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NEGATIVELY-CURVED MANIFOLD

By JOHN LOTT

Abstract. We show that a noncompact manifold with bounded sectional curvature, whose ends are
sufficiently Gromov-Hausdorff close to rays, has a finite dimensional space of square-integrable
harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional
curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential
spectra of a collection of ordinary differential operators associated to the ends. We give examples
of such manifolds with curvature pinched arbitrarily close to �1 and with an infinite number of
gaps in the spectrum of the function Laplacian.

1. Introduction. In this paper we consider Riemannian manifolds of finite
volume and pinched negative sectional curvature. We give results about the kernel
of the differential form Laplacian and about its essential spectrum.

Our first result is the finite dimensionality of the space of square-integrable
harmonic forms for a more general class of Riemannian manifolds, which can
be roughly characterized as those with bounded sectional curvature and with
ends that are sufficiently Gromov-Hausdorff close to rays. Let M be a complete
connected n-dimensional Riemannian manifold with a basepoint m. Let Br(m)
denote the distance ball around m and let Sr(m) = @Br(m) be the distance sphere
around m. Put

Dr(m) = sup
Σr

diam(Σr),(1.1)

where Σr ranges over the connected components of Sr(m) which intersect a ray
through m.

For p 2 Z \ [0, n], let 4M
p be the p-form Laplacian on M. A harmonic p-

form on M is an element of Ker(4M
p ). Let Hp

(2)(M) denote the vector space of
square-integrable harmonic p-forms on M.

THEOREM 1. There is a number � = �(n) > 0 with the property that if for some
b > 0 the sectional curvatures of M are all bounded in absolute value by b2, and

lim sup
r!1

Dr(m) � �b�1,(1.2)

then for all p 2 Z \ [0, n] the dimension of Hp
(2)(M) is finite.
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COROLLARY 1. Let M be a complete connected n-dimensional Riemannian
manifold of finite volume whose sectional curvatures satisfy �b2 � K � �a2,
with 0 < a � b. Then for all p 2 Z \ [0, n], the dimension of Hp

(2)(M) is finite.

Corollary 1 was previously known to be true when p =2 fn�1
2 , n

2 , n+1
2 g and

b
a <

n�1
2 min (p,n�p) , and when p = n

2 and b
a satisfies a certain inequality for which

we refer to [4].
The other results in this paper concern manifolds M as in Corollary 1. Recall

that the essential spectrum of 4M
p consists of all numbers in the spectrum of

4M
p other than those which are both isolated in the spectrum and have a finite-

dimensional eigenspace.
Label the ends of M by I 2 f1, : : : , Bg. An end of M has a neighborhood

UI whose closure is homeomorphic to [0,1) � NI , with NI an infranilmanifold
and the parameter s 2 [0,1) being a Busemann function for the end. As will
be explained, if UI lies far enough out the end then the differential forms on
each fiber fsg � NI decompose into a finite-dimensional space EI(s), consisting
of “bounded energy” forms, and its orthogonal complement EI(s)?, consisting
of “high energy” forms. The vector spaces fEI(s)gs2[0,1) fit together to form a
vector bundle EI on [0,1). Let P0 be orthogonal projection from

LB
I=1 Ω�(UI)

to
LB

I=1 Ω�([0,1); EI). Put A = P0dMP0. Consider the operator AA� + A�A
corresponding to the quadratic form

Q(!) =
Z 1

0

h
jA!j2 + jA�!j2

i
ds,(1.3)

where ! 2
LB

I=1 Ω�([0,1); EI) satisfies the boundary condition that its pullback
to f0g vanishes. Then AA�+A�A is a second-order ordinary differential operator.
Let (AA� +A�A)p denote its restriction to elements of total degree p.

THEOREM 2. Suppose that M is as in Corollary 1. Then for all p 2 Z \ [0, n],
the essential spectrum of 4M

p equals the essential spectrum of (AA� +A�A)p.

Theorem 2 was previously known in the case when M is a finite-volume
rank-1 locally symmetric space [11].

As an example of Theorem 2, we consider the case of the Laplacian on
functions. It is well-known that if M is a noncompact finite-volume hyperbolic
manifold then the spectrum of its function Laplacian is the union of

h
(n�1)2

4 ,1
�

with a finite subset of
h
0, (n�1)2

4

�
. In particular, there is a finite number of gaps in

the spectrum. We show that for manifolds with sectional curvature pinched close
to �1, the situation can be very different.

