E'-term of the
double complex 7. . to the E'-term of the double complex ((C @ %(F)) ® C*(B))r.

Proof. For simplicity of notation, we only address the case when k > 0. Consider
first the component H*(I"; C;(B)) of the E} ,-term of the double complex 7 .. It follows
from [20], Proposition 13 that pairing with ch(V""") induces an 1somorphlsm from this
component to the correspondlng component of the E|! -term of the double complex

(Ca@s.m) e ()"

_ Next, we remark that for both double complexes, there is a (reduced) S-operator
S: E},; — E},,,; which sends H*~%(I'; C;(B)) to itself. In the case of the double complex
..., this S-operator is essentially the dual of the one that acts on the right-hand-side of
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(2.3). (A formula for the reduced S-operator, as opposed tro the S-operator, is given in [21],
(55).) In the case of the double complexr((g*(l“_) ® C.(B)) , the rS—operator is induced from
the natural map from (€(I') ® Ci(B)) to (%x+2(T) ® Ci(B)) .

On the other hand, after adjusting the coefficients of its terms, ch(V“niV) is S-invariant
([21], Proposition 28). Then using the known isomorphism on the H*(I'; C;(B)) component
of E} ,, along with the S-operator, it follows that pairing with ch(V'"™") induces an iso-
morphism on all of E,i O

Theorem 1. The homology of GT.. (., the complex of graded traces on Q*(B,CI)
which are concentrated at the identity conjugacy class, is isonlgorphic to the homology of the
total complex of the double complex ((C ® (6*(1")) ® C, (B)) .

Proof. By Proposition 1, the homology of GT (. is isomorphic to the homology of
the total complex of the double complex .7, .. We have shown that pairing with ch(Vniv)
gives a morphism of double complexes, which is an isomorphism between the E!-terms.
The differentials on the E!-terms are both induced by 0. It follows that there is an iso-
morphism between the E*-terms. []

Using the isomorphism between the homology of GT (. and the homology of the
double complex 7, ., we can periodize with respect to S to define the periodic homology
HP(GT. (), with € Z/27. Let H} ((ET x B)/T") denote the cohomology of (ET x B)/T,
twisted by the orientation bundle of B ([8], Section IL.7). Let H; ((ET x B)/T’) denote the
cohomology relative to (ET(g) x B)/I" = B.

Corollary 1. There is an isomorphism between
HP'(GT. () and HT™EZ((ET x B)/T).

Proof. As homology commutes with direct limits, Theorem 1 implies that
HP'(GT () is isomorphic to the homology of the Z/27-graded complex

(2.53) Ker((Q*(ET) ® C.(B))" — (Q*(ETp) ® C.(B))").
Dualizing with respect to B, this is isomorphic to the Z/27-graded complex
(2.54) Ker((Q*(ET) ® QB ()T - (Q*(ET) ® Q:+mB)(B))"),

where Q7 (B) consists of the differential forms on B with distributional coefficients and
with value in the orientation bundle o(TB). The homology of this complex is
Hf;+d1m(B)+ZZ((EF % B)/r) 0

Remark. If I' = {e} then the homology of the graded traces on Q(B) is the
homology of the currents on B. If B is a point then the homology of the graded traces on
Q*(CT') is essentially the group cohomology of T'. In order to put these together into one
object, we have used Poincaré duality to convert the homology of B into the twisted
cohomology of B. In this way we write the periodic homology of graded traces on
Q*(B,CI') in terms of the twisted cohomology of (ET x B)/I". However, this uniform
description only exists after periodizing, because of the grading reversal in the Poincaré
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duality. For the unperiodized homology of graded traces, we must use the setup of Theo-
rem 1.

The closed graded traces coming from (CD ® C*(B))r are also relevant; they corre-
spond exactly to the homology of the I'-invariant currents on B. In general, forgetting
about reduced cohomology, we have constructed a map which sends a closed graded
n-trace n on Q*(ET) ® Q*(CT) to an element @, € HAMmE2Z((ET x B)/T).

3. Fiberwise operators and traces

In this section we first consider smoothing operators on M which act fiberwise,
preserve compact support and commute with I'. We define a C°(B)-valued trace Tr.,
on such operators. We then make various extensions of Tr.. First, we extend it to an
Q*(B,Cr’),,-valued trace on form-valued operators. Next, we extend it to a supertrace on
operators on Z,-graded vector bundles. Finally, we extend it to an Q*(B, %4“),,-valued
trace on smoothing operators whose Schwartz kernels have sufficiently rapid decay.

Let M be a smooth manifold on which T acts freely, properly discontinuously and
cocompactly. Put M = M /T. Let B be a smooth manifold on which I' acts, not necessarily
freely or properly. Suppose that there is a I'-invariant submersion 7 : M — B, a fiber of
which we denote by Z. Then M is foliated by the images of Z under the map M — M.
That is, given b € B, put Z, = n~'(h). Then the corresponding leaf of the foliation Z is
Zy/Ty <« M/T.

Let TZ denote the vertical tangent bundle of M — B, a vector bundle on M. Let ™%
be a I'-invariant Euclidean inner product on 7Z. Give Z, the corresponding Riemannian
metric and induced metric space structure d. As I acts cocompactly on M, preserving the
submersion structure, it follows that {Z,},_, has bounded geometry. That is, there is a
uniform upper bound on the absolute values of the sectional curvatures, and a uniform
lower bound on the injectivity radii. Let d voly denote the Riemannian volume forms on
the fibers {Z},_ .

An element K of Endcx () (C(M)) has a Schwartz kernel Kz, w), with respect to
its fiberwise action, so that we can write

(3.1) (KF)(z) = [ K(z,w)F(w)dvolz,_(w)
Za(z)

for F e C*(M).

Definition 1. End(. .. (C” (M)) is the subalgebra of Endc- () (C(M)) con-
sisting of elements K with a smooth integral kernel in C* (M x M).

Note that for each b € B and each w € Z,, the function K,,(z) = K(z,w) has compact
support in z. To simplify notation, if K € Endcy X]1-(C(f’c(M )) then we will write the
action of K on C*(M) by

(3.2) (KF)(z jK z,w)F(w) dvolz(w).
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That is, | denotes fiberwise integration. The convolution product on End (.. (B) =T (cr (M )
z ‘
is given by

(3.3) (KK')(z,w) = ZfK(Z,u)K(u, w) dvolz(u).

In this way End{, g)..r-(C*(M)) is an algebra over C, possibly without unit.

Let g € C*(M) satisfy > y-¢ = 1. Given K € End?«(B)xr(ch(M)) and b € B, put
yell ¢

(3.4) Tr(K)(b) = > ( [ pw)K(wy ", w) dvolzb(w))y.

vely \Z,
From the support condition on K, Tr(K)(b) € CI.

To express the range of Tr in a better way, let (B?’)C be the complex-valued functions
on B”. There is an inclusion (BV)C < B® coming from extension by zero. Then (B"/)Cy is

an algebra, as a subalgebra of B® > T'. Put vel
EBF (B")y
3.5 (@) == .
e e ee)]
yell yell

Consider Tr from (3.4).

Proposition 3. Tr: Endzo@(BMr(Cc“‘ (M)) — ( ) (BV)Cy> is a trace.
‘ yel’ ab

Proof. Let {O,} be the orbits of I" in B and let b, € O, be representative elements.

CT, . . .
Put (CI,),, = m Then there is an isomorphism
36) 1 (@)%) ~TIen),
ve ab

Namely, given y e T and f € (B")",

(3.7) () =11 = fOron~"],

o beb,I’

where y, € I is such that b = b,y;. Under this isomorphism, we obtain

(38) I(Tr(K) =TI & z(J"¢<w>1<<wy-1,w>dvolzb<w>)[y;,m;)11.

o bebal"yel",, Zy

Thus it is enough to show that for each «, if we put
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39) LK) = (] 00K ) dvolzy ) i)

then I,(Tr(KK')) = L,(Tr(K'K)).

Let {yﬁ}ﬂ , be a sequence of elements of I' such that I', \I' = {I's, V/;}/; 1~ Then
writing b = b,yz and y = 5 Vﬂﬁ;

Ms

(3.10) Ia(Tr(K)) = < | ¢(W)K(wy/3 Ve yﬁ,w) dvolz,, (w)> [7.]

B Zbyy

1y,€Tly,

|
8

P> ( [ BO)K (353w dvolz,, f<w>) b,

B Zboyg

8

-3 ¥ ( [ $Omp) KOvrs ' w) dvolszw))[yx].

