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Local index theory over étale groupoids

By Alexander Gorokhovsky and John Lott at Ann Arbor

Abstract. We give a superconnection proof of Connes’ index theorem for proper
cocompact actions of étale groupoids. This includes Connes’ general foliation index theo-
rem for foliations with Hausdor¤ holonomy groupoid.

1. Introduction

This paper is concerned with a families index theorem in which the family of oper-
ators is parametrized by a noncommutative space which comes from a smooth Hausdor¤
étale groupoid G. The relevant index theorem was stated by Connes in [8], Section III.7.g,
Theorem 12. We give a superconnection proof of Connes’ theorem. The desirability of
having such a proof was mentioned in [6]. In the case of a foliation, by taking a complete
transversal, one recovers Connes’ general foliation index theorem for a foliation whose
holonomy groupoid is Hausdor¤. For the history and significance of Connes’ foliation in-
dex theorem we refer to [8], Sections I.5, II.8–9 and III.6–7, along with the references cited
therein.

For concreteness, let us first discuss the case when G is the cross-product groupoid
coming from the action of a finitely-generated discrete group G on a smooth manifold B.
In this case the geometric setup for the index theorem consists of a manifold M̂M on which

G acts, and a submersion p : M̂M ! B which is G-equivariant. In addition, we assume that
the action of G on M̂M is free, properly discontinuous and cocompact. Put M ¼ M̂M=G, a
compact manifold. (A relevant example is when M̂M ¼ R� S1, B ¼ S1 and G ¼ Z, with the
action of n A Z on ðr; eiyÞ A R� S1 given by n � ðr; eiyÞ ¼ ðrþ n; eiðyþnaÞÞ for some a A R.
Then M ¼ T 2.)

There is a quotient map M ! B=G, which will be the intuitive setting for our families
index theorem. In general B=G is highly singular and, following Connes, we will treat it as
a ‘‘noncommutative space’’ B. We will give a superconnection proof of a families index
theorem in such a setting.
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Let us consider two special cases. If G ¼ feg then we just have a submersion M ! B

with M compact. In this case, the relevant index theorem is the Atiyah-Singer families
index theorem [1], for which a superconnection proof was given by Bismut [3]. At the other
extreme, if B is a point then we just have a covering space M̂M !M of a compact manifold
M. In this case the relevant index theorem is due to Miscenko-Fomenko [22] and Connes-
Moscovici [9], and a superconnection proof was given by the second author [20]. To some
degree, the present paper combines the superconnection proofs of these two special cases in
order to deal with general G and B. However, there are some new features, which we will
emphasize.

One motivation for giving a superconnection proof of Connes’ theorem is that the
superconnection formalism gives a somewhat canonical proof. In particular, it expresses
the Chern character of the index as an explicit di¤erential form. This is one of the reasons
that the superconnection formalism allows extensions to the case of manifolds with
boundary. When G ¼ feg, this is due to Bismut-Cheeger [4]. When B is a point, it is due
to the second author [21] and Leichtnam-Piazza [17]. Based on the present paper, it should
be possible to extend Connes’ index theorem to manifolds-with-boundary. In particular,
this would give an index theorem for a foliated manifold-with-boundary if the foliation is
transverse to the boundary.

We now describe in some detail Connes’ index theorem and the superconnection
approach to its proof. Before setting up the superconnection formalism, we must first
describe what we mean by functions and di¤erential forms on the noncommutative base
space B. There is a clear choice for a class of ‘‘smooth functions’’ on B, namely the alge-
braic cross-product Cy

c ðBÞcG. The choice of ‘‘di¤erential forms’’ on B is dictated by two
facts. First, if G ¼ feg, i.e. in the commutative situation, we want to recover the smooth
compactly-supported di¤erential forms W�c ðBÞ. Second, the choice should extend to general
smooth Hausdor¤ étale groupoids G. This dictates that we should take the di¤erential
forms to be elements of W�ðB;CGÞ ¼ W�c ðBÞ n̂nW�ðCGÞ, where W�ðCGÞ is the graded dif-
ferential algebra of noncommutative forms on CG ([19], Section 2.6), and the product in
W�ðB;CGÞ takes into account that G acts on W�c ðBÞ.

Given these choices, we need to know that the ensuing ‘‘homology’’ of B is su‰-
ciently rich. This is shown in the following theorem. Let GT�;hei denote the complex of
graded traces on W�ðB;CGÞ that are concentrated at the identity conjugacy class in G.
(Only these graded traces will be relevant for the paper.) We let C�ðBÞ denote the currents
on B and we let C�ðGÞ denote a certain complex of di¤erential forms on EG, described in
(2.49).

Theorem 1. The homology of GT�;hei is isomorphic to the homology of the total com-

plex of the double complex
��
ClC�ðGÞ

�
nC�ðBÞ

�G
:

In particular, if h is a closed graded n-trace on W�ðB;CGÞ, concentrated at the identity
conjugacy class, then we obtain a corresponding cohomology class

Fh A HnþdimðBÞþ2Z
t

�
ðEG� BÞ=G;R

�
;

where the 2Z denotes an even-odd grading and the t denotes a twisting by the orientation
bundle of B. This shows our choice of di¤erential forms gives the ‘‘right’’ answer, as
ðEG� BÞ=G is the classifying space BG for the groupoid G; compare the cyclic cohomology
calculations in [6], [8], Section III.2.d, [10], [11].
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For analytic reasons arising from finite propagation speed estimates, we introduce a
slightly larger space of di¤erential forms. Let k � k be a word-length metric on G and put

Bo ¼
�P

g AG
cgg : jcgj decays faster than any exponential in kgk

�
:ð1:1Þ

Put CyðB;BoÞ ¼ BonCG

�
Cy
c ðBÞcG

�
. It contains Cy

c ðBÞcG as a dense subset. There
is a corresponding space of di¤erential forms W�ðB;BoÞ, defined in (3.30).

Let us now state Connes’ index theorem. Let M̂M and M be as above. The G-covering
M̂M !M is classified by a G-equivariant continuous map m : M̂M ! EG, defined up to G-
homotopy. Let n̂n : M̂M ! EG� B be ðm; pÞ and let n : M ! ðEG� BÞ=G be the G-quotient
of n̂n, a classifying map for the action of the groupoid G on M̂M.

Let Z denote a fiber of the submersion p : M̂M ! B and let TZ denote the vertical
tangent bundle, a G-invariant vector bundle on M̂M. There is a foliation F on M whose
leaves are the images of the fibers Z under p. The tangent bundle to the foliation is
TF ¼ ðTZÞ=G, a vector bundle on M. Choose a smooth G-invariant vertical Riemannian
metric gTZ on M̂M. Assume that TZ has a G-invariant spin structure, with corresponding
spinor bundle SZ. Let V̂V be a G-invariant vector bundle on M̂M, with G-invariant Her-
mitian connection ‘V̂V . Put V ¼ V̂V=G, a vector bundle on M, and put ÊE ¼ SZ n V̂V .

There is an ensuing G-invariant family D of Dirac-type operators which act fiberwise
on Cy

c ðM̂M; ÊEÞ. Equivalently, the family D is G-invariant. Let IndðDÞ denote the index of
this family; we will say more about it later. Let h be a closed graded trace on W�ðB;BoÞ
which is concentrated at the identity conjugacy class. In particular, h restricts to a closed
graded trace on W�ðB;CGÞ. In this situation, Connes’ index theorem ([8], Section III.7.g,
Theorem 12) becomes the statement that�

ch
�
IndðDÞ

�
; h
�
¼
Ð
M

ÂAðTFÞ chðVÞn�Fh:ð1:2Þ

As mentioned before, special cases of Connes’ index theorem are the Atiyah-Singer families
index theorem and the covering-space index theorem.

The goal of the paper is to give a superconnection proof of (1.2). A key ingredient will
be the CG-vector bundle E ¼ ðM̂M � CGÞ=G on M, where G acts diagonally on M̂M � CG. By
construction, CyðM;EÞGCy

c ðM̂MÞ. The natural flat connection ‘1;0 on E sends f A Cy
c ðM̂MÞ

to df . An important part of our proof is a certain di¤erentiation

‘0;1 : Cy
c ðM̂MÞ ! W1ðCGÞnCG C

y
c ðM̂MÞð1:3Þ

in the ‘‘noncommutative’’ directions. The explicit formula for ‘0;1 is given in Section 2.
The sum of ‘1;0 and ‘0;1 is a nonflat connection

‘can : Cy
c ðM̂MÞ ! W1ðM̂M;CGÞnCy

c ðM̂MÞcG C
y
c ðM̂MÞ:ð1:4Þ

Choose a G-invariant horizontal distribution THM̂M on M̂M. Suppose that Z is even-
dimensional. For s > 0, there is an ensuing Bismut superconnection ABismut

s on the sub-
mersion M̂M ! B ([2], Section 10.3, [3], Section IIIa). Our noncommutative superconnection
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is simply As ¼ ABismut
s þ ‘0;1. Let W�ðB;BoÞab be the quotient of W�ðB;BoÞ by the closure

of its graded commutator. We show that the Chern character Trs;heiðe�A
2
s Þ of the super-

connection As is well-defined in W�ðB;BoÞab. It is a closed form and its cohomology class is
independent of s. The next result gives its s! 0 limit.

Let f A Cy
c ðM̂MÞ be such that

P
g AG

g � f ¼ 1. Let R be the rescaling operator on

WevenðB;BoÞab which multiplies an element of W2kðB;BoÞab by ð2piÞ�k.

Theorem 2.

lim
s!0

RTrs;heiðe�A
2
s Þ ¼

Ð
Z

fÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ A W�ðB;BoÞab:ð1:5Þ

The proof of Theorem 2 is by local index theory techniques.

In order to prove (1.2), it remains to relate hTrs;heiðe�A
2
s Þ; hi to

�
ch
�
IndðDÞ

�
; h
�
.

Let C0ðBÞcr G be the reduced cross-product C �-algebra. A technical problem is that the
Dirac-type operator D, when considered as an operator on a C0ðBÞcr G-Hilbert module,
may not have closed range. This problem also arises in the superconnection proof of the
families index theorem [3]. Recall that in the families index theorem, a special case is when
the kernels and the cokernels of the fiberwise operators form vector bundles on the base. In
this case, one defines the analytic index to be the di¤erence of these two vector bundles, as
an element of the K-theory of the base. If the kernels and the cokernels do not form vector
bundles then one can deform the fiberwise operators in order to reduce oneself to the case
in which they do [1].

In order to carry out this deformation argument at the level of superconnection
Chern characters requires a pseudodi¤erential operator calculus ([3], Section 2d). In our
context one can set up such a calculus for a class of operators on C0ðBÞcr G-vector
bundles. However, this would not be enough for our purposes, as we would need such a
calculus for operators on CyðB;BoÞ-vector bundles. There seem to be serious problems in
constructing such a calculus, as CyðB;BoÞ is generally not closed under the holomorphic
functional calculus in C0ðBÞcr G.

To get around this problem, we use a method which seems to be new even in the case
of the families index theorem. The idea, which is due to Nistor [25], is to define IndðDÞ to
be the K-theory element represented by the di¤erence between the index projection p and a
standard projection p0, and then relate the Chern character of ½ p� p0� to the superconnec-
tion Chern character. In order to relate the two, Nistor works in a universal setting and
shows that a certain cyclic cohomology group is singly generated, which implies that the
two expressions are related by a computable constant. Unfortunately, Nistor’s assumptions
do not hold in our setting and his argument does not seem to be adaptable. Instead, we
give a direct proof relating ½ p� p0� to the superconnection Chern character. We show that
the pairing of h with ½ p� p0� can be written as the pairing of h with the Chern character
of a certain Z2-graded connection ‘ 0. We then homotop between the connection ‘ 0 and
the superconnection As. Of course one cannot do so in a purely formal way, as the vector
bundles involved are infinite-dimensional. However, we show that one can write things so
that one has uniformly smoothing operators inside the traces during the homotopy, thereby
justifying the formal argument. In this way we prove
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Theorem 3. For all s > 0,�
ch
�
IndðDÞ

�
; h
�
¼ hRTrs;heiðe�A

2
s Þ; hi A C:ð1:6Þ

Equation (1.2) follows from combining Theorems 2 and 3.

Equation (1.2) deals with closed graded traces h on W�ðB;BoÞ. On the other hand, the
geometric and topological consequences of index theory involve the K-theory of C0ðBÞcr G.
Equation (1.2) is in some ways a stronger result than the analogous K�

�
C0ðBÞcr G

�
-valued

index theorem, as the underlying algebra in (1.2) is CyðB;BoÞHC0ðBÞcr G. However, in
order to obtain geometric consequences from (1.2), one must consider certain ‘‘smooth’’
algebras A such that CyðB;BoÞHAHC0ðBÞcr G. The requirements on A are that it
should be closed under the holomorphic functional calculus in C0ðBÞcr G, and that h

should extend to a continuous cyclic cocycle on A. The existence of such subalgebras A is
discussed in [8], Chapter III and we do not have anything new to say about it in this paper.

We give the extensions of Theorems 2 and 3 to the setting of smooth Hausdor¤ étale
groupoids. As mentioned above, our proof applies to foliations, to give a superconnec-
tion proof of Connes’ general foliation index theorem. There has been some previous
work along these lines. Theorem 2 was proven by Heitsch, using ABismut

s , in the special case
when h comes from a holonomy-invariant transverse current to the foliation [14]. A corre-
sponding analog of Theorem 3 was proven by Heitsch and Lazarov when h comes from a
holonomy-invariant transverse current and under some additional technical assumptions
regarding the spectral densities of the leafwise Dirac-type operators [15]. In [18], Liu and
Zhang gave an adiabatic limit proof of a certain case of a vanishing result of Connes for
foliations with spin leaves of positive scalar curvature. (Connes’ result is a corollary of his
general foliation index theorem.) The additional assumptions in [18] were that the foliation
is almost-Riemannian and that the pairing object comes from the Pontryagin classes of the
normal bundle. The adiabatic limit is closely related to superconnections.

The methods of [14], [15] and [18] have the limitation that the dimension of the pair-
ing objects is at most the codimension of the foliation, as they come from the normal
bundle to the foliation. Consequently, one misses the noncommutative features of the foli-
ation, which lead to the phenomenon that the dimension of the leaf space, treated as a
noncommutative space, can be greater than the codimension of the foliation. For example,
a manifold with a codimension-1 foliation has a Godbillon-Vey class which is a three-
dimensional cohomology class. One important aspect of Connes’ foliation index theorem
is that it allows a pairing between the foliation index and the Godbillon-Vey class ([8],
Section III.6). One would miss this pairing if one treated the foliation in a ‘‘commutative’’
way.

Let us also mention the paper [24] which proves (1.2) in the case when M̂M ¼ Z � S1,
B ¼ S1, the action of G on S1 preserves orientation, V is trivial and h corresponds to the
Godbillon-Vey class. The method of proof of [24] is to represent IndðDÞ by means of a
‘‘graph’’ projection and then compute the pairing of this projection with a cyclic cocycle
representing the Godbillon-Vey class.

Not all foliations have a holonomy groupoid that is Hausdor¤. We expect that our
results can be extended to the nonHausdor¤ case, but we have not worked this out in de-
tail. Relevant treatments of the cyclic cohomology of an étale groupoid algebra, in the
nonHausdor¤ case, are in [10], [11] and [12].
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The results of this paper are valid in the generality of a smooth Hausdor¤ étale
groupoid G with a free, properly discontinuous and cocompact action on a manifold M̂M.
For simplicity of notation, we first present all of the arguments in the case of a cross-
product groupoid BcG. We then explain how to extend the proofs to general G.

The structure of the paper is as follows. In Section 2 we prove Theorem 1. In Sec-
tion 3 we define a class of fiberwise-smoothing operators on M̂M ! B and construct their
W�ðB;BoÞab-valued traces. In Section 4 we define the superconnection As and prove The-
orem 2. In Section 5 we prove Theorem 3 and give some consequences.

In Section 6 we give the extension of the preceding results to general étale groupoids.
The extension is not entirely straightforward and the expressions in Section 6 would be
unmotivated if it were not for the results of the preceding sections. In Subsection 6.1 we
show how in the case of a cross-product groupoid, the expressions of Section 6 reduce to
expressions of the preceding sections. The reader may wish to read Subsection 6.1 simul-
taneously with the rest of Section 6.

More detailed information is given at the beginnings of the sections.

Background information on superconnections and index theory is in [2]. For back-
ground results we sometimes refer to the relevant sections in [2], [8] or [19], where references
to the original articles can be found.

We thank Victor Nistor for discussions of [6] and [25]. We thank the referee for useful
suggestions, and Eric Leichtnam and Paolo Piazza for corrections to an earlier version
of this paper. The second author thanks the Max-Planck-Institute-Bonn and the Mathe-
matical Sciences Research Institute for their hospitality while part of this research was
performed.

2. Closed graded traces

In this section we compute the homology of GT�;hei. We show in Proposition 1
that it is isomorphic to the homology of the total complex of a certain double complex
T�;�. We then construct a morphism from this double complex to the double complex��
ClC�ðGÞ

�
nC�ðBÞ

�G
. In order to construct this morphism, we first describe the con-

nection ‘can on E ¼ ðM̂M � CGÞ=G, along with its Chern character. Taking M̂M to be EG, we
obtain a connection ‘univ, whose Chern character implements the morphism. We show that
the morphism induces an isomorphism between the E1-terms of the two double complexes.
It follows that it induces an isomorphism between the homologies of the total complexes.