THEOREM 3. For any � > 0, there is a complete connected noncompact finite-
volume Riemannian manifold whose sectional curvatures lie in [�1 � �,�1 + �]
and whose function Laplacian has an infinite number of gaps in its spectrum. The
gaps tend toward infinity.
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Theorems 1 and 2 continue to hold if one allows M to be altered within a
compact region. The proofs go through without change.

Acknowledgments. I am grateful to Lizhen Ji for suggesting this line of
research and for many helpful discussions. I thank the IHES for its hospitality
while this research was performed.

2. Proof of Theorem 1. The vector space Hp
(2)(M) is isomorphic to the p-

dimensional (reduced) L2-cohomology of M. For background on L2-cohomology,
we refer to [8], [9, Section 2] and references therein.

Suppose that the sectional curvatures of M are all bounded in absolute value
by b2. From [14, Theorem 1], if the number � is sufficiently small and M satisfies
(1.2) then M has finite topological type, i.e., is homeomorphic to the interior of
a compact manifold-with-boundary M. (In fact, for this conclusion it is enough
to just have the lower bound on the sectional curvatures [13].) In particular,
if fNIg

B
I=1 are the connected components of @M then there is a compact set

K � M such that the closures fUIg
B
I=1 of the connected components of M � K

are homeomorphic to f[0,1)� NIg
B
I=1.

From [9, Proposition 5], the dimension of Hp
(2)(M) is finite if and only if the

dimension of Hp
(2)(UI) is finite for each I. Here Hp

(2)(UI) can be defined either
as the p-dimensional (reduced) L2-cohomology of UI or as the space of square-
integrable harmonic p-forms on UI satisfying absolute boundary conditions on
@UI .

From [14, Theorem 2], NI is diffeomorphic to an infranilmanifold. The proof
of [14, Theorem 2] uses the collapsing results of Cheeger, Fukaya and Gromov, as
given for example in [1]. In particular, it uses Fukaya’s fibration theorem, along
with the fact that UI is Gromov-Hausdorff close to a ray which passes through
it. Strictly speaking, as in the proof of [14, Theorem 2], one may have to shrink
UI a bit in order to apply the fibration theorem.

In fact, [1] describes a model metric which is uniformly C0-close to that of
UI . However, reduced L2-cohomology is bi-Lipschitz invariant (see, for example,
[9, Proposition 1]). Hence it suffices to compute the (reduced) L2-cohomology of
UI with the model metric. We now describe the model metric.

The infranilmanifold NI is FI-covered by a nilmanifold ΓInNI where NI is a
simply-connected connected nilpotent Lie group, ΓI is a lattice in NI and FI is a
finite group of automorphisms ofNI which preserve ΓI . From [1, Proposition 4.9],
the model metric on UI is that of a certain Riemannian submersion from UI to
[0,1) which is invariant under a local action of NI . In particular, the flow of the
horizontal vector field for the Riemannian submersion UI ! [0,1) preserves the
affine structures on the fibers. By integrating the vector field, the model metric
can be written in the form

g = ds2 + h(s),(2.1)
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where for each s 2 [0,1), h(s) is a smooth metric on NI which comes from an
FI-invariant left-invariant metric on NI . Furthermore, if S(s) denotes the second
fundamental form of fsg�NI then we can assume that fS(s)gs2[0,1) are uniformly
bounded with respect to fh(s)gs2[0,1). In what follows we will allow ourselves
to reduce the end by making finite shifts of the interval [0,1), without change
of notation.

There is a canonical flat connection raff on TNI coming from the flat con-
nection on TNI for which left-invariant vector fields are parallel. Let EI be the
finite-dimensional vector space of differential forms on NI which are parallel with
respect to raff . Let P: Ω�(NI) ! Ω�(NI) be an orthogonal projection onto EI , us-
ing h(s). From [10, Proposition 1], P is actually independent of s and arises from
an averaging procedure over the group NI . Let bd denote the exterior derivative
on Ω�(NI), let bd� denote its adjoint with respect to h(s) and put

b4 = bdbd� + bd�bd.(2.2)

The operators bd, bd� and b4 are diagonal with respect to the decomposition

Ω�(NI) = EI � E
?
I .(2.3)

We extend bd, bd� and b4 to act on Ω�(NI)
L

(ds ^ Ω�(NI)), separately in each
factor.