=1 v € l“,u Z/,

o

Define ¢, & C*(Z5,) by ¢,(w) = 3 $(wy;). Then 3 7, -4, = 1 and

=1 7€ h,

(3.11) Ia(Tr(K)) = Z; ( f¢a(1v)K(wy;1,vv) dvolz,m(w)> [7,)-

Zp,

It now follows from [20], Prop. 7 that I, o Tr is a trace. (The formula in [20], Prop. 7 is
slightly different because [20] considers function spaces to be right I'-modules instead of left
I'-modules.) This proves the proposition. []

One can show that Tr is independent of the choice of ¢.

We can decompose Tr(K) according to the conjugacy classes of I'. In particular, the
component corresponding to the conjugacy class of e € I is

(3.12) Treey (K ( [ o(w)K(w,w dvolzb(w))

We see that Tr is a trace on End . g (cr (M )) which takes values in the co-invariants

(C(B))-
We will need some slight extensions of Tr. First, consider the Z-graded algebra

(3.13) Hom¢, p)..r (C (M), Q" (B, CT) ®@cr(5)r C (M))

consisting of elements of Homc:(g)xr(C” (M), Q"(B,CI) ®c(B)=T C;O(M)) with a
smooth integral kernel. An element K of

HornOCC(:'L(B)><r(Céxj (M)’ (Qk(B) ® QI(CF)) ®cx By~ C° (M))
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can be represented as a finite sum

(3.14) K= > dg...dgK,,...q,
g1y g1 €0

..........

(3.15)  (KF)(2) > dgy...dg ( ;th_”’gl(z, w)F(w) dvolz(w)>.

gis-- 91

Then we define Tr to act on Hom?ﬁx(BMF(Cf(M),Q*(B, CI') ®c»(gy=r C° (M)) by the
formula

(3.16) Tr(K)(b)

- Y ~~dgz)go< [ $00)Kyr. (g ) dVOlzb(W))

90,91,--91€L: go...g1 €Ty Zy
(Compare [20], (36).)

Example. Suppose that M =T and that B = pt. The action of I’ on C*(M) is

given by ¢g-6, =0y, 1. There is an isomorphism of left CI-modules CI' — C*(M)
which sends % to J,1. Consider hydh; € QI(CF) and the corresponding element
K € Homer (CT, Q*(CT') ®¢r CT') given by
(3.17) K(h) = h(ho dhy) = d(hhohy)e — d(hho)h,.
Then under the above isomorphism, K € Homer (C* (M), Q*(CT) ®cr C(M)) acts by
(3.18) K(0),-1) = d(hhohy )b, — d(hho)éhl—l.
Thus
(3.19) Ky, (z,w) = 6w*1hoh] A,g]éz,e - 5117*1}10,9152,11]’1

and

(3.20) 3" dgi goKy, (wggt,w) = d(w hohy)w — d(w™ ho)hyw = w (ho dhy)w.

9o, 91
If ¢ = 6, then we get

(3.21) Tr(K)(pt.) = x~ ' (ho dhy)x,
which is equivalent to /g dh; in Q*(CI'),,, as it should be.

End of example. As before, we can decompose Tr(K) according to the conjugacy

classes of I'. In this paper we will only be concerned with the component of Tr(K) asso-
ciated to the conjugacy class of ¢ € I', namely
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(3.22)  Trey (K)(b) = 2 (dg\ - - - dgi)go

940: 915, g1 €L go...gi=e

Then one sees from (3.22) that Tr, is a trace on
(3.23) Hom{, (g)er (C7 (M), (B, CT) ®cx () a1 C (M)
which takes values in Q*(B, CI')
Next, let E be a I'-equivariant Z,-graded Hermitian vector bundle on M. Define
(3.24) End. ().or (G (M; E))
as before, except with K(z,w) € Hom(Ew, EZ). Also define
(325)  HomZ. gyr (G (M; E), Q" (B.CT) @cs (pyr C (M E)

as before, except with K, (z,w) € A (T;.,B) ® Hom(E,, E.). Then we obtain a super-
trace

(3.26) Tty ¢y : HomE, o (C (M E), Q7 (B, CT) @ (5) o1 G (M E))

— QF (B? Cr)ab

by
(3.27)  Try ey (K)() = > (dgi - - . dg1)go
90: 915, g1 €l go...g/=e
(180015 0) vl ()
Finally, choose a finite generating set for I and consider the corresponding right-
invariant word metric || - ||. Let #“ be the formal sums ) ¢,y such that |c,| decreases

yell
faster than any exponential in ||y|| (see [20], Lemma 2). Then #“ is a locally convex Fréchet
algebra ([20], Prop. 4). The notation “®”” comes from the fact that if I' = Z then #“ can be

identified with the holomorphic func‘uons on C—0.
Put
(3.28) C”(B,#”) = #° Qcr (C*(B) X T),

i.e. the quotient of the locally convex topological vector space 4% ® (CL?O(B) > F) by
span{(a, f) — (ya,y- )}, where ae #“, f € C*(B) X I and yeI'. Then C*(B,#“) is a
locally convex topological algebra which has C(B) X T as a dense subalgebra. We

can write an element of C*(B,#”) as an infinite sum ) f,», where the functions on
yell
B{y ' £} ser all have support in some compact set K < B and have the decay property

that for all g e Z*
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(3.29) sup el £ by~ < oo,

beK,yell

along with the analogous statement for the derivatives of f.

Similarly, we define a locally convex GDA Q"(B, #“) by saying that an element

of type (k,I) is an infinite sum Y @, . ,%dy,...dy, where the k-forms on

Y0571 €L
B{(yy...7) " Wyy.e i by, e @ll have support in some compact set K < B and have the

decay property that for all g € Z7,

(330) beK fup Y ereq(“y("|+“'+HVIH> |w"/() ~~~~~ Vi (b(yo ce V])_l)| < 00,
3 V052 V1

along with the analogous statement for the derivatives. Then Q*(B, #“) has Q*(B,CI") as
a dense subalgebra.

Put

(3.31) 2.(M) = #° @cr CF (M),
Then C5. (M) isa left C* (B, #)-module. As in [20], Prop. 5 and using the cocompactness
of the I'-action on M, the elements of CZ.(M) can be characterized as the elements
F e C*(M) such that for any b€ B, mye Z, and ge 7,

(3.32) sup e?9=m)|F(z)] < oo,

ZGZ},

along with the analogous property for the covariant derivatives of f. Let
Endoc'é;(B,%.w)(C;;w(M)) be the subalgebra of Endcxwww)(C;;w(M)) consisting of ele-
ments K with a smooth integral kernel K(z,w). Then as in [20], Prop. 6, the ele-
ments of End{.p %w>(C;§w(M)) can be characterized as the I-invariant elements

K(z,w) € C*(M x M) such that for any b€ Band g € Z*,

(3.33) sup e

Z,WEZp

K(z,w)| < o0,

along with the analogous property for the covariant derivatives of K. The convolution
product in End %, (B,#) (Cj;w(M )) is given by the same expression as (3.3), and makes sense
because of the bounded geometry of {Z,},. 5. With the natural definition of

(3.34) Hom. (5 o) (Co (M), (B, B) @c (5, Cpo (M),

an element K can be written as a formal I'-invariant sum (3.14). In particular, the indi-
vidual terms have the decay property that for any b€ Band ge Z™,

(3.35) sup eqd(z"”9""9‘)1{(/1,._,,!,1 (z,w) < 0.

WEeZp,zE Zb?fl“'-‘ll

The formula (3.12) extends to a trace
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C* (B, B)
[C=(B, %), C* (B, B”)]

Ti¢ey : Endo g g0y (C0 (M) —
which is concentrated at the identity conjugacy class. The formula (3.22) extends to a trace
(3.36) Treey - Home g 50 (C5o(M), Q7 (B, #”) ®@c- (B.#”) Co(M))
— QY (B, #%) -

If Eis a Zy-graded I'-invariant Hermitian vector bundle on M, with an invariant
Hermitian connection, then we can define End (.. 5 40, (C%.(M;E)) and a supertrace

(337)  Trsqe : Hom¢, g 4oy (CHo(M; E), Q° (B, B”) ®c= (5, 52y Co (M E))
— Q"(B,B%),p-
4. Superconnections and small-s asymptotics

In this section we define the superconnection 4; and compute the small-s limit of the
supertrace of e thereby obtaining the right-hand-side of the index theorem.

Let 7 : M — B be a I'-invariant submersion as in the previous section. We choose
a T-invariant vertical Riemannian metric g7# on 7Z and a I'-invariant horizontal distri-
bution 77 M on M.