The material in this section is necessarily of a technical nature. A trusting reader may
be willing to take the main result of the section, Corollary 1, on faith. To read the rest of
the paper, it is also worthwhile to read the important digression of the section, which is
labeled as such.

Let B be a unital algebra over C. Let W�ðBÞ denote its universal graded di¤erential
algebra (GDA) ([16], Section 2.24). As a vector space,

WkðBÞ ¼ Bn
�
nkðB=CÞ

�
:ð2:1Þ
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As a GDA, W�ðBÞ is generated by B and dB with the relations

d1 ¼ 0; d 2 ¼ 0; dðokolÞ ¼ ðdokÞol þ ð�1ÞkokðdolÞð2:2Þ

for ok A WkðBÞ, ol A W lðBÞ. It will be convenient to write an element ok of WkðBÞ as
a finite sum ok ¼

P
b0 db1 . . . dbk. Let ½W�ðBÞ;W�ðBÞ� denote the graded commutator

of W�ðBÞ and let W�ðBÞab ¼
W�ðBÞ

½W�ðBÞ;W�ðBÞ� denote the abelianization of W�ðBÞ. Put

W�ðBÞab ¼
W�ðBÞ

Cl ½W�ðBÞ;W�ðBÞ� . LetHDR�ðBÞ andHDR�ðBÞ denote the cohomologies of

the di¤erential complexesW�ðBÞab andW�ðBÞab, respectively. ThenHDR�ðBÞGHDR�ðBÞ
if �f 1, and there is a short exact sequence 0! C! HDR0ðBÞ ! HDR0ðBÞ ! 0. Fur-
thermore, Connes and Karoubi showed that HDR�ðBÞ is expressed in terms of reduced
cyclic and Hochschild homology ([19], Theorem 2.6.7) by

HDR�ðBÞGKer
�
B : HC�ðBÞ ! HH�þ1ðBÞ

�
:ð2:3Þ

If G is a discrete group and B is the group algebra CG, i.e. finite sums
P
g AG

cgg, let us

recall the calculation of HDR�ðCGÞ. It breaks up with respect to the conjugacy classes of
G, as do the Hochschild and cyclic cohomologies of CG, and we will only be interested in
the component HDR�heiðCGÞ corresponding to the identity conjugacy class. Let H�ðG;CÞ
denote the group homology of G and let H�ðG;CÞ denote the reduced group homology, i.e.
H�ðG;CÞ ¼ H�ðBG; �;CÞ. Then it follows from Burghelea’s work that the reduced Hoch-
schild and cyclic homologies of CG, when considered at the identity conjugacy class, are

HH�;heiðCGÞGH�ðG;CÞ

and

HC�;heiðCGÞG
L
if0

H��2iðG;CÞ;ð2:4Þ

with the map B : HC�;heiðCGÞ ! HH�þ1;heiðCGÞ vanishing ([19], Section 7.4). Hence

HDR�heiðCGÞG
H0ðG;CÞ if � ¼ 0;L
if0

H��2iðG;CÞ if � > 0:

(
ð2:5Þ

If B is a locally convex topological algebra then there is a natural completion of
the algebraic GDA W�ðBÞ to a locally convex GDA ([16], Section 5.1). For simplicity of
notation, when the context is clear we will also denote this completion by W�ðBÞ. We will
also denote by W�ðBÞab the quotient of W�ðBÞ by the closure of ½W�ðBÞ;W�ðBÞ�, where
the quotienting by the closure is done in order to obtain a Hausdor¤ space. In general, we
take the tensor product of two locally convex topological vector spaces to be the projective
topological tensor product and we let n̂n denote a graded (projective) tensor product.

Let B be a smooth manifold on which a finitely-generated discrete group G acts on
the right, not necessarily freely or properly discontinuously. Given g A G, let Rg A Di¤ðBÞ
denote the action of g on B. We let G act on Cy

c ðBÞ on the left so that g � f ¼ R�g f , i.e.
ðg � f ÞðbÞ ¼ f ðbgÞ. Given g A G, let Bg denote the subset of B which is pointwise fixed by g.
Given b A B, let Gb HG be the isotropy subgroup at b for the action of G on B.
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Let Cy
c ðBÞcG denote the cross product algebra, whose elements are finite sumsP

g AG
fgg, with fg A Cy

c ðBÞ. We wish to define an appropriate GDA whose zeroth-degree

component equals Cy
c ðBÞcG. One’s first choice might be the universal GDA

W�
�
Cy
c ðBÞcG

�
. The corresponding de Rham cohomology is expressed in (2.3) in terms of

the cyclic and Hochschild homologies of Cy
c ðBÞcG. Now such homologies have been

computed in [8], Section III.2.d, [6], [10] and [11] in cases of increasing generality. In par-
ticular, the periodic cyclic cohomology of Cy

c ðBÞcG contains a factor consisting of the
twisted equivariant cohomology of B. This implies that the space of closed graded traces on
W�
�
Cy
c ðBÞcG

�
is su‰ciently rich for our purposes.

On the other hand, the choice of W�
�
Cy
c ðBÞcG

�
as the GDA is inconvenient from

the point of view of superconnections. In the case when G is the trivial group, and one
is dealing with a fiber bundle M ! B, the usual superconnection formalism uses the
graded di¤erential algebra W�cðBÞ. It appears that it would be quite cumbersome to redo
the superconnection proof of the Atiyah-Singer families index theorem using the non-
commutative di¤erential forms W�

�
Cy
c ðBÞ

�
instead of W�cðBÞ.

For this reason, instead of using W�
�
Cy
c ðBÞcG

�
as the GDA, we replace it by an

appropriate quotient. By universality, there will be a map from the closed graded traces
on the quotient GDA to the closed graded traces on W�

�
Cy
c ðBÞcG

�
. We want this

map to have a su‰ciently large image. It turns out that an appropriate GDA is
W�ðB;CGÞ ¼ W�cðBÞ n̂nW�ðCGÞ, the graded algebraic tensor product over C, where the
multiplication in W�ðB;CGÞ takes into account that CG acts on W�cðBÞ.

Then W�ðB;CGÞ is a GDA, with W0ðB;CGÞ ¼ Cy
c ðBÞcG. We wish to compute

the homology of the complex of graded traces on W�ðB;CGÞ, or at least the part of the
homology which is concentrated at the identity conjugacy class. Let GTn;hei be the graded
traces on W�ðB;CGÞ which are concentrated on the elementsP

g0;...; gn: g0�...�gn¼e
og0;...; gng0 dg1 . . . dgn:

Let d t : GTn;hei ! GTn�1;hei be the boundary operator. A closed graded trace is an element
of Kerðd tÞ.

Consider the space of maps tk : Gkþ1 ! C. We now define certain operators that
arise in the computation of the cyclic homology of CG [16], Section 2.21. Namely, put

ðttÞkðg0; g1; . . . ; gkÞ ¼ ð�1Þ
ktkðg1; . . . ; gk; g0Þ;ð2:6Þ

ðditÞkþ1ðg0; . . . ; gkþ1Þ ¼ tkðg0; . . . ; gi�1; ĝgi; giþ1; . . . ; gkÞ;

ðsitÞk�1ðg0; . . . ; gk�1Þ ¼ tkðg0; . . . ; gi; gi; . . . ; gk�1Þ;

ðB0tÞk�1ðg0; . . . ; gk�1Þ ¼ tkðgk�1; g0; . . . ; gk�1Þ:

Put

ðbtÞkþ1 ¼
Pk
i¼0
ð�1Þ iðditÞkþ1:ð2:7Þ

The operator B0bþ bB0 acts by
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�
ðB0bþ bB0Þt

�
k
ðg0; . . . ; gkÞ ¼ tkðg0; . . . ; gkÞ � ð�1Þ

ktkðgk; g0; . . . ; gk�1Þð2:8Þ

þ ð�1Þktkðgk�1; g0; . . . ; gk�1Þ:

Let C�ðBÞ be the currents on B. We denote the pairing of o A W�c ðBÞ with c A C�ðBÞ
by ho; ci. The de Rham boundary q : C�ðBÞ ! C��1ðBÞ satisfies hdo; ci ¼ ho; qci. The
action of G on C�ðBÞ is such that hg � o; g � ci ¼ ho; ci.

Let CkðGÞ be the vector space of C-valued functions on Gkþ1. Let Ck; l be the ele-
ments tk A CkðGÞnClðBÞ which are normalized in the sense that ðsitÞk�1 ¼ 0 for all
0e i < k, and which are G-invariant in the sense that

tkðgg0; . . . ; ggkÞ ¼ g � tkðg0; . . . ; gkÞ:ð2:9Þ

Put Cn ¼
L

kþl¼n
Ck; l . The operators q, b and B0 can be defined on C�;� in the natural way.

Let T�;� be the double complex given by

Tk; l ¼ KerðbÞXKerðbB0 þ B0bÞHCk; lð2:10Þ

with boundary operators ð�1Þ lB0 and q.

Proposition 1. The vector space GTn;hei is isomorphic to
L

kþl¼n
Tk; l . Under this iso-

morphism, the action of d t on GTn;hei is equivalent to the action of qþ ð�1Þ lB0 on
L

kþl¼n
Tk; l .

Proof. Given t A Cn, write it as t ¼
Pn
k¼0

tk, with tk A Ck;n�k. We obtain a linear

functional Ct on W�ðB;CGÞ, which is concentrated at the identity conjugacy class, by the
formula

Ctðog0 dg1 . . . dgkÞ ¼
ho; tkðg0; g0g1; . . . ; g0 . . . gk�1; eÞi if g0g1 . . . gk ¼ e;

0 if g0g1 . . . gk 3 e:

�
ð2:11Þ

Conversely, all linear functionals on W�ðB;CGÞ, which are concentrated at the identity
conjugacy class, arise in this way.

Ct will be a graded trace if and only if it satisfies

Ctðgog0 dg1 dg2 . . . dgkÞ ¼ Ctðog0 dg1 dg2 . . . dgk gÞð2:12Þ

and

Ctðdgk og0 dg1 dg2 . . . dgk�1Þ ¼ ð�1Þ
k�1þjojCtðog0 dg1 dg2 . . . dgkÞ:ð2:13Þ

Equation (2.12) is equivalent to

Ct

�
ðg � oÞgg0 dg1 dg2 . . . dgk

�
ð2:14Þ

¼ Ct

�
o½g0 dg1 dg2 . . . dðgkgÞ � g0 dg1 dg2 . . . dðgk�1gkÞ dg

þ � � � þ ð�1Þkg0g1 dg2 . . . dgk dg�
�
:
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This is equivalent to

hg � o; tðgg0; gg0g1; . . . ; gg0 . . . gk�1; eÞið2:15Þ
¼ ho; tðg0; g0g1; . . . ; g0 . . . gk�1; eÞ � tðg0; g0g1; . . . ; g0 . . . gk�2; g0 . . . gk; eÞ

þ � � � þ ð�1Þktðg0g1; . . . ; g0 . . . gk; eÞi;

which is equivalent to

tðg0; g0g1; . . . ; g0 . . . gk�1; g0 . . . gkÞð2:16Þ
¼ tðg0; g0g1; . . . ; g0 . . . gk�1; eÞ � tðg0; g0g1; . . . ; g0 . . . gk�2; g0 . . . gk; eÞ

þ � � � þ ð�1Þktðg0g1; . . . ; g0 . . . gk; eÞ;

which is equivalent to

0 ¼ ð�1Þk½tðg0g1; . . . ; g0 . . . gk; eÞð2:17Þ

þ � � � þ ð�1Þk�3tðg0; g0g1; . . . ; g0 . . . gk�2; g0 . . . gk; eÞ

þ ð�1Þk�2tðg0; g0g1; . . . ; g0 . . . gk�1; eÞ

þ ð�1Þk�1tðg0; g0g1; . . . ; g0 . . . gk�1; g0 . . . gkÞ�:

After a change of variable and using the G-invariance of t, this is equivalent to bt ¼ 0.

Next,

ð�1ÞjojCtðdgk og0 dg1 dg2 . . . dgk�1Þð2:18Þ
¼ Ct

�
ðgk � oÞ dgk g0 dg1 dg2 . . . dgk�1

�
¼ Ct

�
ðgk � oÞ dðgkg0Þ dg1 dg2 . . . dgk�1

�
�Ct

�
ðgk � oÞgk dg0 dg1 dg2 . . . dgk�1

�
¼ hgk � o; tkðe; gkg0; gkg0g1; . . . ; gkg0 . . . gk�2; eÞi
� hgk � o; tkðgk; gkg0; gkg0g1; . . . ; gkg0 . . . gk�2; eÞi
¼ ho; tkðg0 . . . gk�1; g0; g0g1; . . . ; g0 . . . gk�1Þ
� tkðe; g0; g0g1; . . . ; g0 . . . gk�1Þi:

Thus (2.13) is equivalent to

tkðg0 . . . gk�1; g0; g0g1; . . . ; g0 . . . gk�1Þ � tkðe; g0; g0g1; . . . ; g0 . . . gk�1Þð2:19Þ

¼ ð�1Þk�1tkðg0; g0g1; . . . ; g0 . . . gk�1; eÞ:

By a change of variables, this in turn is equivalent to

tkðgk�1; g0; g1; . . . ; gk�1Þ � tkðe; g0; . . . ; gk�1Þð2:20Þ

¼ ð�1Þk�1tkðg0; . . . ; gk�1; eÞ:
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Using the G-equivariance, this is equivalent to

tkðgk�1; g0; g1; . . . ; gk�1Þ � tkðgk; g0; . . . ; gk�1Þð2:21Þ

¼ ð�1Þk�1tkðg0; . . . ; gk�1; gkÞ;

which, from (2.8), is equivalent to ðB0bþ bB0Þt ¼ 0.

Finally, given t A CkðGÞnClðBÞ, let og0 dg1 . . . dgk 0 be an element of
W l 0 ðBÞ n̂nWk 0 ðCGÞ. Then

ðd tCtÞðog0 dg1 . . . dgk 0 Þ ¼ Ct

�
dog0 dg1 . . . dgk 0 þ ð�1Þ

l 0o dg0 . . . dgk 0
�
:ð2:22Þ

If k 0 ¼ k and l 0 ¼ l � 1 then

ðd tCtÞðog0 dg1 . . . dgk 0 Þ ¼ hdo; tðg0; g0g1; . . . ; g0 . . . ; gk�1; eÞið2:23Þ

¼ ho; qtðg0; g0g1; . . . ; g0 . . . ; gk�1; eÞi

¼ Cqtðog0 dg1 . . . dgk 0 Þ:

If k 0 ¼ k � 1 and l 0 ¼ l then

ðd tCtÞðog0 dg1 . . . dgk 0 Þ ¼ ð�1Þ
l 0ho; tðe; g0; . . . ; g0 . . . gk 0�1; eÞið2:24Þ

¼ ð�1Þ l
0
ho; ðB0tÞðg0; . . . ; g0 . . . gk 0�1; eÞi

¼ Cð�1Þ lB0t
ðog0 dg1 . . . dgk 0 Þ:

This proves the proposition. r

From Proposition 1, (2.7) and (2.8), we see that any antisymmetric group cocycle for
G, which takes values in the closed currents on B, gives a closed graded trace on W�ðB;CGÞ.
In this way, we have a map Hk

�
G;ZlðBÞ

�
! HkþlðGT�;hei; d tÞ. In particular, if k ¼ 0 then

we obtain closed graded traces on W�ðB;CGÞ from G-invariant closed currents on B. We
now use Proposition 1 to describe all of the homology of the complex GT�;hei.

Consider the E1-term of the double complex T�;�. That is, E
1
k; l is the k-th homology

group of the complexT�; l with respect to the di¤erential ð�1Þ lB0. We first want to compute
this homology group. To do so, we follow the general method of proof of [8], Section
III.1.b, Theorem 22. We fix l for the moment.

Let us define operators b 0, A and B on C �ðGÞnClðBÞ by the usual formulas

ðb 0tÞkþ1 ¼
Pk�1
i¼0
ð�1Þ iðditÞkþ1;ð2:25Þ

ðAtÞk ¼
Pk
i¼0
ð�1Þ it it;

B ¼ AB0:

(The ‘‘B’’ in this Connes B-operator should not be confused with the manifold B.)
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Lemma 1. Acting on C�; l , we have KerðbÞXKerðB0Þ ¼ KerðbÞXKerð1� tÞ.

Proof. If t A C�; l and ð1� tÞt ¼ 0 then B0t ¼ 0. Thus

KerðbÞXKerð1� tÞHKerðbÞXKerðB0Þ:

On the other hand, the identity b 0B0 þ B0b ¼ 1� t shows that

KerðbÞXKerðB0ÞHKerðbÞXKerð1� tÞ: r

Lemma 2. An element t A Tk; l lies in the image of B0 : Tkþ1; l !Tk; l if and only if

t ¼ Bf for some f A KerðbÞHCkþ1; l .

Proof. Suppose that t A Tk; l satisfies t ¼ B0f for some f A Tkþ1; l . Then B0t ¼ 0. By

the previous lemma t ¼ tt and so t ¼ 1

k þ 1
At ¼ 1

k þ 1
Bf.