Suppose that Z is even-dimensional. Let E be a I-invariant Clifford bundle on M
which is equipped with a I'-invariant connection. For simplicity of notation, we asssume
that £ = SZ ® V, where SZ is a vertical spinor bundle and ¥ is an auxiliary vector bundle
on M. More precisely, suppose that the vertical tangent bundle 7Z has a spin structure. Let
SZ be the vertical spinor bundle, a '-invariant Z,-graded Hermitian vector bundle on M.
Let V be another [-invariant Z,-graded Hermitian vector bundle on M which is equipped
with a -invariant Hermitian connection V”'. Then we put £ = SZ ® V. The case of gen-
eral T-invariant Clifford bundles E can be treated in a way completely analogous to what
follows.

Let Q denote the vertical Dirac-type operator acting on C* (M ; E). From finite-
propagation-speed estimates as in [20], Pf. of Prop. 8, along with the bounded geometry of
{Zy}}p, for any s > 0 we have

(4.1) e™%" € Endg. (5 4o (Co(M; E)).
Let
(4.2) AP CF (M5 E) — Q(B) ®c(5) CF (M E)

denote the Bismut superconnection ([2], Proposition 10.15). In the cited reference it is
constructed for fiber bundles with compact fibers. However, being a differential operator, it
makes sense for any submersion. It is of the form

(4.3) ABSmt — 50 v 41—SC(T),
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where V* is a certain Hermitian connection and ¢(7') is Clifford multiplication by the cur-
vature 2-form T of the horizontal distribution 7% M. We also denote by

(44) AP CLL(MGE) — (8 Qcr QL (B)) ®uooorco(8) Copo (M5 E)

its extension to C ju(M E ). One can use finite-propagation-speed estimates, along with the
bounded geometry of {Z,},_, and the Duhamel expansion as in [2], Theorem 9.48, to
show that we obtain a well-defined element

__( 4 Bismut)2 . . AA ® £
4.5 W e Hom{ug, vy (Co (M E), (B ®cr Q;(B))
B @erc(5) Coo (M3 E)).

We now couple ABmU o the connection V" of Section 2 in order to obtain a
superconnection

Explicitly,
1
(4.7) Ay =50+ V"' ——¢c(T)+ S dy® hy™!
4s yell

Let # be the rescahng operator on Q%*'(B,#*),, which multlplges an element of
Q% (B, %*),, by (27) . Doing a Duhamel expansion around e~ (") and using the fact
that /4 has compact support, we can define

(48) eiA‘YZ (S Homzvox(B%w)(C;;w(M, E),Q*(B, @0)) ®C%(B//?LJ> C;)Q(M, E))

and hence also define 2 Tty (. (e”~ 1) e Q*(B , #%),,- From the superconnection formalism
[2], Chapter 1.4, 2 Tty (v (e~ 4?) is closed and its cohomology class is independent of s > 0;
see [14], Theorem 3.1 for a detailed proof in the analogous case of 2 Tr,(e~(4""™)").

Theorem 2.
(49)  lim AT, o5 (€ ) = [PAVTZ) ch(VY) ch(VE) € Q (B, B?),,.
s— VA

Proof.  We use a variation of the proof of [2], Theorem 10.23. As in [2], Theorem

10.23, we must first establish a Lichnerowicz- type formula for A2. Let {e;} 2"
}dlm

be a

local orthonormal basis for 7Z and let {¢’ be Clifford algebra generators, with
(¢/)* = —1. Let {r “}dlm ®) be a local basis of T*B and let E* denote exterior multiplica-
tion by *. Bismut proved a Lichnerowicz-type formula for (A4 f“sm“t) ([2], Theorem 10.17),
namely

(4.10) (AP — 29 g 4 %r +- ZF,,(V)[C /]

+ZFw(I7)E°‘C’+ ZFaﬂ( V)[E", E),

iyo
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where  is a certain vertical differentiation operator and r# € C* (M) is the scalar curva-
ture function of the fibers. Then from the formula (4.7) for 4, one finds

@4.11) A>=59"D+- ser—|— ZF,](V)[C c}—f—ZFJ,( V)E*c!

+= ZFOC/;(V)[E“ EP) — 53 dy(c(d¥"h) + E(d""h))y!

yell

— ")y -hydydy' (yy')

7Y

We now perform a Getzler rescaling, as in [2], p. 342. Explicitly, we send 0,; — 570/,
¢/ — E/ — I/ — s7'E/ — s/ and t* — t*. Then following [2], Proposition 10.28, one finds
that in the rescaling limit 42 becomes

dim(Z 1 dim(Z) dim(M) N
(4.12) — Z ( Z > RaZmbJE“Eb> + (V)% + (veam)2,
j=1ab=1
The rest of the proof now proceeds as in the proof of [2], Theorem 10.21; compare [20], Pf.
of Prop. 12. [

Let us note that the right-hand-side of (4.9) pairs with closed graded traces on
Q*(B,CI'), and not just closed graded traces on Q(B,#“). In the construction of
ch(V™), we can allow 4 to be a Lipschitz function on M (see [20], Lemma 4 where
ch(V) is called @j). Let ¢ : M — ET be a I'-equivariant classifying map for the fiber
bundle M — M. It is defined up to I'-homotopy. As M is compact, we may assume that
¢ is Lipschitz with respect to a piecewise Euclidean I'-invariant metric on the simpli-
cial complex ET. Let n be a closed graded n-trace on Q*(B,CI'). Then we can describe

< [ ¢(2)A(VT%) ch(V”) ch(vem), > as follows.

First, let us dualize (2.44) with respect to B to write
. 0 N . r
(413) <Ch(vun1v)7’7> c ( @ @Q“’zI(EF) ® QSIm(B)b(B)> 7
a+b=n 1=0

where Q7 (B) denotes the differential forms on B with distributional coefficients and with
value in the flat orientation line bundle o(7TB). Passing to a Z,-grading, we obtain

(4.14) (ch(V™™), ) € (QUdmB+22(Er 5 B))'.

By construction, the form that we have obtained is closed, so we have an element
®, € H B R2Z((ET x B)/T).

The map (¢,n) : M — ET x B is [-equivariant and so descends to a classifying map
v: M — (ET x B)/T. Let T denote the leafwise tangent bundle on M with respect to the
foliation %, a vector bundle on M. Put V' = V'/I". Then we claim that

(4.15) <j¢ A(VTZ) ch(V") ch(Ven), > [A(TF)ch(V)v'®,.
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To see this, take the pairing of ch(V") and » with respect to CI', to get a ['-invariant
element of Q*(M)® C.(B). Dualizing with respect to B, we obtain an element of
Q" (M) ® Q:(B). Applying the product (w;, ;) — ) A n*w; to this, we finally obtain a
closed T-invariant element of QF(M), the latter being the differential forms on M with
distributional coefficients and with value in n*(o(T B)) Hence we have an element of
H; (M) (where the v now refers to the flat orientation line bundle o(N.#)), which we
denote by {ch(V“"),n). Let *(AA(T?) ch(V)) e HI(M) be the Poincaré dual of
A(TF)ch(V)e H*(M;R). Then the left-hand-side of (4.15) is the pairing between
{ch(V™),n> e H; (M) and *(AA(TQ") ch(V)) e HI(M). Now we may also compute
{ch(V®™), n> by using the Lipschitz function ¢*; instead of / in constructing V*". (We may
have to smooth w; before taking the product.) Then by naturality, (ch(V*"), ) = v*®,,
which proves the claim.

5. The index and the superconnection Chern character

In this section we prove Theorem 3, relating the Chern character of A, to the Chern
character of the index. We define the index by means of the index projection and show that
its Chern character can be computed by means of a connection V. We then show that the
Chern character of the index can also be written as the supertrace of e~ for a certain
7,-graded connection V.

We relate the Chern character of the index to the superconnection Chern character by
means of a homotopy from V' to A4,. This is done in three cases. In the first case, that of
finitely-generated projective modules, the naive homotopy argument works. In the second
case, that of the families index theorem, we show that smoothing factors in the homotopy
allow the naive argument to be carried through. In the third case, that of Theorem 3, we
again justify the naive homotopy argument. We then give some geometric consequences of
Theorem 3.

Let 2 be an algebra over C and let Q" be a GDA equipped with a homomorphism
p:UA—- Q" Let & be a left A-module and let V : & — Q' ®y & be a connection on &.

Let Q" be a subalgebra of the graded algebra Homg (&, Q* ®q &). Put A=0°" We
assume that Q is closed under V and that the curvature ® = V2 € Homg (&, Q* @y &) of
the connection lies in Q2. Then V extends to a covariant differentiation V : Q* — Q**! on
Q" which satisfies V(&) = Ow — @0. Let 7 : Q" — C be an even graded trace which sat-
isfies 7(V) = 0 for all @ e Q*.

As in [8], Chapter II1.3, Lemma 9, let X be a new formal odd variable of degree 1 and
put

(5.1) Q' =QR X PQUXPXQVX

with the new multiplication rules (@1 X )@, = @1(X®;) =0 and (0, X)(X®,) = @0 @;.
Define a graded trace # on Q* by

(5.2) 11+ X@r + @3X + XaaX) = 7i(@1) + (=1)7(@).

Define a differential ¢ on 5:2* which is generated by the relations
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(5.3) dio=Vé + Xa+ (-1)°aX

and dX = 0. One can check that d*> =0 and 7(d®) =0 for & € Q. That is, (Q d,n)
defines a cycle over 2 in the sense of [8], Chapter III.1.o, Definition 1.

Suppose that  is unital. The cycle structure induces a map from Ko () to C ([8],
Chapter I11.3, Proposition 2). To fix normalizations, let p € U be a projection with corre-
sponding class [p] € Ko(2). Then the pairing of the Chern character of |p] with 7 is defined
to be

(5:4) Ceh([p]), 7> = (2mi) D25 pepipipy).

One can check that pdpdpp = p(Vp)(Vp)p + p®p, which in turn equals the curvature of
the connection p o V o p. Thus

(5:5) Coh([p)), 7> = (i)~ 2 perVer)p).

This is consistent with well-known formulae if & is a finitely-generated projective -
module, but we have not assumed that & is finitely-generated projective. The equation
extends to p € M,(2A) in an obvious way.

We will need an extension of this formula to the nonunital case. We suppose again
that we have the algebraf!* and the connection V on it. In general, V> may not be given in
terms of an element of Q7. Instead, as in [25], Section 2, we make the weaker assumption
that V2 comes from a multiplier (/,7) of Q*. This means that / and r are linear maps from
Q* to itself such that for all @, @, € Q*, we have l(@1@n) = (@), r(@1@;) = wir(d@s)
and @;/(@7) = r(@;)@,. Then we assume that V(@) = I(®) — r(@) for some (I, r) of degree
2. (If A is unital then we recover ® by ® = /(1) = r(1), and (/,r) are given in terms of @
by [(®) = @b, r(w) = @®.) With this understanding, p dp dpp = p(Vp)(Vp)p + pl(p) and
equation (5.5) still makes sense for p € .

Next, recall that if 2 is nonunital and " is the algebra obtained by adding a unit to
A, with canonical homomorphism 7 : A" — C, then Ko(A) = Ker(r, : Ko(2AH) —>K0(<D))
Thus an element of KO(QI) can be represented as p — po with the projections p, po € M, (2A")
satisfying 7. (p) = n.(po) € M,(C). Then the equation

~ N—dee() )2~/ —(noVon)? (proVon)?
(5.6)  <ch([p — po]), 7> = (27i) deg(r/)/Z,?(pe (PeVer)”y _ poe=(PooVer)” oy
gives a well-defined map on Ko ().

5.1. Finitely-generated projective 2-modules. Now suppose that & = &7 @ &~ is Z,-
graded, with &* finitely-generated projective 2-modules. ‘We assume that V preserves the
grading. Put Q" = Homy (&, Q" ®qg &). We assume that 2 = Endy (&) has a holomorphic
functional calculus. For example, it suffices that 2l be a complete locally convex topological

1 0 1 0
algebra.Pute:<0 1>andv:<0 _1>.

Given D € Homy (6", &) and D* € Homg (6, &™), we assume that the spectra of
DD* and D*D are contained in the nonnegative reals. We construct an index projection
following [9] and [23]. Let u € C*(R) be an even function such that w(x) = 1 — x%u(x) is
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a Schwartz function and the Fourier transforms of u and w have compact support [23],
Lemma 2.1. Define i € C* ([0, 00)) by #(x) = u(x?). Put 2 = u(D*D)D*, which we will
think of as a parametrix for D, and put S, =1 — 2D, S_ = I — DZ. Consider the operator

_ (S+ —(I+S+)#7’>’

(5.7) D S

with inverse

(5.8) = <f; @(I;S))

The index projection is defined by

(59) p=17"1 = (53) S*fjgﬁg’).
Put
(5.10) pc.:ezl’:(g ?)
We note that the supertrace Tr, : Endg (&) — /[, ] is given by
(5.11) TrS(M):Tr<e;UMeJ2rU>—Tr<e;UMe;v>
= Tr(pIMI™'p) — Tr(poMpo).
Let us define a new connection on & by
(5.12) v':<e;”z—lovOle;“>+(eg“veg“)
Then by construction,
(5.13) loV' ol = (poVop)+ ((1-p)loVol'(1-p)).
In particular,
(5.14) Tr(pe*(l’ovc’p)zp) = Tr(plefw/)zl*lp).
Also, from (5.12), we have
(5.15) Tr(poefvzpo) = Tr(poe*(vl>2po).

Using (5.11), we see that we can write ch([p — po]) as the Chern character form of a con-
nection on &, namely

(5.16) ch([p — po]) = 2 Tr, (e V).

For future use, we note that (V')" =S, V'S, + 2(I+S_)V D and (V)" =V".
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So far in this section we have been working with algebraic tensor products. If U is a
complete locally convex topological algebra then it is straightforward to extend the state-
ments to the topological setting.

Lemma 9. Suppose that A is a superconnection on &. Then for any closed graded
trace 1 on Homgy (&, Q" ®qy &),

(5.17) <eh([p = po]), 71> = 7i(ch(4)).

Proof. In general, if {A4()},c(o 1 is a smooth 1-parameter family of superconnec-
tions on & then

_ _ o (A - awy?
(5.18) ch(A4(1)) — ch(A4(0)) ,ﬁd[oﬁ]Té<d[ >dt.

Thus it suffices to construct a smooth path in the space of superconnections between V' and
A, for example the linear homotopy 4(¢) = t4 + (1 — )V, O

5.2. Fiber bundles. Let 7: M — B be a fiber bundle with closed even-dimensional
fiber Z. Endow the fiber bundle with a vertical Riemannian metric g’# and a horizontal
distribution T M. Let E be a Hermitian vector bundle on M which is a fiberwise Clifford
bundle, with compatible connection VZ. Let & be the smooth sections of the Z,-graded
vector bundle 7 (E) on B, whose fiber over b is C*(Zy; E|, ).

Take A = C*(B), Q" = Q*(B) and let V* be the natural Hermitian connection on

£ ([2], Proposition 10.10). Let Q" be the subalgebra of Homc-(p) (&, Q" (B) Qc«(p) &)
consisting of elements with a smooth fiberwise integral kernel K(z, w). Put & = Q", a non-
unital algebra if dim(Z) > 0. Given a closed current 7 € Zeyen(B; R), let 77 be the graded

trace on Q" given by 77(K) = [ (fK z,z dvolz)
"

Let D: & — & be the vertical Dirac operator. Define the index projection p € A
as in (5.9). Define e and v as before. Then the index of D is defined to be
Ind(D) = [p — po] € Ko(). The Chern character of Ind(D) pairs with # by (5.6).

Let us note that although pe~(7°V*")’p and poe(70°V°7)’ py may not individually lie in
Q*, their difference does. For example, the component in Q° is

(5.19) S22 S (I+S8.)7 (00 _ S§?2 S (I+S8.)7 '
S D I—S? 0 1 S D -S?

This is related to the fact that the K-theory of a nonunital algebra is defined in terms of the
K-theory of the algebra obtained by adding a unit.

For s > 0, let 4Bt denote the Bismut superconnection on m E.

Proposition 4. (ch(Ind(D)),7) = 7(ch(485™™)).
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Proof. We can homotop from D to sD in the definition of the index projection
without changing the K-theory class and then everywhere change sD to D, to easily reduce
to the case s = 1. Define V' as in (5.12). As in the proof of Lemma 9, we wish to homotop
from V' to AlBismut and then apply (5.18). The only issue is to write things in a way so that
the formal expressions are well-defined.

First, for 7 € [0, 1] put

(V)" D~ )
5.20 A(t) = )
(5.20) (0 ( D (V)
Write
—A(1)? —A(1)?
—Am? _ [ e 11 e 12
(5-21) ¢ <€A(t)221 efA(’)zzz > .