Now suppose that t A Tk; l satisfies t ¼ Bf for some f A KerðbÞHCkþ1; l . Put

Y ¼ B0f�
1

k þ 1
t:ð2:26Þ

Note that B0f A KerðB0ÞHCk; l . Also, as t ¼ Bf, it follows that t ¼ tt which, along with
the fact that t A Tk; l , implies that t A KerðB0Þ. Hence Y A KerðB0ÞHCk; l . As AY ¼ 0,

we can write Y ¼ c� tc where c A KerðB0ÞHCk; l is given by c ¼ � 1

k þ 1

Pk
i¼0

itiY.

Then Y ¼ ð1� tÞc ¼ ðb 0B0 þ B0bÞc ¼ B0bc. Put f 0 ¼ f� bc. Then from (2.26),
t ¼ ðk þ 1ÞB0f

0. Furthermore, bf 0 ¼ bðf� bcÞ ¼ bf ¼ 0 and ðk þ 1ÞbB0f
0 ¼ bt ¼ 0.

Hence f 0 A Tkþ1; l . This proves the lemma. r

Put

Ck
l

�
G;ClðBÞ

�
¼ KerðB0ÞXKerðB0bþ bB0ÞHCk; l :ð2:27Þ

From (2.6) and (2.8), the elements of Ck
l

�
G;ClðBÞ

�
can be considered to be cyclic cochains

which are reduced if k > 0. Put

Zk
l

�
G;ClðBÞ

�
¼ Ker

�
b : Ck

l

�
G;ClðBÞ

�
! Ckþ1

l

�
G;ClðBÞ

��
;ð2:28Þ

Bk
l

�
G;ClðBÞ

�
¼ Im

�
b : Ck�1

l

�
G;ClðBÞ

�
! Ck

l

�
G;ClðBÞ

��
;

Hk
l

�
G;ClðBÞ

�
¼ Zk

l

�
G;ClðBÞ

�
=Bk

l

�
G;ClðBÞ

�
:

We define the Hochschild objects CHk
�
G;ClðBÞ

�
, ZHk

�
G;ClðBÞ

�
, BHk

�
G;ClðBÞ

�
and

HHk
�
G;ClðBÞ

�
similarly, but without the cyclic condition. The Connes B-operator induces

a map B : HHk
�
G;ClðBÞ

�
! Hk�1

l

�
G;ClðBÞ

�
.

We now prove a result which, when B is a point, amounts to the dual of (2.3), when
applied to B ¼ CG and considered at the identity conjugacy class.

Lemma 3. There is an isomorphism

HkðT�; lÞGHk
l

�
G;ClðBÞ

�
=Im

�
B : HHkþ1�G;ClðBÞ

�
! Hk

l

�
G;ClðBÞ

��
:ð2:29Þ
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Proof. By Lemma 1, KerðB0ÞHTk; l is isomorphic to Zk
l

�
G;ClðBÞ

�
. By Lemma 2,

ImðB0 : Tkþ1; l !Tk; lÞ ¼ Im
�
B : ZHkþ1�G;ClðBÞ

�
!Tk; l

�
:ð2:30Þ

Also,

Bk
l

�
G;ClðBÞ

�
H Im

�
B : ZHkþ1�G;ClðBÞ

�
!Tk; l

�
;ð2:31Þ

as if t ¼ bc with c A Ck�1
l

�
G;ClðBÞ

�
then c ¼ Bc 0 for some c 0 A CHk

�
G;ClðBÞ

�
([8], Sec-

tion III.1.b, Corollary 20), and so t ¼ bBc 0 ¼ �Bbc 0. The lemma follows. r

Let H�
�
G;ClðBÞ

�
denote the group cohomology of G with coe‰cients in the

G-module ClðBÞ. Let H�
�
G;ClðBÞ

�
denote the reduced group cohomology with coe‰cients

in ClðBÞ. That is, let EGð0Þ be the set of vertices in EG. Then H�
�
G;ClðBÞ

�
is the coho-

mology of the complex
�
C �ðEG;EGð0ÞÞnZ ClðBÞ

�G
.

We now give a result which, when B is a point, amounts to the dual of (2.4).

Lemma 4.

HHk
�
G;ClðBÞ

�
G

H0
�
G;ClðBÞ

�
if k ¼ 0;

Hk
�
G;ClðBÞ

�
if k > 0

(
ð2:32Þ

and

Hk
l

�
G;ClðBÞ

�
G

H0
�
G;ClðBÞ

�
if k ¼ 0;L

if0

Hk�2i�G;ClðBÞ
�

if k > 0;

8<
:ð2:33Þ

with B : HHkþ1�G;ClðBÞ
�
! Hk

l

�
G;ClðBÞ

�
vanishing.

Proof. The proof of this follows algebraically from the method of proof of (2.4).
That is, we have the same sort of cyclic structures. We omit the details. r

Putting together Lemmas 3 and 4, we have shown

Proposition 2. The E1-term of T�;� is given by

E1
k; l G

H0
�
G;ClðBÞ

�
if k ¼ 0;L

if0

Hk�2i�G;ClðBÞ
�

if k > 0:

8<
:ð2:34Þ

Clearly the di¤erential d 1
k; l : E

1
k; l ! E1

k; l�1 is induced from q.

Important digression. To digress for a moment, let M̂M be a smooth manifold on
which G acts freely, properly discontinuously and cocompactly. Put M ¼ M̂M=G, a closed
manifold. We construct a connection

‘can : Cy
c ðM̂MÞ ! W1ðM̂M;CGÞnCy

c ðM̂MÞcG C
y
c ðM̂MÞ:ð2:35Þ

Let us note that

ð2:36Þ W1ðM̂M;CGÞnCy
c ðM̂MÞcG C

y
c ðM̂MÞ

¼
�
W1

c ðM̂MÞnCy
c ðM̂MÞC

y
c ðM̂MÞ

�
l
�
W1ðCGÞnCG C

y
c ðM̂MÞ

�
is isomorphic to W1

c ðM̂MÞl
�
W1ðCGÞnCGC

y
c ðM̂MÞ

�
.
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Lemma 5 ([20], Prop. 9). Let h A Cy
c ðM̂MÞ satisfy

P
g AG

g � h ¼ 1. Define ‘can by

‘can f ¼ dM̂M f l
P
g AG

dgn hðg�1 � f Þð2:37Þ

for f A Cy
c ðM̂MÞ. Then ‘can is a connection on Cy

c ðM̂MÞ.

One sees that

ð‘canÞ2 A HomCy
c ðM̂MÞcG

�
Cy
c ðM̂MÞ;W2ðM̂M;CGÞnCy

c ðM̂MÞcG C
y
c ðM̂MÞ

�
ð2:38Þ

acts on Cy
c ðM̂MÞ as left multiplication by a 2-form Y which commutes with Cy

c ðM̂MÞcG.
Explicitly,

Y ¼
P
g AG

dM̂Mðg � hÞ dgg�1 �
P

g; g 0 AG
ðgg 0 � hÞðg � hÞ dg dg 0ðgg 0Þ�1ð2:39Þ

¼ �
P
g AG

dM̂Mðg�1 � hÞg�1 dg�
P

g; g 0 AG

�
ðgg 0Þ�1 � h

��
ðg 0Þ�1 � h

�
ðgg 0Þ�1 dg dg 0:

Note that if G is infinite then Y does not lie in W2ðM̂M;CGÞ, as the sums involved are infinite.
Nevertheless, it sends Cy

c ðM̂MÞ to W2ðM̂M;CGÞnCy
c ðM̂MÞcGC

y
c ðM̂MÞ. Put

chð‘canÞ ¼ e�
Y
2pi A EndW�ðM̂M;CGÞ

�
W�ðM̂M;CGÞnCy

c ðM̂MÞcG C
y
c ðM̂MÞ

�
:ð2:40Þ

Then the abelianization of chð‘canÞ is closed. This can be seen by writing Y ¼ dA� A2,
where

A ¼
P
g AG

dg hg�1 ¼ �
P
g AG
ðg�1 � hÞg�1 dg:ð2:41Þ

Then dY ¼ �½Y;A� and d chð‘canÞ ¼ �½chð‘canÞ;A�. Also, the cohomology class of
chð‘canÞ is independent of the choice of h.

In the construction of chð‘canÞ, we can allow h to be a Lipschitz function on M̂M (see
[20], Lemma 4, where chð‘canÞ is called ~ooh). Let EG be the bar simplicial complex for G
(with degenerate simplices collapsed ([5], Chapter 1.5, Exercise 3b)). We formally replace
M̂M by EG. There is a complex W�ðEGÞ of C-valued polynomial forms on EG defined as in
[26], p. 297. Let j A CðEGÞ be the barycentric coordinate corresponding to the vertex e A EG
([20], (94)). Then

P
g AG

g � j ¼ 1 ([20], Lemma 5). (The support of j may not be compact, but

this will not be a problem.) Define ‘univ as in (2.37), replacing h by j.

Let chð‘univÞ ¼ e�
Y
2pi denote the explicit form constructed using j. Then chð‘univÞ lies

in

Qy
k¼0

Ly
l¼0

Wk�lðEGÞ n̂nWkþlðCGÞ:ð2:42Þ

Looking at the formula for chð‘univÞ, we see that in fact it lies in
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Qy
k¼0

�
ZkðEGÞ n̂nWkðCGÞ

�
l
Ly
l¼1

�
Wk�lðEGÞ n̂nWkþlðCGÞ

�� �
:ð2:43Þ

Let h A
L

aþb¼n
CaðGÞnCbðBÞ be a graded n-trace on W�ðB;CGÞ. We can pair chð‘univÞ and

h with respect to CG, to obtain

hchð‘univÞ; hi A
Ly
k¼0

�
ZkðEGÞnCn�kðBÞ

�
l
Ly
l¼1

�
Wk�lðEGÞnCn�k�lðBÞ

�� �
:ð2:44Þ

End of important digression.

Lemma 6. The element constructed in (2.44) is G-invariant.

Proof. With respect to (2.42), let us write chð‘univÞ in the form
chð‘univÞ ¼

P
i

oi n̂no 0i , with oi A W�ðEGÞ and o 0i A W�ðCGÞ. As Y commutes with G,

it follows that for all g A G,

P
i

oi n̂no 0i ¼
P
i

ðg � oiÞ n̂n go 0ig
�1:ð2:45Þ

Given f A W�c ðBÞ, we can define the pairing hhchð‘univÞ; hi; fi A W�ðEGÞ. Then for any
g A G,

hhchð‘univÞ; hi; g � fi ¼
P
i

oi hðg � f n̂no 0i Þð2:46Þ

¼
P
i

g � oi hðg � f n̂n go 0ig
�1Þ

¼
P
i

g � oi h
�
gðf n̂no 0iÞg�1

�
¼
P
i

g � oi h
�
½g; ðf n̂no 0iÞg�1� þ f n̂no 0i

�
¼
P
i

g � oi hðf n̂no 0i Þ

¼ g � hhchð‘univÞ; hi; fi:

This proves the lemma. r

Equivalently, define a complex C�ðGÞ by

CkðGÞ ¼ ZkðEGÞl
Ly
l¼1

Wk�2lðEGÞ;ð2:47Þ

with the natural chain map of degree �1. Then

hchð‘univÞ; hi A
L

aþb¼n

�
CaðGÞnCbðBÞ

�G
:ð2:48Þ
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To take into account the normalization of W�ðCGÞ, let EGð0Þ denote the vertices of EG and
put

ð2:49Þ CkðGÞ ¼ Ker

 
ZkðEGÞl

Ly
l¼1

Wk�2lðEGÞ
	 


! ZkðEGð0ÞÞl
Ly
l¼1

Wk�2lðEGð0ÞÞ
	 
!

:

Consider the complex ClC�ðGÞ, where the factor C is in degree zero. Then pairing with
chð‘univÞ gives a linear map from the graded traces on W�ðB;CGÞ to the total space of the
double complex

��
ClC�ðGÞ

�
nC�ðBÞ

�G
.

Lemma 7. Pairing with chð‘univÞ gives a morphism from the complex of graded traces

on W�ðB;CGÞ to the total complex of the double complex
��
ClC�ðGÞ

�
nC�ðBÞ

�G
.

Proof. Given f A W�c ðBÞ, we have an equality in W�ðEGÞ:

dhhchð‘univÞ; hi; fi� hhchð‘univÞ; hi; dfi� hhchð‘univÞ; d thi; fið2:50Þ

¼ hhd chð‘univÞ; hi; fi ¼ hh½chð‘univÞ;A�; hi; fi:

Let us write chð‘univÞ ¼
P
i

oi n̂no 0i and A ¼
P
j

aj n̂n a 0j , with oi; aj A W�ðEGÞ and

o 0i ; a
0
j A W�ðCGÞ. Note that chð‘univÞ and A are concentrated at the identity conjugacy class

of G, so we can assume the same about o 0i and a 0j . Then

½chð‘univÞ;A� ¼
P
i; j

½oi n̂no 0i ; aj n̂n a 0j � ¼G
P
i; j

oiaj n̂n ½o 0i ; a 0j �:ð2:51Þ

Hence

hh½chð‘univÞ;A�; hi; fi ¼G
P
i; j

oiajh½o 0i ; f n̂n a 0j �; hi;ð2:52Þ

which vanishes as h is a graded trace. The lemma follows. r

We note that by the construction of C�, the E1-term E1
k; l of the double complex��

ClC�ðGÞ
�
nC�ðBÞ

�G
, i.e. the k-th homology of

��
ClC�ðGÞ

�
nClðBÞ

�G
with respect

to the di¤erential of ClC�ðGÞ, is isomorphic to (2.34).

Lemma 8. Pairing with chð‘univÞ induces an isomorphism from the E1-term of the

double complex T�;� to the E1-term of the double complex
��
ClC�ðGÞ

�
nC�ðBÞ

�G
.

Proof. For simplicity of notation, we only address the case when k > 0. Consider
first the component Hk

�
G;ClðBÞ

�
of the E1

k; l-term of the double complex T�;�. It follows
from [20], Proposition 13 that pairing with chð‘univÞ induces an isomorphism from this
component to the corresponding component of the E1

k; l-term of the double complex��
ClC�ðGÞ

�
nC�ðBÞ

�G
.

Next, we remark that for both double complexes, there is a (reduced) S-operator
S : E1

k; l ! E1
kþ2; l which sends Hk�2i�G;ClðBÞ

�
to itself. In the case of the double complex

T�;�, this S-operator is essentially the dual of the one that acts on the right-hand-side of
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(2.3). (A formula for the reduced S-operator, as opposed to the S-operator, is given in [21],
(55).) In the case of the double complex

�
C�ðGÞnC�ðBÞ

�G
, the S-operator is induced from

the natural map from
�
CkðGÞnClðBÞ

�G
to
�
Ckþ2ðGÞnClðBÞ

�G
.

On the other hand, after adjusting the coe‰cients of its terms, chð‘univÞ is S-invariant
([21], Proposition 28). Then using the known isomorphism on the Hk

�
G;ClðBÞ

�
component

of E1
k; l , along with the S-operator, it follows that pairing with chð‘univÞ induces an iso-

morphism on all of E1
k; l . r

Theorem 1. The homology of GT�;hei, the complex of graded traces on W�ðB;CGÞ
which are concentrated at the identity conjugacy class, is isomorphic to the homology of the

total complex of the double complex
��
ClC�ðGÞ

�
nC�ðBÞ

�G
.

Proof. By Proposition 1, the homology of GT�;hei is isomorphic to the homology of
the total complex of the double complex T�;�. We have shown that pairing with chð‘univÞ
gives a morphism of double complexes, which is an isomorphism between the E1-terms.
The di¤erentials on the E1-terms are both induced by q. It follows that there is an iso-
morphism between the Ey-terms. r

Using the isomorphism between the homology of GT�;hei and the homology of the
double complex T�;�, we can periodize with respect to S to define the periodic homology
Hper
� ðGT�;heiÞ, with � A Z=2Z. Let H�t

�
ðEG� BÞ=G

�
denote the cohomology of ðEG� BÞ=G,

twisted by the orientation bundle of B ([8], Section II.7). Let H�t
�
ðEG� BÞ=G

�
denote the

cohomology relative to ðEGð0Þ � BÞ=G ¼ B.

Corollary 1. There is an isomorphism between

Hper
� ðGT�;heiÞ and H�þdimðBÞþ2Zt

�
ðEG� BÞ=G

�
:

Proof. As homology commutes with direct limits, Theorem 1 implies that
Hper
� ðGT�;heiÞ is isomorphic to the homology of the Z=2Z-graded complex

Ker
��
W�ðEGÞnC�ðBÞ

�G ! �
W�ðEGð0ÞÞnC�ðBÞ

�G�
:ð2:53Þ

Dualizing with respect to B, this is isomorphic to the Z=2Z-graded complex

Ker
��
W�ðEGÞnW�þdimðBÞt ðBÞ

�G ! �
W�ðEGð0ÞÞnW�þdimðBÞt ðBÞ

�G�
;ð2:54Þ

where W�t ðBÞ consists of the di¤erential forms on B with distributional coe‰cients and
with value in the orientation bundle oðTBÞ. The homology of this complex is
H�þdimðBÞþ2Zt

�
ðEG� BÞ=G

�
. r

Remark. If G ¼ feg then the homology of the graded traces on W�c ðBÞ is the
homology of the currents on B. If B is a point then the homology of the graded traces on
W�ðCGÞ is essentially the group cohomology of G. In order to put these together into one
object, we have used Poincaré duality to convert the homology of B into the twisted
cohomology of B. In this way we write the periodic homology of graded traces on
W�ðB;CGÞ in terms of the twisted cohomology of ðEG� BÞ=G. However, this uniform
description only exists after periodizing, because of the grading reversal in the Poincaré
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duality. For the unperiodized homology of graded traces, we must use the setup of Theo-
rem 1.