Put

2

(522) ch(A(1)) = 2(Tr(S e 1S,) + Tr(De 0" 2(1 + 5 ) — A1)

1))
Formally, the right-hand-side of (5.22) equals %(Tr(e*”‘mzn) - Tr(e*A(t)zzz)). To see that

the traces in the right-hand-side of (5.22) make sense, let us compute 4(7)*. In an ungraded
notation, we have

(5.23)
A = < ((V)*) +2D*D (V). D+ o((V)* ~ <V'>‘)D*>
— —\2 :
((V)*, D] — (V)" = (V')")D ((V')")" +*DD*

The term in the lower left-hand corner of (5.23) is
(5.24) (V)" D = e((V)" = (V)7)D
=[(V")", D] = tD((V")" = (V')")
=1iV",D] —tD(S,V*'S, +2(I+ S_)V"D-V")

= (S?’V D - DS, V'S,).
Then modulo uniformly smoothing operators,
VY)Y +2DD {(V'), DY+ (V)" — (V)))D*
(5.25) A(1)2E<(( ) (V) ]+(2( )" = (v')) )
0 D[((V)")" +D*D]2

and

~(((V)")*+*D"D) y
(5.26) A0 = (€ A, ,
0 De (V)" )+2D"D)
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where

(521) 7 = [ VD) DY (V) - (V))D7)
0

~(1=u)((V")*+1*DD") 4

e u.

It follows that the right-hand-side of (5.22) is well-defined.
We claim that (ch(Ind(D)),7) = 7(ch(4(0))). To see this, we have
—((V)")?

(8. s S e V(148
De~ (VS D~ Vp(14+58) )

Then

2

(5.29) Tr(pe~7°VP) p _poef@oo%pwzpo) — Tr(S+e*((V/)+)2S+)
+Tr(De )V (145 ) —e V),
from which the claim follows.

Let us note that the terms being traced in (5.22) are in fact uniformly smoothing with
respect to ¢, due to factors of the form S .

We now wish to write the analog of equation (5.18). Although ch(A(z)) is well-
defined, it is not clear in the present setting that the integrand in (5.18) is integrable for
small 7. Let us first do a formal calculation. With respect to (5.20), (5.26) and (5.27), we
have

dA 0 D*
(5.30) V7 <D 0 )
and
dA [ e—(((V)")*+2D"D) x
(5.31) TrS(E < 0 De—((V))42D°D) = -Tr(DZ)

_ m<p E)feu<<<\7/>*>2+’”””([(V'),Dﬂ + (V)" = (v)")D%)

o~ (1=0((V)*+2DD") du).
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Modulo smoothing operators,

1
(5:32) D[ (WIHEPDI(((V) 7, D] 4 (V) = (V') 7) DY )er (177020 gy
0

1 2, 2
Ofe_u((V*) +t2DD )D([(V,)i,D*] + ((V/>+ _ (V’)f)D*)

~(1=u)((V")*+*DD") 4

X e u

e—u((v*)uﬂun*) v, DD*]e—(l—u)((V’)z—HzDD*) dut.

Il
Se—e =

Then

(5.33) Tr(

S

o~ u((V")*+2DD") v, DD*]e—(l—u)((V’)z—o—tzDD*) du)

= Tr([V", DD*Je~ (V) HEDPD)Y — =2 Ty(e~ (V) +2DD7)),
The upshot is that we can write

(534)  ch(A(1)) — ch(4(0))

dA 2 . .
=2d | <Trs<EeA<t> ) 4 71d Tr(e~((V)+1°DD >)> dt,
0,1]

where the integrand in the right-hand-side of (5.34), after the terms are appropri-
ately grouped, is the trace of a smoothing operator that is continuous in ¢ Thus

71(ch(4(0))) = 7(ch(4(1))).

Next, we perform a linear homotopy from A(1) to 4Bmt, As the 0-th order part of

*

D
the formal superconnection argument, using (5.18), that 7(ch(A4(1))) = 7(ch(4P™™)).
This proves the proposition. []

the superconnection always equals < 0 > during this homotopy, it is easy to justify

5.3. Fiber bundles over cross-product groupoids. Using the notation of Section 4, put
A= C”(B,#”), Q" = Q% (B, %), § = Cju.(M;E), W= End{., 3 4oy (Cu(M; E)) and

Q" = Hom&, (5 yo (Co (M E), Q (B, B”) ®c (3 ) Cgo (M; E)).

Define the index projection as in (5.9). Let # be a closed graded trace on Q*(B, #“). Then
we can go through the same steps as in the proof of Proposition 4 to conclude

Theorem 3.

(5.35) (ch(Ind(D)),7) = (A Tr, (o5 (e ), 7).
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We note that we use finite-propagation-speed estimates in order to know that we
can carry out the arguments in Q*. That is, we use the fact that if f € 2(*)(R) is a func-
tion whose Fourier transform £ (k) has exponential decay in || then the Schwartz kernel
f(sQ)(z,w) has exponential decay in d(z, w). In order to obtain uniform decay estimates in
the analog of the last step of Proposition 4, as in [2], Theorem 9.48 we use the fact that in
the n-th order term of the Duhamel expansion of ¢~7, there is always a factor of the form

e’ with r > .
n+1

Putting together Theorems 2 and 3, we obtain

Theorem 4.

(5.36) (ch(Ind(D)),7) = [ A(TF)ch(V)v®,.

If the fiber Z is instead odd-dimensional then one can prove Theorem 4 by a standard
trick involving taking the product with a circle.

Corollary 2. Let o/ be a subalgebra of the reduced cross-product C*-algebra
Co(B) X, T which is stable under the holomorphic functional calculus in Cy(B) <, I and
which contains C* (B, #%). Let n be a closed graded trace on Q" (B, CI") which extends to
give a cyclic cocycle on .o/ . Suppose that TZ is spin and that g™ has fiberwise positive scalar
curvature. Then [ A(TF)v*®, = 0.

M

Proof. Let D be the pure Dirac operator. As # is a closed graded trace on
Q*(B,CI), it gives rise to a cyclic cocycle on C*(B) < I' through its character ([8],
Section IIl.1.x). By assumption, this has an extension n’ to /. Now we have
Ind(D) € K, (Cy(B) », T') = K. (/). Then (5.36) becomes

(5.37) Ind(D),n'> = [ A(TF)v*®,.
M

However, by the Lichnerowicz argument, Ind(D) = 0. The corollary follows. []

Suppose that B=S' with I' acting by orientation-preserving diffeomorphisms.
There is a left action of I' on Q'(B). Let v e Q'(B) be a volume form. Define a closed
graded trace on Q" (B, CI') by

v dogi - v dgog1 - v v
5.38 dgi dg>) = In dln —1n dIn .
( ) 1(faodgy dg2) z!f( dogi - v go v go - U dodi 'U>

Then v*®, is proportionate to the Godbillon-Vey class GV e H*(M;R) ([8], Chapter
II1.6.5, Theorem 17). Furthermore, the hypotheses of Corollary 2 are satisfied ([8], Chapter
IL7.5).

Corollary 3. Suppose that B= S', T acts on B by orientation-preserving diffeomor-
phisms, TZ is spin and g™ has fiberwise positive scalar curvature. Then [ A(TF )GV = 0.
M



Gorokhovsky and Lott, Index theory over étale groupoids 185

In general, if dim(B) = ¢ and the action of I" on B is orientation-preserving then one
can write down a closed graded trace # on Q*(B, CI') so that v*®, is proportionate to the
Godbillon-Vey class GV € H*"!(M;R), and the above results extend.

6. Etale groupoids

In this section we generalize the results of the previous sections from cross-product
groupoids to general smooth Hausdorff étale groupoids. In Subsection 6.1 we explain in
detail how, in the case of cross-product groupoids, the expressions of this section specialize
to the expressions of the previous sections.

We follow the groupoid conventions of [8], Sections II.5 and I11.2.0. Let G be a smooth
Hausdorff groupoid, with units G”. We suppose that G is étale, i.e. that the range map
r: G — G and the source map s : G — G\ are local diffeomorphisms. To construct the
product of y,, 7, € G, we must have s(y,) = r(y;). Then r(yyy;) = r(y,) and s(yyy,) = s(y;).
Given x € G put G¥ = r~!(x), Gy = 57! (x) and G¥ = G* N G,.

Given fy, fi € C(G), the convolution product is

(6.1) (fo1)() = > Jo(ro)/i(r):

Y"1 =7
The sum in (6.1) is finite.

We write G for the n-chains of composable elements of G, i.e.

(6.2) G ={(y1,....7) € G s(p) =r(7a), - 8(r1) = (7))}

As G is étale, G" is a manifold of the same dimension as G. As in [8], Section II1.2.5,
we define a double complex by letting Q’""(G) be the quotient of QQ”(G“’“)) by the
forms which are supported on {(y,...,7,) : 7; is a unit for some j > 0}. The product of
w; € Q" (G) and w, € Q7™ (G) is given by

(63) (WIWZ)(J’Ov--an]+n2) = Z wl(VOv"'vYnl—lvy) /\w2<y/7yn1+17"'7yn1+n2)
7Y'=7n,

- ((_1)”11 Z 601(777//,3’17---;%171)

7=

-2
+ (=" 3 010, 7Y s V2 V1)
7=

++ Z wl(Voa‘uyszaV,V/))
VY =T -1

A wz(ynlv R yn1+n2)'

In forming the wedge product in (6.3), the maps r and s are used to identify cotangent
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spaces. The first differential d; on Q>*(G) is the de Rham differential. To define the second
differential d,, let y ;0 € C*(G) be the characteristic function for the units. Then

(64) (dzw)(ym ) yn-H) - XG(O)(yO)w(ylv s 7yn)'
We let Q7 (G) denote the GDA formed by the total complex of Q>*(G).

Let P be a smooth G-manifold ([8], Section I1.10., Definition 1). That is, first of all,
there is a submersion 7 : P — G, Given x € G\, we write Z, = n~!(x). Putting

(65) P X0 G = {(P,V) ePxG:pe Zr(y)}v

we must also have a map P X0 G — P, denoted (p,y) — py, such that py e Zy,) and
(py1)y2 = p(y17,) for all (y,,7,) € GA. It follows that for each y € G, the map p — py
gives a diffeomorphism from Z,,) to Zy,). The groupoid ¢ = P > G has underlying space
P X¢o G, units ¥ = P and maps r(p,y) = p and s(p, y) = py.

We assume that P is a proper G-manifold, i.e. that the map P xs0 G — P x P given
by (p,y) — (p,py) is proper. Then ¥ =P > G is a proper groupoid, i.e. the map
4 — 40 x 4 given by y — (r(y),s(y)) is proper ([8], Section II.10.«, Definition 2). We
also assume that G acts cocompactly on P, i.e. that the quotient of P by the equiva-
lence relation (p ~ p’ if p = p’y for some y € G) is compact. Equivalently, ¥ = P X G is
a cocompact groupoid, i.e. the quotient of %) by the equivalence relation (x ~ x' if
(x,x") = (r(y),s(y)) for some y € %) is compact. Finally, we assume that G acts freely on P,
i.e. that the preimage of the diagonal in P x P under the map P x50 G — P x P equals
P xgo G, Equivalently, 4 = P < G is a free groupoid, i.e. the preimage of the diagonal
in 99 x % under the map (r,s) : ¥ — % x 9 equals ¥,

Now let ¢ be any proper cocompact étale groupoid. The product
CX(%) x (%) — 7 (%)
is given explicitly by

(6.6) (fF)(x) = X fF(s(7))-

yeg”
We wish to define a connection
(6.7) ver s G (40) - O1(@) @ce ) €7 (6).
To do so, we use isomorphisms
Q(9) Qcr(4) C(9) = Q(9) and QX' (%) ® ) CF(9) = CF(9)/C2(4).

The latter isomorphism is realized by saying that the image of » ® F in C*(%)/C*(%4")
is given by

(6.8) (@F)(70) = > oy, 7 )F(s(3y)) — X @(y0,7)F (5())

7= ye%sto)

for y, ¢ %) Then with this isomorphism, the multiplication
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(69) CX(9) x (Q)(#) @cug) €7 (47)) — QL (9) Q) (9,

c

i.e. the multiplication

& (9) & (9)

(6.10) Cr(9) x o () — (60
is given by
(6.11) fF) )= X fOMFG) = fn) X )f(V)

7'=70 yEY 3o
for y, ¢ 9.

More generally, there is an isomorphism between Q" (%) ®c=(¢) ch({g(o)) and the
quotient of Q" (%") by the forms which are supported on

{(os- -+ 7u-1) : 7; is a unit for some j = 0},

under which the image of w ® F is given by

(6.12)  (@F)(Yos-- s 7n1) = 22 @7 7155 Vue1)VF (5(71))

'=%
- Z w(y07 Vs ylv Y2y 7yn71)F(S(yn71))
”'=n
_'_.”_'_(_1)71*1 Z w(y07"'7yn727y7 yl)F(S(anl))
7Y =Vn-1
+ (_1)’1 Z w(y07'--7yn—lvy>F(S(y))
yegs(yn—l)
fOI' Y05+ Vn—1 ¢ g(())
Now let 1 e C*(%9") satisfy
(6.13) > h(s(y) =1
yeg”
for all x € 49, Then there is a connection
(6.14) ver = v g vo!

on C* (%) where V'°(F) e Q! (%) is the de Rham differential of F e C*(%") and
VOI(F) € Q1 (#) @ g) G (9) = € (%) /C (%) s given by

(6.15) (VO’I(F))(VO) = F(V(Vo))h(s(yo))

for yo ¢ 9.
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One sees that
(Ve™)? € Homey () (G (9, QA(9) @ci ) €2 (97))

acts on C*(%") as left multiplication by a 2-form ® which commutes with C*(%).
Explicitly, ® = ! + ®%2 where

(6.16) O (70, 71) = —x50 (2071)d* RM*™h(s(py))

and

(6.17) O (39,711 72) = =20 (2o7172)h (s(20) ) A (s(71))

for y,,7, ¢ 4. Put
(6.18) ch(VE™) = 7 € End: 4) (R (%) @ () C7 (%))

Then the abelianization of ch(V") is closed and its cohomology class is independent of the
choice of 4.

Now suppose that G acts properly and cocompactly on P. Give P a G-invariant
fiberwise Riemannian metric. An element K of Endc« (g (C“’( )) has a Schwartz kernel
K(p|p") with respect to its fiberwise action, so that we can write

(6.19) (KF)(p) = ZJ K(plp")F(p')dvolz,,
(p)

Let End¢, g 1(C(P)) denote the subalgebra of End¢ () (C.”(P)) consisting of elements
with a smooth integral kernel.

Let ¢ € C*(P) satisfy

(6.20) > #lpy) =1

yeGrp)

for all p e P. Define a trace Tr¢., on End., ) (C(P)) by

(6.21) Treey (K)(7) = f¢ P|P)dVOIZ )

)

G- (G)

4

and is concentrated at the units.
[CX(G), C(G)]

for y, € GV). Then Tr,, takes value in
Put
(6.22) G"xs P={(yps-+-+7y_1,P) EG" X P: PEZy,, 1)}

There is an isomorphism, as in (6.12), between Q"(G) ®c» () C. (P) and the quotient of
Q/"(G" x4 P) by the forms which are supported on



Gorokhovsky and Lott, Index theory over étale groupoids 189
(6.23) {(os- -+ 7u_1>p) 7 is @ unit for some j = 0}.

Consider the Z-graded algebra
(6.24) Hom¢, ) (C°(P), Q:(G) ®cx () C (P))

consisting of elements K of Homc-(g)(C”(P), Q2 (G) ®cx(g) C.°(P)) with a smooth inte-
gral kernel. Using the above isomorphism, the kernel of an element K can be written in the
form

(625) K(yO? R yn717p|p/) € Am(Tr?Vo)G(O))

where (9,37, 1,0) € G" Xs P, 795,71 ¢ G, and p’ e Z,(,,)- The action of K on
C¥(P) is given by

(626) (KF)(]/O, cee 7%,,71,]7) = J K(VO? ) ynflap‘p/)F(p/) dVOlZ,-(,:O)

Zry)

for 7, ..., 7,1 ¢ G, Then there is a trace

given by

(6.28)  Treey(K)(Voy-- -+ n)
=60 (7o 7)) | #(p)

260 70) X KOs vuets 220 D)
PV =V

-1
—260(0) > K1 s Va7 () | D)
77 =Vt

-1
+ XGo) (Vo) Z K(ylv e =3 Vs yl7 ynfbp(yn) ‘ p)
V7 =Vn2

+o (_1>n71%G(0)(y0) Z K(V? y/v Y2y ynflvl)(yn)il ‘p)
'=p

+ (_l)nK(yOv cee 7y11717p(yn)71 |p) dVOer(”/o)'

Let L be a topological space which is the total space of a fiber bundle ¢ : L — G©.
We suppose that each fiber L, = ¢~ !(x) is a complete length space with metric d,. We
also assume that G acts isometrically, properly and cocompactly on L. Leti: G — L be a
G-equivariant map, not necessarily continuous. That is, for each x € G, i sends Gy to Ly
and for each Y€ G, the composite map G, NR Gy(y) 5 Ly, equals the composite map
Gy 4 Ly A Ly,). We assume that i is proper in the sense that the preimage of a com-
pact set has compact closure. Note that i gives a possibly-discontinuous section of . We
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assume in addition that for any compact subset K of G\, i(K) has compact closure. Define
a “length function” on G by