The closed graded traces coming from
�
CnC�ðBÞ

�G
are also relevant; they corre-

spond exactly to the homology of the G-invariant currents on B. In general, forgetting
about reduced cohomology, we have constructed a map which sends a closed graded
n-trace h on W�ðEGÞnW�ðCGÞ to an element Fh A HnþdimðBÞþ2Z

t

�
ðEG� BÞ=G

�
.

3. Fiberwise operators and traces

In this section we first consider smoothing operators on M̂M which act fiberwise,
preserve compact support and commute with G. We define a Cy

c ðBÞ-valued trace Trhei
on such operators. We then make various extensions of Trhei. First, we extend it to an
W�ðB;CGÞab-valued trace on form-valued operators. Next, we extend it to a supertrace on
operators on Z2-graded vector bundles. Finally, we extend it to an W�ðB;BoÞab-valued
trace on smoothing operators whose Schwartz kernels have su‰ciently rapid decay.

Let M̂M be a smooth manifold on which G acts freely, properly discontinuously and
cocompactly. Put M ¼ M̂M=G. Let B be a smooth manifold on which G acts, not necessarily
freely or properly. Suppose that there is a G-invariant submersion p : M̂M ! B, a fiber of
which we denote by Z. Then M is foliated by the images of Z under the map M̂M !M.
That is, given b A B, put Zb ¼ p�1ðbÞ. Then the corresponding leaf of the foliation F is
Zb=Gb H M̂M=G.

Let TZ denote the vertical tangent bundle of M̂M ! B, a vector bundle on M̂M. Let gTZ

be a G-invariant Euclidean inner product on TZ. Give Zb the corresponding Riemannian
metric and induced metric space structure d. As G acts cocompactly on M̂M, preserving the
submersion structure, it follows that fZbgb AB has bounded geometry. That is, there is a
uniform upper bound on the absolute values of the sectional curvatures, and a uniform
lower bound on the injectivity radii. Let d volZ denote the Riemannian volume forms on
the fibers fZbgb AB.

An element K of EndCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
has a Schwartz kernel Kðz;wÞ, with respect to

its fiberwise action, so that we can write

ðKFÞðzÞ ¼
Ð

ZpðzÞ

Kðz;wÞFðwÞ dvolZpðzÞ ðwÞð3:1Þ

for F A Cy
c ðM̂MÞ.

Definition 1. EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
is the subalgebra of EndCy

c ðBÞcG

�
Cy
c ðM̂MÞ

�
con-

sisting of elements K with a smooth integral kernel in CyðM̂M � M̂MÞ.

Note that for each b A B and each w A Zb, the function KwðzÞ ¼ Kðz;wÞ has compact
support in z. To simplify notation, if K A EndyCy

c ðBÞcG

�
Cy
c ðM̂MÞ

�
then we will write the

action of K on Cy
c ðM̂MÞ by

ðKFÞðzÞ ¼
Ð
Z

Kðz;wÞFðwÞ dvolZðwÞ:ð3:2Þ
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That is,
Ð
Z

denotes fiberwise integration. The convolution product on EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
is given by

ðKK 0Þðz;wÞ ¼
Ð
Z

Kðz; uÞKðu;wÞ dvolZðuÞ:ð3:3Þ

In this way EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
is an algebra over C, possibly without unit.

Let f A Cy
c ðM̂MÞ satisfy

P
g AG

g � f ¼ 1. Given K A EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
and b A B, put

TrðKÞðbÞ ¼
P
g AGb

	 Ð
Zb

fðwÞKðwg�1;wÞ dvolZb
ðwÞ


g:ð3:4Þ

From the support condition on K, TrðKÞðbÞ A CGb.

To express the range of Tr in a better way, let ðBgÞC be the complex-valued functions
on Bg. There is an inclusion ðBgÞCHBC coming from extension by zero. Then

L
g AG
ðBgÞCg is

an algebra, as a subalgebra of BCcG. Put

	L
g AG
ðBgÞCg



ab

¼

L
g AG
ðBgÞCg� L

g AG
ðBgÞCg;

L
g AG
ðBgÞCg

� :ð3:5Þ

Consider Tr from (3.4).

Proposition 3. Tr : EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
!
	 L

g AG
ðBgÞCg



ab

is a trace.

Proof. Let fOag be the orbits of G in B and let ba A Oa be representative elements.

Put ðCGbaÞab ¼
CGba

½CGba ;CGba �
. Then there is an isomorphism

I :

	 L
g AG
ðBgÞCg



ab

!
Q
a

ðCGbaÞab:ð3:6Þ

Namely, given g A G and f A ðBgÞC,

Ið½ f g�Þ ¼
Q
a

P
b A baG

f ðbÞ½g 0bgðg 0bÞ
�1�;ð3:7Þ

where g 0b A G is such that b ¼ bag
0
b. Under this isomorphism, we obtain

I
�
TrðKÞ

�
¼
Q
a

P
b A baG

P
g AGb

	 Ð
Zb

fðwÞKðwg�1;wÞ dvolZb
ðwÞ


½g 0bgðg 0bÞ

�1�:ð3:8Þ

Thus it is enough to show that for each a, if we put
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Ia
�
TrðKÞ

�
¼
P

b A baG

P
g AGb

	 Ð
Zb

fðwÞKðwg�1;wÞ dvolZb
ðwÞ


½g 0bgðg 0bÞ

�1�ð3:9Þ

then Ia
�
TrðKK 0Þ

�
¼ Ia

�
TrðK 0KÞ

�
.

Let fgbg
y
b¼1 be a sequence of elements of G such that GbanG ¼ fGbagbg

y
b¼1. Then

writing b ¼ bagb and g ¼ g�1b gagb,

Ia
�
TrðKÞ

�
¼
Py
b¼1

P
ga AGba

	 Ð
Zbagb

fðwÞKðwg�1b g�1a gb;wÞ dvolZbagb
ðwÞ


½ga�ð3:10Þ

¼
Py
b¼1

P
ga AGba

	 Ð
Zbagb

fðwÞKðwg�1b g�1a ;wg�1b Þ dvolZbagb
ðwÞ


½ga�

¼
Py
b¼1

P
ga AGba

	 Ð
Zba

fðwgbÞKðwg�1a ;wÞ dvolZba
ðwÞ


½ga�:

Define fa A Cy
c ðZbaÞ by faðwÞ ¼

Py
b¼1

fðwgbÞ. Then
P

ga AGba

ga � fa ¼ 1 and

Ia
�
TrðKÞ

�
¼

P
ga AGba

	 Ð
Zba

faðwÞKðwg�1a ;wÞ dvolZba
ðwÞ


½ga�:ð3:11Þ

It now follows from [20], Prop. 7 that Ia � Tr is a trace. (The formula in [20], Prop. 7 is
slightly di¤erent because [20] considers function spaces to be right G-modules instead of left
G-modules.) This proves the proposition. r

One can show that Tr is independent of the choice of f.

We can decompose TrðKÞ according to the conjugacy classes of G. In particular, the
component corresponding to the conjugacy class of e A G is

TrheiðKÞðbÞ ¼
	 Ð

Zb

fðwÞKðw;wÞ dvolZb
ðwÞ


:ð3:12Þ

We see that Trhei is a trace on EndyCy
c ðBÞcG

�
Cy
c ðM̂MÞ

�
which takes values in the co-invariants�

Cy
c ðBÞ

�
G
.

We will need some slight extensions of Tr. First, consider the Z-graded algebra

Homy
Cy
c ðBÞcG

�
Cy
c ðM̂MÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂MÞ

�
ð3:13Þ

consisting of elements of HomCy
c ðBÞcG

�
Cy
c ðM̂MÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂MÞ

�
with a

smooth integral kernel. An element K of

Homy
Cy
c ðBÞcG

�
Cy
c ðM̂MÞ;

�
WkðBÞnW lðCGÞ

�
nCy

c ðBÞcG C
y
c ðM̂MÞ

�
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can be represented as a finite sum

K ¼
P

g1;...;gl AG
dg1 . . . dglKg1;...;gl ;ð3:14Þ

where Kg1;...;gl has a smooth integral kernel Kg1;...;gl ðz;wÞ A LkðT �pðzÞBÞ. It acts on Cy
c ðM̂MÞ

by

ðKFÞðzÞ ¼
P

g1;...;gl

dg1 . . . dgl

	 Ð
Z

Kg1;...;gl ðz;wÞFðwÞ dvolZðwÞ


:ð3:15Þ

Then we define Tr to act on Homy
Cy
c ðBÞcG

�
Cy
c ðM̂MÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂MÞ

�
by the

formula

ð3:16Þ TrðKÞðbÞ

¼
P

g0;g1;...;gl AG: g0...gl AGb

ðdg1 . . . dglÞg0
	 Ð

Zb

fðwÞKg1;...;gl ðwg�10 ;wÞ dvolZb
ðwÞ


:

(Compare [20], (36).)

Example. Suppose that M̂M ¼ G and that B ¼ pt. The action of G on Cy
c ðM̂MÞ is

given by g � dh ¼ dhg�1 . There is an isomorphism of left CG-modules CG! Cy
c ðM̂MÞ

which sends h to dh�1 . Consider h0 dh1 A W1ðCGÞ and the corresponding element
K A HomCG

�
CG;W�ðCGÞnCG CG

�
given by

KðhÞ ¼ hðh0 dh1Þ ¼ dðhh0h1Þe� dðhh0Þh1:ð3:17Þ

Then under the above isomorphism, K A HomCG

�
Cy
c ðM̂MÞ;W�ðCGÞnCG C

y
c ðM̂MÞ

�
acts by

Kðdh�1Þ ¼ dðhh0h1Þde � dðhh0Þdh�1
1
:ð3:18Þ

Thus

Kg1ðz;wÞ ¼ dw�1h0h1;g1dz; e � dw�1h0;g1dz;h�11
ð3:19Þ

and

P
g0;g1

dg1 g0Kg1ðwg�10 ;wÞ ¼ dðw�1h0h1Þw� dðw�1h0Þh1w ¼ w�1ðh0 dh1Þw:ð3:20Þ

If f ¼ dx then we get

TrðKÞðpt:Þ ¼ x�1ðh0 dh1Þx;ð3:21Þ

which is equivalent to h0 dh1 in W�ðCGÞab, as it should be.

End of example. As before, we can decompose TrðKÞ according to the conjugacy
classes of G. In this paper we will only be concerned with the component of TrðKÞ asso-
ciated to the conjugacy class of e A G, namely
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ð3:22Þ TrheiðKÞðbÞ ¼
P

g0;g1;...;gl AG: g0...gl¼e
ðdg1 . . . dglÞg0

�
	 Ð

Zb

fðwÞKg1;...;gl ðwg�10 ;wÞ dvolZb
ðwÞ


:

Then one sees from (3.22) that Trhei is a trace on

Homy
Cy
c ðBÞcG

�
Cy
c ðM̂MÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂MÞ

�
ð3:23Þ

which takes values in W�ðB;CGÞab.

Next, let ÊE be a G-equivariant Z2-graded Hermitian vector bundle on M̂M. Define

EndyCy
c ðBÞcG

�
Cy
c ðM̂M; ÊEÞ

�
ð3:24Þ

as before, except with Kðz;wÞ A HomðÊEw; ÊEzÞ. Also define

Homy
Cy
c ðBÞcG

�
Cy
c ðM̂M; ÊEÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂M; ÊEÞ

�
ð3:25Þ

as before, except with Kg1;...;gl ðz;wÞ A LkðT �pðzÞBÞnHomðÊEw; ÊEzÞ. Then we obtain a super-
trace

ð3:26Þ Trs;hei : Homy
Cy
c ðBÞcG

�
Cy
c ðM̂M; ÊEÞ;W�ðB;CGÞnCy

c ðBÞcG C
y
c ðM̂M; ÊEÞ

�
! W�ðB;CGÞab

by

ð3:27Þ Trs;heiðKÞðbÞ ¼
P

g0;g1;...;gl AG: g0...gl¼e
ðdg1 . . . dglÞg0

�
	 Ð

Zb

fðwÞ trs
�
Kg1;...;gl ðwg�10 ;wÞ

�
dvolZb

ðwÞ


:

Finally, choose a finite generating set for G and consider the corresponding right-
invariant word metric k � k. Let Bo be the formal sums

P
g AG

cgg such that jcgj decreases

faster than any exponential in kgk (see [20], Lemma 2). Then Bo is a locally convex Fréchet
algebra ([20], Prop. 4). The notation ‘‘o’’ comes from the fact that if G ¼ Z then Bo can be
identified with the holomorphic functions on C� 0.

Put

CyðB;BoÞ ¼ Bo nCG

�
Cy
c ðBÞcG

�
;ð3:28Þ

i.e. the quotient of the locally convex topological vector space Bo n
�
Cy
c ðBÞcG

�
by

spanfða; f Þ � ðga; g � f Þg, where a A Bo, f A Cy
c ðBÞcG and g A G. Then CyðB;BoÞ is a

locally convex topological algebra which has Cy
c ðBÞcG as a dense subalgebra. We

can write an element of CyðB;BoÞ as an infinite sum
P
g AG

fgg, where the functions on

B fg�1 � fggg AG all have support in some compact set KHB and have the decay property
that for all q A Zþ,
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sup
b AK; g AG

eqkgkj fgðbg�1Þj < y;ð3:29Þ

along with the analogous statement for the derivatives of f .

Similarly, we define a locally convex GDA W�ðB;BoÞ by saying that an element
of type ðk; lÞ is an infinite sum

P
g0;...; gl AG

og0;...; glg0 dg1 . . . dgl , where the k-forms on

B fðg0 . . . glÞ
�1 � og0;...; glgg0;...; gl AG all have support in some compact set KHB and have the

decay property that for all q A Zþ,

sup
b AK; g0;...; gl AG

eqðkg0kþ���þkglkÞ
��og0;...; gl

�
bðg0 . . . glÞ

�1��� < y;ð3:30Þ

along with the analogous statement for the derivatives. Then W�ðB;BoÞ has W�ðB;CGÞ as
a dense subalgebra.

Put

Cy
BoðM̂MÞ ¼ BonCG C

y
c ðM̂MÞ:ð3:31Þ

Then Cy
BoðM̂MÞ is a left CyðB;BoÞ-module. As in [20], Prop. 5 and using the cocompactness

of the G-action on M̂M, the elements of Cy
BoðM̂MÞ can be characterized as the elements

F A CyðM̂MÞ such that for any b A B, m0 A Zb and q A Zþ,

sup
z AZb

eq dðz;m0ÞjFðzÞj < y;ð3:32Þ

along with the analogous property for the covariant derivatives of f . Let
EndyCyðB;BoÞ

�
Cy

BoðM̂MÞ
�

be the subalgebra of EndCyðB;BoÞ
�
Cy

BoðM̂MÞ
�

consisting of ele-
ments K with a smooth integral kernel Kðz;wÞ. Then as in [20], Prop. 6, the ele-
ments of EndyCyðB;BoÞ

�
Cy

BoðM̂MÞ
�

can be characterized as the G-invariant elements

Kðz;wÞ A CyðM̂M � M̂MÞ such that for any b A B and q A Zþ,

sup
z;w AZb

eq dðz;wÞjKðz;wÞj < y;ð3:33Þ

along with the analogous property for the covariant derivatives of K. The convolution

product in EndyCyðB;BoÞ
�
Cy

BoðM̂MÞ
�
is given by the same expression as (3.3), and makes sense

because of the bounded geometry of fZbgb AB. With the natural definition of

Homy
CyðB;BoÞ

�
Cy

BoðM̂MÞ;W�ðB;BoÞnCyðB;BoÞC
y
BoðM̂MÞ

�
;ð3:34Þ

an element K can be written as a formal G-invariant sum (3.14). In particular, the indi-
vidual terms have the decay property that for any b A B and q A Zþ,

sup
w AZb; z AZbgl ...g1

eq dðz;wgl ...g1ÞKg1;...;gl ðz;wÞ < y:ð3:35Þ

The formula (3.12) extends to a trace
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Trhei : End
y
CyðB;BoÞ

�
Cy

BoðM̂MÞ
�
! CyðB;BoÞ
½CyðB;BoÞ;CyðB;BoÞ�

which is concentrated at the identity conjugacy class. The formula (3.22) extends to a trace

ð3:36Þ Trhei : Homy
CyðB;BoÞ

�
Cy

BoðM̂MÞ;W�ðB;BoÞnCyðB;BoÞC
y
BoðM̂MÞ

�
! W�ðB;BoÞab:

If ÊE is a Z2-graded G-invariant Hermitian vector bundle on M̂M, with an invariant
Hermitian connection, then we can define EndyCyðB;BoÞ

�
Cy

BoðM̂M; ÊEÞ
�
and a supertrace

ð3:37Þ Trs;hei : Homy
CyðB;BoÞ

�
Cy

BoðM̂M; ÊEÞ;W�ðB;BoÞnCyðB;BoÞC
y
BoðM̂M; ÊEÞ

�
! W�ðB;BoÞab:

4. Superconnections and small-s asymptotics

In this section we define the superconnection As and compute the small-s limit of the
supertrace of e�A

2
s , thereby obtaining the right-hand-side of the index theorem.

Let p : M̂M ! B be a G-invariant submersion as in the previous section. We choose
a G-invariant vertical Riemannian metric gTZ on TZ and a G-invariant horizontal distri-
bution THM̂M on M̂M.