(6.29) I(y) = dy) (i(s(7)), (7)),

where we think of y and s(y) € G as living in Gy,). Then I(yyy,) < I(yy) + [(7,). Further-
more, for each x € G, the restriction of / to Gy 1s proper

Let C;;(G) be the set of f e C*(G) such that
1. s*f has support in some compact subset K of G, and,
2. forallge 7™,

(6.30) sup sup ¢?0)[£(y)| < oo,
xeK yeG,

along with the analogous property for derivatives. Then C°(G) is an algebra with the
same formal multiplication as in (6.1), and is independent of the choices of L and i; com-

pare [20], Proposition 3. We define Q/ (G) similarly. That is, first define 5, on G"*!) by
500 -+ 70) = S(7,). Let Q"™"(G) be the elements w of Q" (G"*!) such that

1. s’ has support in some compact subset K of G, and,
2. forallge Z*,

(631) sup sup eq(l<7())+..<+l(yn))

C()(yo,.. "yn)| < o0,

along with the analogous property for derivatives. Let Q7 (G) be the quotient of Q™"(G)
by the forms which are supported on {(yy,.--,7,) : 7; is a unit for some j > 0}. Then
Q) (G) is a GDA, with the same formal multiplication as in (6.3).

Suppose now that G acts properly and cocompactly on P as before. Put
(6.32) Co (P) = C(G) ®cx(g) € (P).

Using the cocompactness of the G-action on P, the elements of C.°(P) can be characterized
as elements F € C*(P) such that for any x € G, p e Z, and g € Z*, we have

(6.33) sup e F(z)] < oo,
ze”Z,

w

be the subalgebra of Endcx (g (C “(P)) consisting of elements K with a smooth integral
kernel K(z,w). Then the elements of End(. ) (Co(P)) can be characterized as the G-
invariant elements K(z|w) € C* (P xg0) P) such that for any x e G and g € Z*,

along with the analogous property for the covariant derivatives of F. Let End‘g’x @) (C°C‘ (P))

(6.34) sup e?EW|K(z|w)| < oo,

z,WweZy
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along with the analogous property for the covariant derivatives of K. With the natural

definition of Homg. g (Ciy (P),Q;(G) ®cz(g) iy (P)), an element K has a kernel as
in (6.25). The formula (6.21) extends to a trace Tr, : Endg“(ff((;) = o CG“’ (CGO)O o The
formula (6.28) extends to a trace (€5 (0), €5 ()]

(6.35)  Treey : Homg, ) (Coy (P), Q25,(G) B¢z (6) Coy (P)) — Q0,(G)

If £ is a Z,-graded G-invariant Hermitian vector bundle on P, with an invariant
Hermitian connection, then we can define C; (P; E) and a supertrace

(636) T, oy : HomZ, 6, (C2 (P E), Q(G) ®cy () CL (P E)) — Q(G)yy

We now choose a G-invariant vertical Riemannian metric g’# on the submersion
n:P— G% and a G-invariant horizontal distribution 7% P. Suppose that Z is even-
dimensional. Let E be a [-invariant Clifford bundle on P which is equipped with a G-
invariant connection. For simplicity of notation, we asssume that E=S7®V, where S¥
is a vertical spinor bundle and ¥V is an auxiliary vector bundle on P. More precisely, sup-
pose that the vertical tangent bundle 7Z has a spin structure. Let S# be the vertical spinor
bundle, a G-invariant Z,-graded Hermitian vector bundle on P. Let ¥ be another G-
invariant Z,-graded Hermitian vector bundle on P which is equipped with a G-invariant
Hermitian connection. Then we put £ = SZ @ V. The case of general G-invariant Clifford
bundles E can be treated in a way completely analogous to what follows.

Let QO denote the vertical Dirac-type operator acting on C(P; E). From finite-
propagation-speed estimates as in [20], Pf. of Prop. 8, along with the bounded geometry of
{Z\}cqo, for any s > 0 we have

(6.37) ¢™% € Endg, ) (CZ (P E)).
Let
(6.38) AP CE(PE) = Q1(GY) ®ci oy CF (P E)

denote the Bismut superconnection on the submersion 7 : P — G ([2], Proposition 10.15).
It is of the form

(6.39) ABISmUt — 50 v %SC(T)

where V" is a certain Hermitian connection and ¢(7') is Clifford multiplication by the cur-
vature 2-form T of the horizontal distribution 7% P. We also denote by

(6.40) ABsmut co(p, E)— Q,(G) ®cx ) C,) (P E)
its extension to C.°(P; E) One can use finite-propagation-speed estimates, along with the

bounded geometry of {Z,}, o and the Duhamel expansion as in [2], Theorem 9.48, to
show that we obtain a well-defined element e~(4™™)’,
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We now couple 4B5m to the connection V" in order to obtain a superconnection
(6.41) Ay CF(PE) — Q) (G) ®cx () Cof (P E).

Let # be the rescaling operator on Q"(G),,, which ngultlphes an element of Q%*(G),, by
(27) . Doing a Duhamel expansion around ¢~(""™)" and using the fact that 4 has com-
pact support, we can define

(6.42) e e HomZ, 4 (C (P E), Q},(G) ®cx () Cf (P; E))

and hence also define # Tr;, <e>(e’sz ) € Q; (G),,- From the superconnection formalism ([2],

Chapter 1.4), 2 Tty (05 (e” A7) is closed and its cohomology class is independent 9f s > 0; see
[14], Theorem 3.1 for a detailed proof in the analogous case of 2 Try(e~ (4",

The proof of the next theorem is analogous to that of Theorem 2.

Theorem 5.

(6.43)  lim ATty o5 (€ 8) = [ §(2)A(VT?) ch(V7) ch(VE) € Q7 (G),.
§— A

Let us note that the right-hand-side of (6.43) pairs with closed graded traces on Q’(G),
and not just closed graded traces on Q (G). Let 5 be a closed graded trace on Q. (G).

Let EG denote the bar construction of a universal space on which G acts freely. That
is, EG is the geometric realization of a simplicial manifold given by E,G = G, with face
maps

(yl7"'7y) 1fl:07
6.44 di(ygs -7 :{ " . .
(644) (o ) (Yos--->VictVise--svn) 1 ZiZm

and degeneracy maps

(645) Si(VOa"'vyn):(VO?"';yiv17yi+17'-'yn)7 Oélén

Here 1 denotes a unit. The action of G on EG is induced from the action on E, G given
by (Vo5 70)7 = (Yo, ---,7n7)- Let BG be the quotient space. Let 7 : EG — G(© be the
map induced from the maps E,G — G given by (yy,...,7,) — s(3,). Let J € C(EG) be
the “barycentric coordinate” corresponding to the units G) = E;G. That is, for each
xe G n7!(x) is a simplicial complex and J| () 18 the function on 7 (x) defined as
in [20], (94), with respect to the vertex x instead of the vertex e. Then for all p € EG,

> J (py) = 1. Let V'™ be the connection constructed as in (6.14), using J in place of
yeGrr
h. Then pairing ch(V""") with #, we construct an element ®, e HI(BG).

Put M = P/G, a compact manifold. It inherits a foliation F from the submersion
n:P— G, Let v: M — BG be the classifying map for the G-action on M. Put
V' = V/G@, a vector bundle on M. By naturality,

(6.46) < [ $(2)A(VTZ) ch(V") ch(Ve™), > [ A h(V)v®,.

As in the proof of Theorem 4, we obtain
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Theorem 6. Let 1 be a closed graded trace on Q. (G). Then

(6.47) (ch(Ind(D)),7) = [ A(TF)ch(V)v'®,.

Remark. Theorem 6 also follows from [8], Section III.7.y, Theorem 12.

Corollary 4. Let M" be a compact manifold with a codimension-q foliation . Let
V be a vector bundle on M and let D be a leafwise Dirac-type operator coupled to V. Let
H*(Tr %) denote the Haefliger cohomology of (M, ) ([13]). Recall that there is a linear
map [ :H*(M) — H"""(Tr ). Let n be a holonomy-invariant closed transverse current.
F

Then'

(6.48) (ch(Ind(D)),7) = < iA(Tf)ch(V),iy>.