Suppose that Z is even-dimensional. Let ÊE be a G-invariant Cli¤ord bundle on M̂M

which is equipped with a G-invariant connection. For simplicity of notation, we asssume

that ÊE ¼ SZ n̂n V̂V , where SZ is a vertical spinor bundle and V̂V is an auxiliary vector bundle
on M̂M. More precisely, suppose that the vertical tangent bundle TZ has a spin structure. Let
SZ be the vertical spinor bundle, a G-invariant Z2-graded Hermitian vector bundle on M̂M.
Let V̂V be another G-invariant Z2-graded Hermitian vector bundle on M̂M which is equipped
with a G-invariant Hermitian connection ‘V̂V . Then we put ÊE ¼ SZ n̂n V̂V . The case of gen-
eral G-invariant Cli¤ord bundles ÊE can be treated in a way completely analogous to what
follows.

Let Q denote the vertical Dirac-type operator acting on Cy
c ðM̂M; ÊEÞ. From finite-

propagation-speed estimates as in [20], Pf. of Prop. 8, along with the bounded geometry of
fZbgb AB, for any s > 0 we have

e�s
2Q2

A EndyCyðB;BoÞ
�
Cy

BoðM̂M; ÊEÞ
�
:ð4:1Þ

Let

ABismut
s : Cy

c ðM̂M; ÊEÞ ! W�c ðBÞnCy
c ðBÞC

y
c ðM̂M; ÊEÞð4:2Þ

denote the Bismut superconnection ([2], Proposition 10.15). In the cited reference it is
constructed for fiber bundles with compact fibers. However, being a di¤erential operator, it
makes sense for any submersion. It is of the form

ABismut
s ¼ sQþ ‘u � 1

4s
cðTÞ;ð4:3Þ
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where ‘u is a certain Hermitian connection and cðTÞ is Cli¤ord multiplication by the cur-
vature 2-form T of the horizontal distribution THM̂M. We also denote by

ABismut
s : Cy

BoðM̂M; ÊEÞ !
�
BonCG W

�
c ðBÞ

�
nðBonCGC

y
c ðBÞÞC

y
BoðM̂M; ÊEÞð4:4Þ

its extension to Cy
BoðM̂M; ÊEÞ. One can use finite-propagation-speed estimates, along with the

bounded geometry of fZbgb AB and the Duhamel expansion as in [2], Theorem 9.48, to
show that we obtain a well-defined element

ð4:5Þ e�ðA
Bismut
s Þ2 A Homy

ðBonCGC
y
c ðBÞÞ

�
Cy

BoðM̂M; ÊEÞ;
�
BonCG W

�
c ðBÞ

�
nðBonCGC

y
c ðBÞÞ C

y
BoðM̂M; ÊEÞ

�
:

We now couple ABismut
s to the connection ‘can of Section 2 in order to obtain a

superconnection

As : C
y
BoðM̂M; ÊEÞ ! W�ðB;BoÞnCyðB;BoÞC

y
BoðM̂M; ÊEÞ:ð4:6Þ

Explicitly,

As ¼ sQþ ‘u � 1

4s
cðTÞ þ

P
g AG

dgn hg�1:ð4:7Þ

Let R be the rescaling operator on WevenðB;BoÞab which multiplies an element of
W2kðB;BoÞab by ð2piÞ

�k. Doing a Duhamel expansion around e�ðA
Bismut
s Þ2 and using the fact

that h has compact support, we can define

e�A
2
s A Homy

CyðB;BoÞ
�
Cy

BoðM̂M; ÊEÞ;W�ðB;BoÞnCyðB;BoÞC
y
BoðM̂M; ÊEÞ

�
ð4:8Þ

and hence also define RTrs;heiðe�A
2
s Þ A W�ðB;BoÞab. From the superconnection formalism

[2], Chapter 1.4, RTrs;heiðe�A
2
s Þ is closed and its cohomology class is independent of s > 0;

see [14], Theorem 3.1 for a detailed proof in the analogous case of RTrsðe�ðA
Bismut
s Þ2Þ.

Theorem 2.

lim
s!0

RTrs;heiðe�A
2
s Þ ¼

Ð
Z

fÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ A W�ðB;BoÞab:ð4:9Þ

Proof. We use a variation of the proof of [2], Theorem 10.23. As in [2], Theorem

10.23, we must first establish a Lichnerowicz-type formula for A2
s . Let feig

dimðZÞ
i¼1 be a

local orthonormal basis for TZ and let fcigdimðZÞi¼1 be Cli¤ord algebra generators, with
ðciÞ2 ¼ �1. Let ftagdimðBÞa¼1 be a local basis of T �B and let E a denote exterior multiplica-
tion by ta. Bismut proved a Lichnerowicz-type formula for ðABismut

s Þ2 ([2], Theorem 10.17),
namely

ðABismut
s Þ2 ¼ s2D�Dþ s2

1

4
rZ þ 1

4

P
i; j

FijðV̂VÞ½ci; c j�ð4:10Þ

þ
P
i;a

FaiðV̂VÞE aci þ 1

4

P
a;b

FabðV̂VÞ½E a;E b�;
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where D is a certain vertical di¤erentiation operator and rZ A CyðM̂MÞ is the scalar curva-
ture function of the fibers. Then from the formula (4.7) for As, one finds

A2
s ¼ s2D�Dþ 1

4
s2rZ þ 1

4

P
i; j

FijðV̂VÞ½ci; c j� þ
P
a; i

FaiðV̂VÞE acið4:11Þ

þ 1

4

P
a;b

FabðV̂VÞ½E a;E b� � s
P
g AG

dg
�
cðd verthÞ þ Eðd horhÞ

�
g�1

�
P
g; g 0
ðgg 0 � hÞðg � hÞ dg dg 0ðgg 0Þ�1:

We now perform a Getzler rescaling, as in [2], p. 342. Explicitly, we send qx j ! s�1qx j ,
c j ! E j � I j ! s�1E j � sI j and ta ! ta. Then following [2], Proposition 10.28, one finds
that in the rescaling limit A2

s becomes

�
PdimðZÞ
j¼1

	
qx j � 1

8

PdimðZÞ
j¼1

PdimðM̂MÞ

a;b¼1
RZ

abijx
jEaEb


2
þ ð‘V̂V Þ2 þ ð‘canÞ2:ð4:12Þ

The rest of the proof now proceeds as in the proof of [2], Theorem 10.21; compare [20], Pf.
of Prop. 12. r

Let us note that the right-hand-side of (4.9) pairs with closed graded traces on
W�ðB;CGÞ, and not just closed graded traces on W�ðB;BoÞ. In the construction of
chð‘canÞ, we can allow h to be a Lipschitz function on M̂M (see [20], Lemma 4 where
chð‘canÞ is called ~ooh). Let c : M̂M ! EG be a G-equivariant classifying map for the fiber
bundle M̂M !M. It is defined up to G-homotopy. As M is compact, we may assume that
c is Lipschitz with respect to a piecewise Euclidean G-invariant metric on the simpli-
cial complex EG. Let h be a closed graded n-trace on W�ðB;CGÞ. Then we can describe� Ð

Z

fðzÞÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ; h

as follows.

First, let us dualize (2.44) with respect to B to write

hchð‘univÞ; hi A

	 L
aþb¼n

Ly
l¼0

Wa�2lðEGÞ n̂nWdimðBÞ�b
t ðBÞ


G
;ð4:13Þ

where W�t ðBÞ denotes the di¤erential forms on B with distributional coe‰cients and with
value in the flat orientation line bundle oðTBÞ. Passing to a Z2-grading, we obtain

hchð‘univÞ; hi A
�
WnþdimðBÞþ2Z

t ðEG� BÞ
�G
:ð4:14Þ

By construction, the form that we have obtained is closed, so we have an element
Fh A HnþdimðBÞþ2Z

t

�
ðEG� BÞ=G

�
.

The map ðc; pÞ : M̂M ! EG� B is G-equivariant and so descends to a classifying map
n : M ! ðEG� BÞ=G. Let TF denote the leafwise tangent bundle on M with respect to the
foliation F, a vector bundle on M. Put V ¼ V̂V=G. Then we claim that�Ð

Z

fðzÞÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ; h

¼
Ð
M

ÂAðTFÞ chðVÞn�Fh:ð4:15Þ
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To see this, take the pairing of chð‘canÞ and h with respect to CG, to get a G-invariant
element of W�ðM̂MÞ n̂nC�ðBÞ. Dualizing with respect to B, we obtain an element of
W�ðM̂MÞ n̂nW�t ðBÞ. Applying the product ðo1;o2Þ ! o15p�o2 to this, we finally obtain a
closed G-invariant element of W�t ðM̂MÞ, the latter being the di¤erential forms on M̂M with
distributional coe‰cients and with value in p�

�
oðTBÞ

�
. Hence we have an element of

H�t ðMÞ (where the t now refers to the flat orientation line bundle oðNFÞ), which we
denote by hchð‘canÞ; hi. Let �

�
ÂAðTFÞ chðVÞ

�
A Ht

�ðMÞ be the Poincaré dual of
ÂAðTFÞ chðVÞ A H�ðM;RÞ. Then the left-hand-side of (4.15) is the pairing between
hchð‘canÞ; hi A H�t ðMÞ and �

�
ÂAðTFÞ chðVÞ

�
A Ht

�ðMÞ. Now we may also compute
hchð‘canÞ; hi by using the Lipschitz function c�j instead of h in constructing ‘can. (We may
have to smooth o1 before taking the product.) Then by naturality, hchð‘canÞ; hi ¼ n�Fh,
which proves the claim.

5. The index and the superconnection Chern character

In this section we prove Theorem 3, relating the Chern character of As to the Chern
character of the index. We define the index by means of the index projection and show that
its Chern character can be computed by means of a connection ‘. We then show that the
Chern character of the index can also be written as the supertrace of e�ð‘

0Þ2 for a certain
Z2-graded connection ‘ 0.

We relate the Chern character of the index to the superconnection Chern character by
means of a homotopy from ‘ 0 to As. This is done in three cases. In the first case, that of
finitely-generated projective modules, the naive homotopy argument works. In the second
case, that of the families index theorem, we show that smoothing factors in the homotopy
allow the naive argument to be carried through. In the third case, that of Theorem 3, we
again justify the naive homotopy argument. We then give some geometric consequences of
Theorem 3.

Let A be an algebra over C and let W� be a GDA equipped with a homomorphism
r : A! W0. Let E be a left A-module and let ‘ : E! W1 nA E be a connection on E.

Let ~WW� be a subalgebra of the graded algebra HomAðE;W�nA EÞ. Put ~AA ¼ ~WW0. We
assume that ~WW� is closed under ‘ and that the curvature Y ¼ ‘2 A HomAðE;W2 nA EÞ of
the connection lies in ~WW2. Then ‘ extends to a covariant di¤erentiation ~‘‘ : ~WW� ! ~WW�þ1 on
~WW� which satisfies ~‘‘2ð ~ooÞ ¼ Y ~oo� ~ooY. Let ~hh : ~WW� ! C be an even graded trace which sat-
isfies ~hhð~‘‘ ~ooÞ ¼ 0 for all ~oo A ~WW�.

As in [8], Chapter III.3, Lemma 9, let X be a new formal odd variable of degree 1 and
put

~~WW~WW� ¼ ~WWlX ~WW�l ~WW�X lX ~WW�Xð5:1Þ

with the new multiplication rules ð ~oo1X Þ ~oo2 ¼ ~oo1ðX ~oo2Þ ¼ 0 and ð ~oo1XÞðX ~oo2Þ ¼ ~oo1Y ~oo2.

Define a graded trace ~~hh~hh on
~~WW~WW� by

~~hh~hhð ~oo1 þ X ~oo2 þ ~oo3X þ X ~oo4XÞ ¼ ~hhð ~oo1Þ þ ð�1Þj ~oo4j~hhð ~oo4Þ:ð5:2Þ

Define a di¤erential d on
~~WW~WW� which is generated by the relations
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d ~oo ¼ ~‘‘ ~ooþ X ~ooþ ð�1Þ ~oo ~ooXð5:3Þ

and dX ¼ 0. One can check that d 2 ¼ 0 and ~~hh~hhðd ~~oo~ooÞ ¼ 0 for ~~oo~oo A ~~WW~WW�. That is, ð~~WW~WW�; d; ~~hh~hhÞ
defines a cycle over ~AA in the sense of [8], Chapter III.1.a, Definition 1.

Suppose that ~AA is unital. The cycle structure induces a map from K0ð ~AAÞ to C ([8],
Chapter III.3, Proposition 2). To fix normalizations, let p A ~AA be a projection with corre-
sponding class ½p� A K0ð ~AAÞ. Then the pairing of the Chern character of ½p� with ~hh is defined
to be

hchð½p�Þ; ~hhi ¼ ð2piÞ�degð~hhÞ=2~~hh~hhðpe�p dp dppÞ:ð5:4Þ

One can check that p dp dp p ¼ pð~‘‘pÞð~‘‘pÞpþ pYp, which in turn equals the curvature of
the connection p � ‘ � p. Thus

hchð½p�Þ; ~hhi ¼ ð2piÞ�degð~hhÞ=2~hhðpe�ðp�‘�pÞ
2

pÞ:ð5:5Þ

This is consistent with well-known formulae if E is a finitely-generated projective A-
module, but we have not assumed that E is finitely-generated projective. The equation
extends to p A Mnð ~AAÞ in an obvious way.

We will need an extension of this formula to the nonunital case. We suppose again
that we have the algebra ~WW� and the connection ~‘‘ on it. In general, ~‘‘2 may not be given in
terms of an element of ~WW2. Instead, as in [25], Section 2, we make the weaker assumption

that ~‘‘2 comes from a multiplier ðl; rÞ of ~WW�. This means that l and r are linear maps from
~WW� to itself such that for all ~oo1; ~oo2 A ~WW�, we have lð ~oo1 ~oo2Þ ¼ lð ~oo1Þ ~oo2, rð ~oo1 ~oo2Þ ¼ o1rð ~oo2Þ
and ~oo1lð ~oo2Þ ¼ rð ~oo1Þ ~oo2. Then we assume that ~‘‘2ð ~ooÞ ¼ lð ~ooÞ � rð ~ooÞ for some ðl; rÞ of degree
2. (If ~AA is unital then we recover Y by Y ¼ lð1Þ ¼ rð1Þ, and ðl; rÞ are given in terms of Y
by lð ~ooÞ ¼ Y ~oo, rð ~ooÞ ¼ ~ooY.) With this understanding, p dp dp p ¼ pð~‘‘pÞð~‘‘pÞpþ plðpÞ and
equation (5.5) still makes sense for p A ~AA.

Next, recall that if ~AA is nonunital and ~AAþ is the algebra obtained by adding a unit to
~AA, with canonical homomorphism p : ~AAþ!C, then K0ð ~AAÞ ¼ Ker

�
p� : K0ð ~AAþÞ!K0ðCÞ

�
.

Thus an element of K0ð ~AAÞ can be represented as p� p0 with the projections p; p0 AMnð ~AAþÞ
satisfying p�ðpÞ ¼ p�ðp0Þ A MnðCÞ. Then the equation

hchð½p� p0�Þ; ~hhi ¼ ð2piÞ�degð~hhÞ=2~hhðpe�ðp�‘�pÞ
2

p� p0e
�ðp0�‘�p0Þ2p0Þð5:6Þ

gives a well-defined map on K0ð ~AAÞ.

5.1. Finitely-generated projective A-modules. Now suppose that E ¼ EþlE� is Z2-
graded, with EG finitely-generated projective A-modules. We assume that ‘ preserves the
grading. Put ~WW� ¼ HomAðE;W�nA EÞ. We assume that ~AA ¼ EndAðEÞ has a holomorphic
functional calculus. For example, it su‰ces that A be a complete locally convex topological

algebra. Put e ¼
	
1 0

0 1



and v ¼

	
1 0

0 �1



.

Given D A HomAðEþ;E�Þ and D� A HomAðE�;EþÞ, we assume that the spectra of
DD� and D�D are contained in the nonnegative reals. We construct an index projection
following [9] and [23]. Let u A CyðRÞ be an even function such that wðxÞ ¼ 1� x2uðxÞ is
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a Schwartz function and the Fourier transforms of u and w have compact support [23],
Lemma 2.1. Define u A Cy

�
½0;yÞ

�
by uðxÞ ¼ uðx2Þ. Put P ¼ uðD�DÞD�, which we will

think of as a parametrix for D, and put Sþ ¼ I �PD, S� ¼ I �DP. Consider the operator

l ¼
	
Sþ �ðI þ SþÞP
D S�



;ð5:7Þ

with inverse

l�1 ¼
	

Sþ PðI þ S�Þ
�D S�



:ð5:8Þ

The index projection is defined by

p ¼ l
eþ v

2
l�1 ¼

	
S2
þ SþðI þ SþÞP

S�D I � S2
�



:ð5:9Þ

Put

p0 ¼
e� v

2
¼
	
0 0

0 1



:ð5:10Þ

We note that the supertrace Trs : EndAðEÞ ! A=½A;A� is given by

TrsðMÞ ¼ Tr

	
eþ v

2
M

eþ v

2



� Tr

	
e� v

2
M

e� v

2



ð5:11Þ

¼ TrðplMl�1pÞ � Trðp0Mp0Þ:

Let us define a new connection on E by

‘ 0 ¼
	
eþ v

2
l�1 � ‘ � l eþ v

2



þ
	
e� v

2
‘
e� v

2



:ð5:12Þ

Then by construction,

l � ‘ 0 � l�1 ¼ ðp � ‘ � pÞ þ
�
ð1� pÞl � ‘ � l�1ð1� pÞ

�
:ð5:13Þ

In particular,

Trðpe�ðp�‘�pÞ
2

pÞ ¼ Trðple�ð‘ 0Þ
2

l�1pÞ:ð5:14Þ

Also, from (5.12), we have

Trðp0e�‘
2

p0Þ ¼ Trðp0e�ð‘
0Þ2p0Þ:ð5:15Þ

Using (5.11), we see that we can write chð½p� p0�Þ as the Chern character form of a con-
nection on E, namely

chð½p� p0�Þ ¼ RTrsðe�ð‘
0Þ2Þ:ð5:16Þ

For future use, we note that ð‘ 0Þþ ¼ Sþ‘
þSþ þPðI þ S�Þ‘�D and ð‘ 0Þ� ¼ ‘�.
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So far in this section we have been working with algebraic tensor products. If A is a
complete locally convex topological algebra then it is straightforward to extend the state-
ments to the topological setting.