Proof. Let # be the holonomy groupoid of %, with source and range maps
Syt A — M [8], Section I1.8.a. Let T be a complete transversal for #. That is, T'is a ¢-
dimensional submanifold of M, not necessarily connected, which is transverse to % and has
the property that every leaf of (M, %) intersects T. Put G = r,,}(T) N5} (T), the reduced
holonomy groupoid. That is, an element of G is an equivalence class of smooth leafwise
paths in M from T to T, where two paths are equivalent if they have the same endpoints
and the same holonomy. The units are G*) = T'.

Put P = 5,,/(T). Define 7 : P — G to be the restriction of s, to P. Then for x € T,
7~ !(x) is the holonomy cover of the leaf through x, which we give the induced Riemannian
metric. One can see that G acts freely, properly and cocompactly on P.

Put L =P,c=mand leti: G — L be the inclusion from r},!(T) ns;,' (T) to s,/ (T).
It is easy to check that (L, o, ) satisfies the requirements to define Q) (G). Then # defines a
closed graded trace on Q (G). The right-hand-side of (6.47) becomes the right-hand-side of
(6.48). O

Remark. In order to prove Corollary 4, we do not have to assume that the hol-
onomy groupoid is Hausdorff. This is because the pairing with the transverse current #
amounts to an integration over G\*) = T. Because of this we are effectively dealing with
forms of the type Q;°(G), and so the Hausdorffness of G does not play a role.

Remark. To see the relationship between Corollary 4 and Connes’ index theorem for
a foliation with a holonomy-invariant transverse measure x ([8], Section 1.5.y, Theorem 7),
let RS € H,_,(M; R) denote the Ruelle-Sullivan current associated to u ([8], Section 1.5.5).
Then < [ A(TF) ch(V),,u> = (A(TF)ch(V),RS).

F

Remark. In some cases of foliations, a heat equation proof of Corollary 4, using the
Bismut superconnection, was given in [15].

Corollary 5. Let o/ be a subalgebra of the reduced groupoid C*-algebra C;(G)
which is stable under the holomorphic functional calculus in C(G) and which contains
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C>X(G). Let i be a closed graded trace on Q. (G) which extends to give a cyclic cocycle on
</. Suppose that TZ is spin and that g% has fiberwise positive scalar curvature. Then
[ A(TF)vd, =0.

M

Suppose that dim(G(?) = 1, with G acting on G'*) so as to preserve orientation. Let
ve Q' (G) be a volume form. With a hopefully-clear notation, define a closed graded
trace on Q' (G), concentrated on Q*%(G), by

v YoV1 -V YoV1 "V v
6.49) nlw)= (Yo, V1,7 (ln dln —In dIn )
( ) (@) j (o, 1:72) YoV1 -V Yo U YoV Yo¥1 "V

Yo7, €GO
Then v*®, is proportionate to the Godbillon-Vey class GV e H*(M;R) ([8], Chapter
II1.6.y, Theorem 17). Furthermore, the hypotheses of Corollary 5 are satisfied ([8], Chapter
L7.5).

Corollary 6. Suppose that dim(G'*) = 1, G acts on G so as to preserve orientation,
TZ is spin and g™ has fiberwise positive scalar curvature. Then [ A(TF)GV = 0.
M

In general, if dim(G(?)) = ¢ and the action of G on G'”) is orientation-preserving then
one can write down a closed graded trace # on Q’(G) so that v*®, is proportionate to the
Godbillon-Vey class GV € H*!(M; R), and the above results extend.

Corollary 7. Let M be a compact manifold with a codimension-q foliation . We
assume that the foliation is tranversally orientable and that T F is spin. We also assume that
the holonomy groupoid of the foliation is Hausdorff. Let g7 be a leafwise metric on (M, F).
If g7 has positive scalar curvature on the leaves then | A (TF)GV =0.

M

Proof. Let T be a complete transversal for #. Let G be the reduced holonomy
groupoid. Then the corollary is an application of Theorem 6. []

Remark. Corollary 7 also follows from [8], Section I11.7.53, Corollary 10.

6.1. Translation. In this subsection we show how the results of Section 6 specialize
to those of Section 3, in the case when the groupoid comes from the action of I on B. We
use the notation of Section 3.

We put G = B x T, with G) = B, r(b,y) = b and s(b,y) = by. A form

(6.50) > Ng.g,90dg1 ... dg, € Q°(B,CI)

~~~~~
9055 9n

gets translated to the form w € Q*(G) given by

(651) w((b()v gO)? ) (bmgn)) = Ngo..... g (bO)
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Then the product (6.3) is equivalent to the calculation

(6.52) (< > My gn90 dgl...dgn> . ( >0 My g 90491 ...dg,g,))(b)
gos---39n "

0
9o 90

= > Nyor o (17)17(;(,)7__._’\44 (bgjy---gn)godyg: .. .dgn g, dgy - .. dg,,
gO~,--~-,gnvg()7-“-,g//

n

= X a0 Oy (Bdo- - gu)

G0seesGns GG’

lgodgr . ..d(gng}) dgy - .. dg,,

44 (—l)ngogl dg; .. .dgndg().- -dg,/ﬂ]'

The differential d, given by

(653) d( Z ng() ------ ngo dg] te dg”) = 2 (dde Rhamng(),...;gn)go dgl .. -dgn
49o,---

+ (=0 my, . 1dgody .. . dg,

9os--39n

becomes the sum of d; and the differential d, of (6.4).

Take P = M. Then % = M x I'. The product (6.6) becomes

(6.54) ((S9)F)0) =S 100

We illustrate the right-hand-side of (6.54) by the diagram p < pg. Equation (6.8) is the
translation of

(655) < ngmglgo dg1>F: ( ZQO dgl(gogl)il 'f90~91>F

go, 91 go, 91

= ( S [d(gogr) — dgo 1](g0g1) ™" ~fyo,gl> - F

90,91

= 3 d(g091)((9091) " fop.00 ) F

g4o, 91
- Z ng(gal 'fgo,gl)(gl 'F)
9o, 91
= Y dg(g7" fug)F =X dg(g™" - fy.9)(g" - F),
gog1=9 9.9’

or
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(6.56) (( > Joo.a190 dgl>F> (p)

9o, 91

= Y dgfy.q(pg " VF(p) — X dgfy.q(pg " )F(pg').

gog1=9 9,9’

We illustrate the right-hand-side of (6.56) by the diagrams pg~' L pgr' & p and
pg~! ’a p L pg’. Equation (6.11) is the translation of

(6.57) <%3fgg) (%) dg’%f) = fy9dg' Fy

9.9’

=Y gdg' ((99)" 1) Fy

9.9’

= Y[d(gg") — dgg')((99") " -1i)

=3 dl99")((99") ™" 1) Zy = 3 dala™" S)lg" - Ty)
or

659 ((S9) (g:dg’%r))<p>: 5> dao £y (095" ) 7 (9)

99'=9go

—>dg - fy(pg ") Fy(pg').

!

1

We illustrate the right-hand-side of (6.58) by the diagrams pg, ! ip(g’)f i’p and

pg~! & p & pg’. Equation (6.12) is the translation of

(6.59) (ny,..490dg1 .. .dg,)F
= [d(gog1) - - - dgn — dgo d(g192) - - - dgn
4o (=D" gy . d(gu1g) + (=1)"dgo . . . dgn_19y]

-1
((gO"'gn) .}7‘(]07,,,,gn)F
= [d(gog1) - . .dgn — dgo d(g192) - . . dgn

+(=1)"dgo-..dga1((90---gn1)"" yy...y) (gn - F).

Equation (6.15) is the translation of

(6.60)  (VOUF)(p) = (z dgh(g~" -F>) (p) = X dgh(p)F(pg ™).
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We illustrate the right-hand-side of (6.60) by the diagram pg~! & p. Equations (6.16) and

(6.17) are the translations of (2.39). Equation (6.21) is the translation of (3.12). Equation
(6.28) is the translation of

(6.61)  Trey(K)(D)

S g dgl)QO( J 600K, ) dVOle(W)>

90591, gr € go--gi=e

= > [dgi ...d(gig0) —dgi - . .d(gi-191) dgo

94091591 € go--gi €y

ot (=) d(g192) - . . dgi dgo + (1) g1 dgs . . . dgo)]

( T H00Ks o' ) avolz () ).

Choose a finite generating set for I'. Let 4 be the corresponding Cayley graph, on
which I' acts on the right by isometries. If B is compact, put L=Bx %. Leti: G — L
be the natural inclusion B x I' — B x €. (In this case, the requirements on L and 7 are
satisfied because I is finitely-generated.) Then C°(G) = C* (B, #%), Q. (G) = Q" (B, #°)
and CZ(P) = C%.(M).

We have EG = ET x B. If py : ET x B — ET is the projection map then J = p;(j).
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