Lemma 9. Suppose that A is a superconnection on E. Then for any closed graded

trace ~hh on HomAðE;W�nA EÞ,

hchð½p� p0�Þ; ~hhi ¼ ~hh
�
chðAÞ

�
:ð5:17Þ

Proof. In general, if fAðtÞgt A ½0;1� is a smooth 1-parameter family of superconnec-
tions on E then

ch
�
Að1Þ

�
� ch

�
Að0Þ

�
¼ Rd

Ð
½0;1�

Trs

	
dA

dt
e�AðtÞ

2



dt:ð5:18Þ

Thus it su‰ces to construct a smooth path in the space of superconnections between ‘ 0 and
A, for example the linear homotopy AðtÞ ¼ tAþ ð1� tÞ‘ 0. r

5.2. Fiber bundles. Let p : M ! B be a fiber bundle with closed even-dimensional
fiber Z. Endow the fiber bundle with a vertical Riemannian metric gTZ and a horizontal
distribution THM. Let E be a Hermitian vector bundle on M which is a fiberwise Cli¤ord
bundle, with compatible connection ‘E . Let E be the smooth sections of the Z2-graded
vector bundle p!ðEÞ on B, whose fiber over b is CyðZb;EjZb

Þ.

Take A ¼ CyðBÞ, W� ¼ W�ðBÞ and let ‘G be the natural Hermitian connection on
EG ([2], Proposition 10.10). Let ~WW� be the subalgebra of HomCyðBÞ

�
E;W�ðBÞnCyðBÞ E

�
consisting of elements with a smooth fiberwise integral kernel Kðz;wÞ. Put ~AA ¼ ~WW0, a non-
unital algebra if dimðZÞ > 0. Given a closed current h A ZevenðB;RÞ, let ~hh be the graded

trace on ~WW� given by ~hhðKÞ ¼
Ð
h

	 Ð
Z

Kðz; zÞ dvolZ


.

Let D : Eþ ! E� be the vertical Dirac operator. Define the index projection p A ~AA
as in (5.9). Define e and v as before. Then the index of D is defined to be
IndðDÞ ¼ ½p� p0� A K0ð ~AAÞ. The Chern character of IndðDÞ pairs with h by (5.6).

Let us note that although pe�ðp�‘�pÞ
2

p and p0e
�ðp0�‘�p0Þ2p0 may not individually lie in

~WW�, their di¤erence does. For example, the component in ~WW0 is

	
S2
þ SþðI þ SþÞP

S�D I � S2
�



�
	
0 0

0 1



¼
	

S2
þ SþðI þ SþÞP

S�D �S2
�



:ð5:19Þ

This is related to the fact that the K-theory of a nonunital algebra is defined in terms of the
K-theory of the algebra obtained by adding a unit.

For s > 0, let ABismut
s denote the Bismut superconnection on p!E.

Proposition 4.
�
ch
�
IndðDÞ

�
; ~hh
�
¼ ~hh
�
chðABismut

s Þ
�
.
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Proof. We can homotop from D to sD in the definition of the index projection
without changing the K-theory class and then everywhere change sD to D, to easily reduce
to the case s ¼ 1. Define ‘ 0 as in (5.12). As in the proof of Lemma 9, we wish to homotop
from ‘ 0 to ABismut

1 and then apply (5.18). The only issue is to write things in a way so that
the formal expressions are well-defined.

First, for t A ½0; 1� put

AðtÞ ¼
	
ð‘ 0Þþ tD�

tD ð‘ 0Þ�


:ð5:20Þ

Write

e�AðtÞ
2

¼
	
e�AðtÞ

2

11 e�AðtÞ
2

12

e�AðtÞ
2

21 e�AðtÞ
2

22



:ð5:21Þ

Put

ch
�
AðtÞ

�
¼ R

�
TrðSþe�AðtÞ

2

11SþÞ þ Tr
�
De�AðtÞ

2

11PðI þ S�Þ � e�AðtÞ
2

22

��
:ð5:22Þ

Formally, the right-hand-side of (5.22) equals R
�
Trðe�AðtÞ2 11Þ � Trðe�AðtÞ2 22Þ

�
. To see that

the traces in the right-hand-side of (5.22) make sense, let us compute AðtÞ2. In an ungraded
notation, we have

ð5:23Þ

AðtÞ2 ¼
	 �

ð‘ 0Þþ
�2 þ t2D�D t½ð‘ 0Þ�;D�� þ t

�
ð‘ 0Þþ � ð‘ 0Þ�

�
D�

t½ð‘ 0Þþ;D� � t
�
ð‘ 0Þþ � ð‘ 0Þ�

�
D

�
ð‘ 0Þ�

�2 þ t2DD�



:

The term in the lower left-hand corner of (5.23) is

t½ð‘ 0Þþ;D� � t
�
ð‘ 0Þþ � ð‘ 0Þ�

�
Dð5:24Þ

¼ t½ð‘ 0Þ�;D� � tD
�
ð‘ 0Þþ � ð‘ 0Þ�

�
¼ t½‘�;D� � tD

�
Sþ‘

þSþ þPðI þ S�Þ‘�D� ‘�
�

¼ tðS2
�‘
�D�DSþ‘

þSþÞ:

Then modulo uniformly smoothing operators,

AðtÞ2 1
	�ð‘ 0Þþ�2 þ t2D�D t½ð‘ 0Þ�;D�� þ t

�
ð‘ 0Þþ � ð‘ 0Þ�

�
D�

0 D
��
ð‘ 0Þþ

�2 þ t2D�D
�
P



ð5:25Þ

and

e�AðtÞ
2

1

	
e�ððð‘

0ÞþÞ2þt2D�DÞ Z

0 De�ððð‘
0ÞþÞ2þt2D�DÞP



;ð5:26Þ
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where

Z ¼ �
Ð1
0

e�uððð‘
0ÞþÞ2þt2D�DÞ�t½ð‘ 0Þ�;D�� þ t

�
ð‘ 0Þþ � ð‘ 0Þ�

�
D�
�

ð5:27Þ

e�ð1�uÞðð‘
�Þ2þt2DD�Þ du:

It follows that the right-hand-side of (5.22) is well-defined.

We claim that
�
ch
�
IndðDÞ

�
; ~hh
�
¼ ~hh
�
ch
�
Að0Þ

��
. To see this, we have

pe�ðp�‘�pÞ
2

p ¼ l

	
e�ðð‘

0ÞþÞ2 0

0 0



l�1ð5:28Þ

¼
	
Sþe

�ðð‘ 0ÞþÞ2Sþ Sþe
�ðð‘ 0ÞþÞ2PðI þ S�Þ

De�ðð‘
0ÞþÞ2Sþ De�ðð‘

0ÞþÞ2PðI þ S�Þ



:

Then

Trðpe�ðp�‘�pÞ
2

p� p0e
�ðp0�‘�p0Þ2p0Þ ¼ TrðSþe�ðð‘

0ÞþÞ2SþÞð5:29Þ

þ Tr
�
De�ðð‘

0ÞþÞ2PðI þ S�Þ � e�ð‘
�Þ2�;

from which the claim follows.

Let us note that the terms being traced in (5.22) are in fact uniformly smoothing with
respect to t, due to factors of the form SG.

We now wish to write the analog of equation (5.18). Although ch
�
AðtÞ

�
is well-

defined, it is not clear in the present setting that the integrand in (5.18) is integrable for
small t. Let us first do a formal calculation. With respect to (5.20), (5.26) and (5.27), we
have

dA

dt
¼
	

0 D�

D 0



ð5:30Þ

and

Trs

	
dA

dt

	
e�ððð‘

0ÞþÞ2þt2D�DÞ Z

0 De�ððð‘
0ÞþÞ2þt2D�DÞP




¼ �TrðDZÞð5:31Þ

¼ tTr

	
D
Ð1
0

e�uððð‘
0ÞþÞ2þt2D�DÞ�½ð‘ 0Þ�;D�� þ �ð‘ 0Þþ � ð‘ 0Þ��D��

e�ð1�uÞðð‘
�Þ2þt2DD�Þ du



:
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Modulo smoothing operators,

D
Ð1
0

e�uððð‘
0ÞþÞ2þt2D�DÞ�½ð‘ 0Þ�;D�� þ �ð‘ 0Þþ � ð‘ 0Þ��D��e�ð1�uÞðð‘�Þ2þt2DD�Þ duð5:32Þ

1
Ð1
0

e�uðð‘
�Þ2þt2DD�ÞD

�
½ð‘ 0Þ�;D�� þ

�
ð‘ 0Þþ � ð‘ 0Þ�

�
D�
�

� e�ð1�uÞðð‘
�Þ2þt2DD�Þ du

1
Ð1
0

e�uðð‘
�Þ2þt2DD�Þ½‘�;DD��e�ð1�uÞðð‘�Þ

2þt2DD�Þ du:

Then

(5.33) Tr

	 Ð1
0

e�uðð‘
�Þ2þt2DD�Þ½‘�;DD��e�ð1�uÞðð‘�Þ2þt2DD�Þ du




¼ Trð½‘�;DD��e�ðð‘�Þ2þt2DD�ÞÞ ¼ �t�2d Trðe�ðð‘�Þ2þt2DD�ÞÞ:

The upshot is that we can write

ð5:34Þ ch
�
Að1Þ

�
� ch

�
Að0Þ

�

¼ Rd
Ð
½0;1�

	
Trs

	
dA

dt
e�AðtÞ

2



þ t�1d Trðe�ðð‘�Þ

2þt2DD�ÞÞ


dt;

where the integrand in the right-hand-side of (5.34), after the terms are appropri-
ately grouped, is the trace of a smoothing operator that is continuous in t. Thus
~hh
�
ch
�
Að0Þ

��
¼ ~hh
�
ch
�
Að1Þ

��
.

Next, we perform a linear homotopy from Að1Þ to ABismut
1 . As the 0-th order part of

the superconnection always equals

	
0 D�

D 0



during this homotopy, it is easy to justify

the formal superconnection argument, using (5.18), that ~hh
�
ch
�
Að1Þ

��
¼ ~hh
�
chðABismut

1 Þ
�
.

This proves the proposition. r

5.3. Fiber bundles over cross-product groupoids. Using the notation of Section 4, put
A ¼ CyðB;BoÞ, W� ¼ WyðB;BoÞ, E ¼ Cy

BoðM̂M; ÊEÞ, ~AA ¼ EndyCyðB;BoÞ
�
Cy

BoðM̂M; ÊEÞ
�
and

~WW� ¼ Homy
CyðB;BoÞ

�
Cy

BoðM̂M; ÊEÞ;W�ðB;BoÞnCyðB;BoÞC
y
BoðM̂M; ÊEÞ

�
:

Define the index projection as in (5.9). Let h be a closed graded trace on W�ðB;BoÞ. Then
we can go through the same steps as in the proof of Proposition 4 to conclude

Theorem 3.

�
ch
�
IndðDÞ

�
; ~hh
�
¼ hRTrs;heiðe�A

2
s Þ; hi:ð5:35Þ
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We note that we use finite-propagation-speed estimates in order to know that we
can carry out the arguments in ~WW�. That is, we use the fact that if f A SðyÞðRÞ is a func-
tion whose Fourier transform f̂f ðkÞ has exponential decay in jkj then the Schwartz kernel
f ðsQÞðz;wÞ has exponential decay in dðz;wÞ. In order to obtain uniform decay estimates in
the analog of the last step of Proposition 4, as in [2], Theorem 9.48 we use the fact that in
the n-th order term of the Duhamel expansion of e�A

2
s , there is always a factor of the form

e�rs
2Q2

with rf
1

nþ 1
.

Putting together Theorems 2 and 3, we obtain

Theorem 4.

�
ch
�
IndðDÞ

�
; ~hh
�
¼
Ð
M

ÂAðTFÞ chðVÞn�Fh:ð5:36Þ

If the fiber Z is instead odd-dimensional then one can prove Theorem 4 by a standard
trick involving taking the product with a circle.

Corollary 2. Let A be a subalgebra of the reduced cross-product C �-algebra
C0ðBÞcr G which is stable under the holomorphic functional calculus in C0ðBÞcr G and

which contains CyðB;BoÞ. Let h be a closed graded trace on W�ðB;CGÞ which extends to

give a cyclic cocycle on A. Suppose that TZ is spin and that gTZ has fiberwise positive scalar

curvature. Then
Ð
M

ÂAðTFÞn�Fh ¼ 0.

Proof. Let D be the pure Dirac operator. As h is a closed graded trace on
W�ðB;CGÞ, it gives rise to a cyclic cocycle on Cy

c ðBÞcG through its character ([8],
Section III.1.a). By assumption, this has an extension h 0 to A. Now we have
IndðDÞ A K�

�
C0ðBÞcr G

�
GK�ðAÞ. Then (5.36) becomes

hIndðDÞ; h 0i ¼
Ð
M

ÂAðTFÞn�Fh:ð5:37Þ

However, by the Lichnerowicz argument, IndðDÞ ¼ 0. The corollary follows. r

Suppose that B ¼ S1, with G acting by orientation-preserving di¤eomorphisms.
There is a left action of G on W1ðBÞ. Let v A W1ðBÞ be a volume form. Define a closed
graded trace on W�ðB;CGÞ by

hð fg0 dg1 dg2Þ ¼
Ð
B

f

	
ln

v

g0g1 � v
d ln

g0g1 � v
g0 � v

� ln
g0g1 � v
g0 � v

d ln
v

g0g1 � v



:ð5:38Þ

Then n�Fh is proportionate to the Godbillon-Vey class GV A H3ðM;RÞ ([8], Chapter
III.6.b, Theorem 17). Furthermore, the hypotheses of Corollary 2 are satisfied ([8], Chapter
III.7.b).

Corollary 3. Suppose that B ¼ S1, G acts on B by orientation-preserving di¤eomor-

phisms, TZ is spin and gTZ has fiberwise positive scalar curvature. Then
Ð
M

ÂAðTFÞGV ¼ 0.
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In general, if dimðBÞ ¼ q and the action of G on B is orientation-preserving then one
can write down a closed graded trace h on W�ðB;CGÞ so that n�Fh is proportionate to the
Godbillon-Vey class GV A H2qþ1ðM;RÞ, and the above results extend.

6. Étale groupoids

In this section we generalize the results of the previous sections from cross-product
groupoids to general smooth Hausdor¤ étale groupoids. In Subsection 6.1 we explain in
detail how, in the case of cross-product groupoids, the expressions of this section specialize
to the expressions of the previous sections.

We follow the groupoid conventions of [8], Sections II.5 and III.2.d. Let G be a smooth
Hausdor¤ groupoid, with units Gð0Þ. We suppose that G is étale, i.e. that the range map
r : G ! Gð0Þ and the source map s : G ! Gð0Þ are local di¤eomorphisms. To construct the
product of g0; g1 A G, we must have sðg0Þ ¼ rðg1Þ. Then rðg0g1Þ ¼ rðg0Þ and sðg0g1Þ ¼ sðg1Þ.
Given x A Gð0Þ, put Gx ¼ r�1ðxÞ, Gx ¼ s�1ðxÞ and Gx

x ¼ Gx XGx.

Given f0; f1 A Cy
c ðGÞ, the convolution product is

ð f0 f1ÞðgÞ ¼
P

g0g1¼g
f0ðg0Þ f1ðg1Þ:ð6:1Þ

The sum in (6.1) is finite.

We write GðnÞ for the n-chains of composable elements of G, i.e.

GðnÞ ¼ fðg1; . . . ; gnÞ A Gn : sðg1Þ ¼ rðg2Þ; . . . ; sðgn�1Þ ¼ rðgnÞg:ð6:2Þ

As G is étale, GðnÞ is a manifold of the same dimension as G. As in [8], Section III.2.d,
we define a double complex by letting Wm;n

c ðGÞ be the quotient of Wm
c ðGðnþ1ÞÞ by the

forms which are supported on fðg0; . . . ; gnÞ : gj is a unit for some j > 0g. The product of
o1 A W�;n1c ðGÞ and o2 A W�;n2c ðGÞ is given by

ðo1o2Þðg0; . . . ; gn1þn2Þ ¼
P

gg 0¼gn1
o1ðg0; . . . ; gn1�1; gÞ5o2ðg 0; gn1þ1; . . . ; gn1þn2Þð6:3Þ

�
	
ð�1Þn1�1

P
gg 0¼g0

o1ðg; g 0; g1; . . . ; gn1�1Þ

þ ð�1Þn1�2
P

gg 0¼g1
o1ðg0; g; g 0; g2; . . . ; gn1�1Þ

þ � � � þ
P

gg 0¼gn1�1
o1ðg0; . . . ; gn1�2; g; g

0Þ



5o2ðgn1 ; . . . ; gn1þn2Þ:

In forming the wedge product in (6.3), the maps r and s are used to identify cotangent
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spaces. The first di¤erential d1 on W�;�c ðGÞ is the de Rham di¤erential. To define the second
di¤erential d2, let wGð0Þ A CyðGÞ be the characteristic function for the units. Then

ðd2oÞðg0; . . . ; gnþ1Þ ¼ wGð0Þ ðg0Þoðg1; . . . ; gnÞ:ð6:4Þ

We let W�c ðGÞ denote the GDA formed by the total complex of W�;�c ðGÞ.

Let P be a smooth G-manifold ([8], Section II.10.a, Definition 1). That is, first of all,
there is a submersion p : P! Gð0Þ. Given x A Gð0Þ, we write Zx ¼ p�1ðxÞ. Putting

P�Gð0Þ G ¼ fðp; gÞ A P� G : p A ZrðgÞg;ð6:5Þ

we must also have a map P�Gð0Þ G ! P, denoted ðp; gÞ ! pg, such that pg A ZsðgÞ and
ðpg1Þg2 ¼ pðg1g2Þ for all ðg1; g2Þ A Gð2Þ. It follows that for each g A G, the map p! pg

gives a di¤eomorphism from ZrðgÞ to ZsðgÞ. The groupoid G ¼ PcG has underlying space
P�Gð0Þ G, units Gð0Þ ¼ P and maps rðp; gÞ ¼ p and sðp; gÞ ¼ pg.

We assume that P is a proper G-manifold, i.e. that the map P�Gð0Þ G ! P� P given
by ðp; gÞ ! ðp; pgÞ is proper. Then G ¼ PcG is a proper groupoid, i.e. the map

G! Gð0Þ � Gð0Þ given by g!
�
rðgÞ; sðgÞ

�
is proper ([8], Section II.10.a, Definition 2). We

also assume that G acts cocompactly on P, i.e. that the quotient of P by the equiva-
lence relation (p@ p 0 if p ¼ p 0g for some g A G) is compact. Equivalently, G ¼ PcG is

a cocompact groupoid, i.e. the quotient of Gð0Þ by the equivalence relation (x@ x 0 if
ðx; x 0Þ ¼

�
rðgÞ; sðgÞ

�
for some g A G) is compact. Finally, we assume that G acts freely on P,

i.e. that the preimage of the diagonal in P� P under the map P�Gð0Þ G ! P� P equals
P�Gð0Þ Gð0Þ. Equivalently, G ¼ PcG is a free groupoid, i.e. the preimage of the diagonal
in Gð0Þ � Gð0Þ under the map ðr; sÞ : G! Gð0Þ � Gð0Þ equals Gð0Þ.

Now let G be any proper cocompact étale groupoid. The product

Cy
c ðGÞ � Cy

c ðGð0ÞÞ ! Cy
c ðGð0ÞÞ

is given explicitly by

ð fFÞðxÞ ¼
P

g AGx

f ðgÞF
�
sðgÞ

�
:ð6:6Þ

We wish to define a connection

‘can : Cy
c ðGð0ÞÞ ! W1

c ðGÞnCy
c ðGÞC

y
c ðGð0ÞÞ:ð6:7Þ

To do so, we use isomorphisms

W1;0
c ðGÞnCy

c ðGÞC
y
c ðGð0ÞÞ1W1

c ðGð0ÞÞ and W0;1
c ðGÞnCy

c ðGÞC
y
c ðGð0ÞÞ1Cy

c ðGÞ=Cy
c ðGð0ÞÞ:

The latter isomorphism is realized by saying that the image of onF in Cy
c ðGÞ=Cy

c ðGð0ÞÞ
is given by

ðoFÞðg0Þ ¼
P

gg 0¼g0
oðg; g 0ÞF

�
sðg0Þ

�
�

P
g AG sðg0Þ

oðg0; gÞF
�
sðgÞ

�
ð6:8Þ

for g0 B Gð0Þ. Then with this isomorphism, the multiplication
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Cy
c ðGÞ �

�
W0;1

c ðGÞnCy
c ðGÞC

y
c ðGð0ÞÞ

�
! W0;1

c ðGÞnCy
c ðGÞC

y
c ðGð0ÞÞ;ð6:9Þ

i.e. the multiplication

Cy
c ðGÞ �

Cy
c ðGÞ

Cy
c ðGð0ÞÞ

! Cy
c ðGÞ

Cy
c ðGð0ÞÞ

ð6:10Þ

is given by

ð fFÞðg0Þ ¼
P

gg 0¼g0
f ðgÞFðg 0Þ � f ðg0Þ

P
g AG sðg0Þ

FðgÞð6:11Þ

for g0 B Gð0Þ.

More generally, there is an isomorphism between Wm;n
c ðGÞnCy

c ðGÞC
y
c ðGð0ÞÞ and the

quotient of Wm
c ðGnÞ by the forms which are supported on

fðg0; . . . ; gn�1Þ : gj is a unit for some jf 0g;

under which the image of onF is given by

ðoFÞðg0; . . . ; gn�1Þ ¼
P

gg 0¼g0
oðg; g 0; g1; . . . ; gn�1ÞF

�
sðgn�1Þ

�
ð6:12Þ

�
P

gg 0¼g1
oðg0; g; g 0; g2; . . . ; gn�1ÞF

�
sðgn�1Þ

�

þ � � � þ ð�1Þn�1
P

gg 0¼gn�1
oðg0; . . . ; gn�2; g; g 0ÞF

�
sðgn�1Þ

�
þ ð�1Þn

P
g AG sðgn�1Þ

oðg0; . . . ; gn�1; gÞF
�
sðgÞ

�

for g0; . . . ; gn�1 B Gð0Þ.

Now let h A Cy
c ðGð0ÞÞ satisfy P

g AGx

h
�
sðgÞ

�
¼ 1ð6:13Þ

for all x A Gð0Þ. Then there is a connection

‘can ¼ ‘1;0 l ‘0;1ð6:14Þ

on Cy
c ðGð0ÞÞ where ‘1;0ðFÞ A W1

c ðGð0ÞÞ is the de Rham di¤erential of F A Cy
c ðGð0ÞÞ and

‘0;1ðFÞ A W0;1
c ðGÞnCy

c ðGÞC
y
c ðGð0ÞÞ1Cy

c ðGÞ=Cy
c ðGð0ÞÞ is given by

�
‘0;1ðFÞ

�
ðg0Þ ¼ F

�
rðg0Þ

�
h
�
sðg0Þ

�
ð6:15Þ

for g0 B Gð0Þ.
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One sees that

ð‘canÞ2 A HomCy
c ðGÞ

�
Cy
c ðGð0ÞÞ;W2

c ðGÞnCy
c ðGÞC

y
c ðGð0ÞÞ

�
acts on Cy

c ðGð0ÞÞ as left multiplication by a 2-form Y which commutes with Cy
c ðGÞ.

Explicitly, Y ¼ Y1;1 þY0;2 where

Y1;1ðg0; g1Þ ¼ �wGð0Þ ðg0g1Þd
de Rhamh

�
sðg0Þ

�
ð6:16Þ

and

Y0;2ðg0; g1; g2Þ ¼ �wGð0Þ ðg0g1g2Þh
�
sðg0Þ

�
h
�
sðg1Þ

�
ð6:17Þ

for g1; g2 B Gð0Þ. Put

chð‘canÞ ¼ e�
Y
2pi A EndW�c ðGÞ

�
W�c ðGÞnCy

c ðGÞC
y
c ðGð0ÞÞ

�
:ð6:18Þ

Then the abelianization of chð‘canÞ is closed and its cohomology class is independent of the
choice of h.

Now suppose that G acts properly and cocompactly on P. Give P a G-invariant
fiberwise Riemannian metric. An element K of EndCy

c ðGÞ
�
Cy
c ðPÞ

�
has a Schwartz kernel

Kðpjp 0Þ with respect to its fiberwise action, so that we can write

ðKFÞðpÞ ¼
Ð

Zpð pÞ

Kðpjp 0ÞFðp 0Þ dvolZpð pÞ :ð6:19Þ

Let EndyCy
c ðGÞ

�
Cy
c ðPÞ

�
denote the subalgebra of EndCy

c ðGÞ
�
Cy
c ðPÞ

�
consisting of elements

with a smooth integral kernel.

Let f A Cy
c ðPÞ satisfy

P
g AG pð pÞ

fðpgÞ ¼ 1ð6:20Þ

for all p A P. Define a trace Trhei on EndyCy
c ðGÞ

�
Cy
c ðPÞ

�
by

TrheiðKÞðg0Þ ¼
Ð

Zg0

fðpÞKðpjpÞ dvolZg0
;ð6:21Þ

for g0 A Gð0Þ. Then Trhei takes value in
Cy
c ðGÞ

½Cy
c ðGÞ;Cy

c ðGÞ�
and is concentrated at the units.

Put

Gn �s P ¼ fðg0; . . . ; gn�1; pÞ A Gn � P : p A Zsðgn�1Þg:ð6:22Þ

There is an isomorphism, as in (6.12), between Wm;n
c ðGÞnCy

c ðGÞC
y
c ðPÞ and the quotient of

Wm
c ðGn �s PÞ by the forms which are supported on
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fðg0; . . . ; gn�1; pÞ : gj is a unit for some jf 0g:ð6:23Þ

Consider the Z-graded algebra

Homy
Cy
c ðGÞ

�
Cy
c ðPÞ;W�c ðGÞnCy

c ðGÞC
y
c ðPÞ

�
ð6:24Þ

consisting of elements K of HomCy
c ðGÞ

�
Cy
c ðPÞ;W�c ðGÞnCy

c ðGÞC
y
c ðPÞ

�
with a smooth inte-

gral kernel. Using the above isomorphism, the kernel of an element K can be written in the
form

Kðg0; . . . ; gn�1; pjp 0Þ A LmðT �rðg0ÞG
ð0ÞÞð6:25Þ

where ðg0; . . . ; gn�1; pÞ A Gn �s P, g0; . . . ; gn�1 B Gð0Þ, and p 0 A Zrðg0Þ. The action of K on
Cy
c ðPÞ is given by

ðKFÞðg0; . . . ; gn�1; pÞ ¼
Ð

Zrðg0Þ

Kðg0; . . . ; gn�1; pjp 0ÞFðp 0Þ dvolZrðg0Þ
ð6:26Þ

for g0; . . . ; gn�1 B Gð0Þ. Then there is a trace

Trhei : Homy
Cy
c ðGÞ

�
Cy
c ðPÞ;W�c ðGÞnCy

c ðGÞC
y
c ðPÞ

�
! W�c ðGÞabð6:27Þ

given by

TrheiðKÞðg0; . . . ; gnÞð6:28Þ

¼ wGð0Þ ðg0 � � � gnÞ
Ð

Zrðg0Þ

fðpÞ

�
wGð0Þ ðg0Þ

P
gg 0¼gn

K
�
g1; . . . ; gn�1; g; pðg 0Þ

�1 j p
�

� wGð0Þ ðg0Þ
P

gg 0¼gn�1
K
�
g1; . . . ; gn�2; g; g

0; pðgnÞ
�1 j p

�

þ wGð0Þ ðg0Þ
P

gg 0¼gn�2
K
�
g1; . . . ; gn�3; g; g

0; gn�1; pðgnÞ
�1 j p

�

þ � � � þ ð�1Þn�1wGð0Þ ðg0Þ
P

gg 0¼g1
K
�
g; g 0; g2; . . . ; gn�1; pðgnÞ

�1 j p
�

þ ð�1ÞnK
�
g0; . . . ; gn�1; pðgnÞ

�1 j p
��

dvolZrðg0Þ
:

Let L be a topological space which is the total space of a fiber bundle s : L! Gð0Þ.
We suppose that each fiber Lx ¼ s�1ðxÞ is a complete length space with metric dx. We
also assume that G acts isometrically, properly and cocompactly on L. Let i : G ! L be a
G-equivariant map, not necessarily continuous. That is, for each x A Gð0Þ, i sends Gx to Lx

and for each g A G, the composite map GrðgÞ !
�g

GsðgÞ !
i
LsðgÞ equals the composite map

GrðgÞ !
i
LrðgÞ !

�g
LsðgÞ. We assume that i is proper in the sense that the preimage of a com-

pact set has compact closure. Note that i gives a possibly-discontinuous section of s. We
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assume in addition that for any compact subset K of Gð0Þ, iðKÞ has compact closure. Define
a ‘‘length function’’ on G by

lðgÞ ¼ dsðgÞ
�
i
�
sðgÞ

�
; iðgÞ

�
;ð6:29Þ

where we think of g and sðgÞ A Gð0Þ as living in GsðgÞ. Then lðg0g1Þe lðg0Þ þ lðg1Þ. Further-
more, for each x A Gð0Þ, the restriction of l to Gx is proper.

Let Cy
o ðGÞ be the set of f A CyðGÞ such that

1. s�f has support in some compact subset K of Gð0Þ, and,

2. for all q A Zþ,

sup
x AK

sup
g AGx

eqlðgÞj f ðgÞj < y;ð6:30Þ

along with the analogous property for derivatives. Then Cy
o ðGÞ is an algebra with the

same formal multiplication as in (6.1), and is independent of the choices of L and i; com-
pare [20], Proposition 3. We define W�oðGÞ similarly. That is, first define sn on Gðnþ1Þ by
snðg0; . . . ; gnÞ ¼ sðgnÞ. Let ~WWm;n

o ðGÞ be the elements o of WmðGnþ1Þ such that

1. s�no has support in some compact subset K of Gð0Þ, and,

2. for all q A Zþ,

sup
x AK

sup
ðg0;...; gnÞ A s�1n ðxÞ

eqðlðg0Þþ���þlðgnÞÞjoðg0; . . . ; gnÞj < y;ð6:31Þ

along with the analogous property for derivatives. Let W�oðGÞ be the quotient of ~WWm:n
o ðGÞ

by the forms which are supported on fðg0; . . . ; gnÞ : gj is a unit for some j > 0g. Then
W�oðGÞ is a GDA, with the same formal multiplication as in (6.3).

Suppose now that G acts properly and cocompactly on P as before. Put

Cy
o ðPÞ ¼ Cy

o ðGÞnCy
c ðGÞC

y
c ðPÞ:ð6:32Þ

Using the cocompactness of the G-action on P, the elements of Cy
o ðPÞ can be characterized

as elements F A CyðPÞ such that for any x A Gð0Þ, p A Zx and q A Zþ, we have

sup
z AZx

eqdðz;xÞjFðzÞj < y;ð6:33Þ

along with the analogous property for the covariant derivatives of F. Let EndyCy
o ðGÞ

�
Cy

o ðPÞ
�

be the subalgebra of EndCy
o ðGÞ

�
Cy

o ðPÞ
�
consisting of elements K with a smooth integral

kernel Kðz;wÞ. Then the elements of EndyCy
o ðGÞ

�
Cy

o ðPÞ
�
can be characterized as the G-

invariant elements KðzjwÞ A CyðP�Gð0Þ PÞ such that for any x A Gð0Þ and q A Zþ,

sup
z;w AZx

eqdðz;wÞjKðzjwÞj < y;ð6:34Þ
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along with the analogous property for the covariant derivatives of K. With the natural
definition of Homy

Cy
o ðGÞ

�
Cy

o ðPÞ;W�oðGÞnCy
o ðGÞC

y
o ðPÞ

�
, an element K has a kernel as

in (6.25). The formula (6.21) extends to a trace Trhei : End
y
Cy
o ðGÞ !

Cy
o ðGÞ

½Cy
o ðGÞ;Cy

o ðGÞ�
. The

formula (6.28) extends to a trace

Trhei : Homy
Cy

o ðGÞ
�
Cy

o ðPÞ;W�oðGÞnCy
o ðGÞC

y
o ðPÞ

�
! W�oðGÞab:ð6:35Þ

If E is a Z2-graded G-invariant Hermitian vector bundle on P, with an invariant
Hermitian connection, then we can define Cy

o ðP;EÞ and a supertrace

Trs;hei : Homy
Cy
o ðGÞ

�
Cy

o ðP;EÞ;W�oðGÞnCy
o ðGÞC

y
o ðP;EÞ

�
! W�oðGÞab:ð6:36Þ

We now choose a G-invariant vertical Riemannian metric gTZ on the submersion
p : P! Gð0Þ and a G-invariant horizontal distribution THP. Suppose that Z is even-
dimensional. Let ÊE be a G-invariant Cli¤ord bundle on P which is equipped with a G-
invariant connection. For simplicity of notation, we asssume that ÊE ¼ SZ n̂n V̂V , where SZ

is a vertical spinor bundle and V̂V is an auxiliary vector bundle on P. More precisely, sup-
pose that the vertical tangent bundle TZ has a spin structure. Let SZ be the vertical spinor
bundle, a G-invariant Z2-graded Hermitian vector bundle on P. Let V̂V be another G-
invariant Z2-graded Hermitian vector bundle on P which is equipped with a G-invariant
Hermitian connection. Then we put ÊE ¼ SZ n̂n V̂V . The case of general G-invariant Cli¤ord
bundles ÊE can be treated in a way completely analogous to what follows.

Let Q denote the vertical Dirac-type operator acting on Cy
c ðP; ÊEÞ. From finite-

propagation-speed estimates as in [20], Pf. of Prop. 8, along with the bounded geometry of
fZxgx AGð0Þ , for any s > 0 we have

e�s
2Q2

A EndyCy
o ðGÞ

�
Cy

o ðP; ÊEÞ
�
:ð6:37Þ

Let

ABismut
s : Cy

c ðP; ÊEÞ ! W�c ðGð0ÞÞnCy
c ðGð0ÞÞC

y
c ðP; ÊEÞð6:38Þ

denote the Bismut superconnection on the submersion p : P! Gð0Þ ([2], Proposition 10.15).
It is of the form

ABismut
s ¼ sQþ ‘u � 1

4s
cðTÞ;ð6:39Þ

where ‘u is a certain Hermitian connection and cðTÞ is Cli¤ord multiplication by the cur-
vature 2-form T of the horizontal distribution THP. We also denote by

ABismut
s : Cy

o ðP; ÊEÞ ! W�oðGÞnCy
o ðGÞC

y
o ðP; ÊEÞð6:40Þ

its extension to Cy
o ðP; ÊEÞ. One can use finite-propagation-speed estimates, along with the

bounded geometry of fZxgx AGð0Þ and the Duhamel expansion as in [2], Theorem 9.48, to
show that we obtain a well-defined element e�ðA

Bismut
s Þ2 .
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We now couple ABismut
s to the connection ‘can in order to obtain a superconnection

As : C
y
o ðP; ÊEÞ ! W�oðGÞnCy

o ðGÞC
y
o ðP; ÊEÞ:ð6:41Þ

Let R be the rescaling operator on Weven
o ðGÞab which multiplies an element of W2k

o ðGÞab by
ð2piÞ�k. Doing a Duhamel expansion around e�ðA

Bismut
s Þ2 and using the fact that h has com-

pact support, we can define

e�A
2
s A Homy

Cy
o ðGÞ

�
Cy

o ðP; ÊEÞ;W�oðGÞnCy
o ðGÞC

y
o ðP; ÊEÞ

�
ð6:42Þ

and hence also define RTrs;heiðe�A
2
s Þ A W�oðGÞab. From the superconnection formalism ([2],

Chapter 1.4), RTrs;heiðe�A
2
s Þ is closed and its cohomology class is independent of s > 0; see

[14], Theorem 3.1 for a detailed proof in the analogous case of RTrsðe�ðA
Bismut
s Þ2Þ.

The proof of the next theorem is analogous to that of Theorem 2.

Theorem 5.

lim
s!0

RTrs;heiðe�A
2
s Þ ¼

Ð
Z

fðzÞÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ A W�oðGÞab:ð6:43Þ

Let us note that the right-hand-side of (6.43) pairs with closed graded traces onW�c ðGÞ,
and not just closed graded traces on W�oðGÞ. Let h be a closed graded trace on W�c ðGÞ.

Let EG denote the bar construction of a universal space on which G acts freely. That
is, EG is the geometric realization of a simplicial manifold given by EnG ¼ Gðnþ1Þ, with face
maps

diðg0; . . . ; gnÞ ¼
ðg1; . . . ; gnÞ if i ¼ 0;

ðg0; . . . ; gi�1gi; . . . ; gnÞ if 1e ie n

�
ð6:44Þ

and degeneracy maps

siðg0; . . . ; gnÞ ¼ ðg0; . . . ; gi; 1; giþ1; . . . gnÞ; 0e ie n:ð6:45Þ

Here 1 denotes a unit. The action of G on EG is induced from the action on EnG given
by ðg0; . . . ; gnÞg ¼ ðg0; . . . ; gngÞ. Let BG be the quotient space. Let p : EG ! Gð0Þ be the
map induced from the maps EnG ! Gð0Þ given by ðg0; . . . ; gnÞ ! sðgnÞ. Let J A CðEGÞ be
the ‘‘barycentric coordinate’’ corresponding to the units Gð0ÞHE0G. That is, for each
x A Gð0Þ, p�1ðxÞ is a simplicial complex and Jjp�1ðxÞ is the function on p�1ðxÞ defined as
in [20], (94), with respect to the vertex x instead of the vertex e. Then for all p A EG,P
g AG pð pÞ

JðpgÞ ¼ 1. Let ‘univ be the connection constructed as in (6.14), using J in place of

h. Then pairing chð‘univÞ with h, we construct an element Fh A H�t ðBGÞ.

Put M ¼ P=G, a compact manifold. It inherits a foliation F from the submersion
p : P! Gð0Þ. Let n : M ! BG be the classifying map for the G-action on M̂M. Put
V ¼ V̂V=G, a vector bundle on M. By naturality,�Ð

Z

fðzÞÂAð‘TZÞ chð‘V̂V Þ chð‘canÞ; h

¼
Ð
M

ÂAðTFÞ chðVÞn�Fh:ð6:46Þ

As in the proof of Theorem 4, we obtain
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Theorem 6. Let h be a closed graded trace on W�oðGÞ. Then�
ch
�
IndðDÞ

�
; ~hh
�
¼
Ð
M

ÂAðTFÞ chðVÞn�Fh:ð6:47Þ

Remark. Theorem 6 also follows from [8], Section III.7.g, Theorem 12.

Corollary 4. Let Mn be a compact manifold with a codimension-q foliation F. Let
V be a vector bundle on M and let D be a leafwise Dirac-type operator coupled to V. Let
H�ðTrFÞ denote the Haefliger cohomology of ðM;FÞ ([13]). Recall that there is a linear

map
Ð
F

: H�ðMÞ ! H��nþqðTrFÞ. Let h be a holonomy-invariant closed transverse current.

Then

�
ch
�
IndðDÞ

�
; ~hh
�
¼
�Ð

F

ÂAðTFÞ chðVÞ; h

:ð6:48Þ

Proof. Let H be the holonomy groupoid of F, with source and range maps
sH; rH : H!M [8], Section II.8.a. Let T be a complete transversal for F. That is, T is a q-
dimensional submanifold of M, not necessarily connected, which is transverse toF and has
the property that every leaf of ðM;FÞ intersects T. Put G ¼ r�1H ðTÞX s�1H ðTÞ, the reduced
holonomy groupoid. That is, an element of G is an equivalence class of smooth leafwise
paths in M from T to T, where two paths are equivalent if they have the same endpoints
and the same holonomy. The units are Gð0Þ ¼ T .

Put P ¼ s�1H ðTÞ. Define p : P! Gð0Þ to be the restriction of sH to P. Then for x A T ,
p�1ðxÞ is the holonomy cover of the leaf through x, which we give the induced Riemannian
metric. One can see that G acts freely, properly and cocompactly on P.

Put L ¼ P, s ¼ p and let i : G ! L be the inclusion from r�1H ðTÞX s�1H ðTÞ to s�1H ðTÞ.
It is easy to check that ðL; s; iÞ satisfies the requirements to define W�oðGÞ. Then h defines a
closed graded trace on W�oðGÞ. The right-hand-side of (6.47) becomes the right-hand-side of
(6.48). r

Remark. In order to prove Corollary 4, we do not have to assume that the hol-
onomy groupoid is Hausdor¤. This is because the pairing with the transverse current h
amounts to an integration over Gð0Þ ¼ T . Because of this we are e¤ectively dealing with
forms of the type W�;0o ðGÞ, and so the Hausdor¤ness of G does not play a role.

Remark. To see the relationship between Corollary 4 and Connes’ index theorem for
a foliation with a holonomy-invariant transverse measure m ([8], Section I.5.g, Theorem 7),
let RS A Hn�qðM;RÞ denote the Ruelle-Sullivan current associated to m ([8], Section I.5.b).

Then

� Ð
F

ÂAðTFÞ chðVÞ; m

¼ hÂAðTFÞ chðVÞ;RSi.

Remark. In some cases of foliations, a heat equation proof of Corollary 4, using the
Bismut superconnection, was given in [15].

Corollary 5. Let A be a subalgebra of the reduced groupoid C �-algebra C �r ðGÞ
which is stable under the holomorphic functional calculus in C �r ðGÞ and which contains
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Cy
o ðGÞ. Let h be a closed graded trace on W�c ðGÞ which extends to give a cyclic cocycle on

A. Suppose that TZ is spin and that gTZ has fiberwise positive scalar curvature. ThenÐ
M

ÂAðTFÞn�Fh ¼ 0.

Suppose that dimðGð0ÞÞ ¼ 1, with G acting on Gð0Þ so as to preserve orientation. Let
v A W1ðGð0ÞÞ be a volume form. With a hopefully-clear notation, define a closed graded
trace on W�c ðGÞ, concentrated on W0;2

c ðGÞ, by

hðoÞ ¼
Ð

g0g1g2 AGð0Þ
oðg0; g1; g2Þ

	
ln

v

g0g1 � v
d ln

g0g1 � v
g0 � v

� ln
g0g1 � v
g0 � v

d ln
v

g0g1 � v



:ð6:49Þ

Then n�Fh is proportionate to the Godbillon-Vey class GV A H3ðM;RÞ ([8], Chapter
III.6.g, Theorem 17). Furthermore, the hypotheses of Corollary 5 are satisfied ([8], Chapter
III.7.b).

Corollary 6. Suppose that dimðGð0ÞÞ ¼ 1, G acts on Gð0Þ so as to preserve orientation,
TZ is spin and gTZ has fiberwise positive scalar curvature. Then

Ð
M

ÂAðTFÞGV ¼ 0.

In general, if dimðGð0ÞÞ ¼ q and the action of G on Gð0Þ is orientation-preserving then
one can write down a closed graded trace h on W�c ðGÞ so that n�Fh is proportionate to the
Godbillon-Vey class GV A H2qþ1ðM;RÞ, and the above results extend.

Corollary 7. Let M be a compact manifold with a codimension-q foliation F. We

assume that the foliation is tranversally orientable and that TF is spin. We also assume that

the holonomy groupoid of the foliation is Hausdor¤. Let gTF be a leafwise metric on ðM;FÞ.
If gTF has positive scalar curvature on the leaves then

Ð
M

ÂAðTFÞGV ¼ 0.

Proof. Let T be a complete transversal for F. Let G be the reduced holonomy
groupoid. Then the corollary is an application of Theorem 6. r

Remark. Corollary 7 also follows from [8], Section III.7.b, Corollary 10.

6.1. Translation. In this subsection we show how the results of Section 6 specialize
to those of Section 3, in the case when the groupoid comes from the action of G on B. We
use the notation of Section 3.

We put G ¼ B� G, with Gð0ÞGB, rðb; gÞ ¼ b and sðb; gÞ ¼ bg. A form

P
g0;...;gn

hg0;...;gng0 dg1 . . . dgn A W�ðB;CGÞð6:50Þ

gets translated to the form o A W�ðGÞ given by

o
�
ðb0; g0Þ; . . . ; ðbn; gnÞ

�
¼ hg0;...;gnðb0Þ:ð6:51Þ
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Then the product (6.3) is equivalent to the calculation

		 P
g0;...;gn

hg0;...;gng0 dg1 . . . dgn



�
	 P

g 0
0
;...;g 0

n 0

h 0g 0
0
;...;g 0

n 0
g 00 dg

0
1 . . . dg

0
n 0




ðbÞð6:52Þ

¼
P

g0;...;gn;g 00;...;g
0
n 0

hg0;...;gnðbÞh
0
g 0
0
;...;g 0n
ðbg 00 . . . g 0n 0 Þg0 dg1 . . . dgn g 00 dg 01 . . . dg 0n 0

¼
P

g0;...;gn;g 00;...;g
0
n 0

hg0;...;gnðbÞh
0
g 0
0
;...;g 0n
ðbg 00 . . . g 0n 0 Þ

� ½g0 dg1 . . . dðgng 00Þ dg 01 . . . dg 0n 0

þ � � � þ ð�1Þng0g1 dg2 . . . dgn dg 00 . . . dg 0n 0 �:

The di¤erential d, given by

d

	 P
g0;...;gn

hg0;...;gng0 dg1 . . . dgn



¼

P
g0;...;gn

ðd de Rhamhg0;...;gnÞg0 dg1 . . . dgnð6:53Þ

þ ð�1Þjhj
P

g0;...;gn

hg0;...;gn1 dg0 dg1 . . . dgn

becomes the sum of d1 and the di¤erential d2 of (6.4).

Take P ¼ M̂M. Then G ¼ M̂M � G. The product (6.6) becomes

		P
g

fgg



F



ðpÞ ¼

P
g

fgðpÞFðpgÞ:ð6:54Þ

We illustrate the right-hand-side of (6.54) by the diagram p g pg. Equation (6.8) is the
translation of

	 P
g0;g1

fg0;g1g0 dg1



F ¼

	 P
g0;g1

g0 dg1ðg0g1Þ�1 � fg0;g1


Fð6:55Þ

¼
	 P

g0;g1

½dðg0g1Þ � dg0 g1�ðg0g1Þ�1 � fg0;g1


� F

¼
P
g0;g1

dðg0g1Þ
�
ðg0g1Þ�1 � fg0;g1

�
F

�
P
g0;g1

dg0ðg�10 � fg0;g1Þðg1 � FÞ

¼
P

g0g1¼g
dgðg�1 � fg0;g1ÞF �

P
g;g 0

dgðg�1 � fg;g 0 Þðg 0 � FÞ;

or
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ð6:56Þ
		 P

g0;g1

fg0;g1g0 dg1



F



ðpÞ

¼
P

g0g1¼g
dg fg0;g1ðpg�1ÞFðpÞ �

P
g;g 0

dg fg;g 0 ðpg�1ÞFðpg 0Þ:

We illustrate the right-hand-side of (6.56) by the diagrams pg�1  g0 pg�11  
g1

p and

pg�1  g p g
0

pg 0. Equation (6.11) is the translation of

	P
g

fgg


	P
g 0
dg 0Fg 0



¼
P
g;g 0

fgg dg
0Fg 0ð6:57Þ

¼
P
g;g 0

g dg 0
�
ðgg 0Þ�1 � fg

�
Fg 0

¼
P
g;g 0
½dðgg 0Þ � dg g 0�

�
ðgg 0Þ�1 � fg

�
Fg 0

¼
P
g;g 0

dðgg 0Þ
�
ðgg 0Þ�1 � fg

�
Fg 0 �

P
g;g 0

dgðg�1 � fgÞðg 0 �Fg 0 Þ

or

		P
g

fgg


	P
g 0
dg 0Fg 0




ðpÞ ¼

P
gg 0¼g0

dg0 fgðpg�10 ÞFg 0 ðpÞð6:58Þ

�
P
g

dg � fgðpg�1Þ
P
g 0
Fg 0 ðpg 0Þ:

We illustrate the right-hand-side of (6.58) by the diagrams pg�10  
g
pðg 0Þ�1  g

0

p and

pg�1  g p g
0

pg 0. Equation (6.12) is the translation of

ðhg0;...;gng0 dg1 . . . dgnÞFð6:59Þ

¼ ½dðg0g1Þ . . . dgn � dg0 dðg1g2Þ . . . dgn

þ � � � þ ð�1Þn�1 dg0 . . . dðgn�1gnÞ þ ð�1Þn dg0 . . . dgn�1gn��
ðg0 . . . gnÞ�1 � hg0;...;gn

�
F

¼ ½dðg0g1Þ . . . dgn � dg0 dðg1g2Þ . . . dgn

þ � � � þ ð�1Þn�1 dg0 . . . dðgn�1gnÞ�
�
ðg0 . . . gnÞ�1 � hg0;...;gn

�
F

þ ð�1Þn dg0 . . . dgn�1
�
ðg0 . . . gn�1Þ�1 � hg0;...;gn

�
ðgn � FÞ:

Equation (6.15) is the translation of

ð‘ð0;1ÞFÞðpÞ ¼
	P

g

dg hðg�1 � FÞ


ðpÞ ¼

P
g

dg hðpÞFðpg�1Þ:ð6:60Þ
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We illustrate the right-hand-side of (6.60) by the diagram pg�1  g p. Equations (6.16) and
(6.17) are the translations of (2.39). Equation (6.21) is the translation of (3.12). Equation
(6.28) is the translation of

TrheiðKÞðbÞð6:61Þ

¼
P

g0;g1;...;gl AG: g0���gl¼e
ðdg1 . . . dglÞg0

	 Ð
Zb

fðwÞKg1;...;gl ðwg�10 ;wÞ dvolZb
ðwÞ



¼
P

g0;g1;...;gl AG: g0���gl AGb

½dg1 . . . dðglg0Þ � dg1 . . . dðgl�1glÞ dg0

þ � � � þ ð�1Þ l�1dðg1g2Þ . . . dgl dg0 þ ð�1Þ lg1 dg2 . . . dg0�	 Ð
Zb

fðwÞKg1;...;glðwg�10 ;wÞ dvolZb
ðwÞ


:

Choose a finite generating set for G. Let C be the corresponding Cayley graph, on
which G acts on the right by isometries. If B is compact, put L ¼ B� C. Let i : G ! L

be the natural inclusion B� G! B� C. (In this case, the requirements on L and i are
satisfied because G is finitely-generated.) Then Cy

o ðGÞ ¼ CyðB;BoÞ, W�oðGÞ ¼ W�ðB;BoÞ
and Cy

o ðPÞ ¼ Cy
BoðM̂MÞ.

We have EG ¼ EG� B. If p0 : EG� B! EG is the projection map then J ¼ p�0ð jÞ.
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