Let fxig be local coordinates on NI . Let Ei denote exterior multiplication by
dxi and let Ii denote interior multiplication by @xi .

LEMMA 1. One has

@s
bd� =

hbd�, V
i

,(2.4)

where

V = 2
X
i,j

Sj
iE

iIj �
X

i

Si
i.(2.5)

Proof. With our conventions, @sh = �2S. Given !, � 2 Ω�(NI), let h!, �i 2
C1(NI) be the inner product constructed using h(s). One can check that @sh!, �i =
hX!, �i, where X = 2

P
i,j Sj

iE
iIj. In addition, the derivative of the volume form

is given by @sdvol = Ydvol, where Y = �
P

i Si
i. Differentiating the equationZ

NI

hbd�!, �idvol =
Z

NI

h!, bd�idvol(2.6)

with respect to s givesZ
NI

hXbd�!, �idvol +
Z

NI

h@s
bd�!, �idvol +

Z
NI

hYbd�!, �idvol(2.7)
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=
Z

NI

hX!, bd�idvol +
Z

NI

hY!, bd�idvol.

As ! and � are arbitrary, it follows that

Xbd� + @s
bd� + Ybd� = bd�X + bd�Y ,(2.8)

or

@s
bd� = [bd�, X + Y].(2.9)

The lemma follows.

Here V is also diagonal with respect to the decomposition (2.3).
It follows from Malcev’s theorem that the harmonic forms on (NI , h(s)) are

parallel with respect to raff . In particular, b4 is invertible on E?I . (Here E?I is
also independent of s.) Let G denote the corresponding Green’s operator, which
is the inverse of b4 on E?I and which vanishes on EI .

LEMMA 2. One has

@s(bd�G) = �
hbd, Gbd�Vbd�Gi .(2.10)

Proof. Differentiating the equations

b4G = G b4 = 1� P(2.11)

and

PG = GP = 0(2.12)

with respect to s gives

@sG = �G(@s
b4)G.(2.13)

From (2.2),

@s
b4 = bd(@s

bd�) + (@s
bd�)bd.(2.14)

Then

@s(bd�G) = [bd�, V]G� bd�G �bd[bd�, V] + [bd�, V]bd�G(2.15)

= bd�VG� Vbd�G
� bd�Gbdbd�VG + bd�GbdVbd�G� bd�Gbd�VbdG + bd�GVbd�bdG

= bd� �I � Gbdbd��VG�
�

I � bd�Gbd�Vbd�G + bd�GVbd�bdG
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= bd� �I � G b4�VG�
�

I � G b4 + bdGbd��Vbd�G + bd�GVbd�bdG

= bd�PVG� PVbd�G� bdGbd�Vbd�G + bd�GVbd�bdG

= bd�VPG� VPbd�G� bdGbd�Vbd�G + Gbd�Vbd�Gbd
= �[bd, Gbd�Vbd�G].

This proves the lemma.

Let e(ds) denote exterior multiplication by ds. Define K: Ω�(UI) ! Ω�(UI)
by

K = bd�G� e(ds)Gbd�Vbd�G.(2.16)

LEMMA 3. Acting on Ω�(UI), one has

dK +Kd = 1� P.(2.17)

(In this last equation, P acts fiberwise.)

Proof. Using the fact that

d = bd + e(ds)@s,(2.18)

we have

dK +Kd =
�bd + e(ds)@s

� �bd�G� e(ds)Gbd�Vbd�G�(2.19)

+
�bd�G� e(ds)Gbd�Vbd�G� �bd + e(ds)@s

�
= bdbd�G + bd�Gbd + e(ds)

�
[@s, bd�G] + [bd, Gbd�Vbd�G]

�
= I � P.

This proves the lemma.

Consider the trivial vector bundle WI = [0,1)� EI over [0,1). Let bdinv be
the restriction of bd to EI � Ω�(NI) and consider the flat superconnection AI on
WI whose action on Ω�([0,1);WI) is given by

AI = bdinv + e(ds)@s.(2.20)

That is, AI is simply the restriction of d from Ω�(UI) to Ω�([0,1);WI). Then
(2.17) gives a homotopy equivalence between the cochain complexes

�
Ω�(UI), d

�
and (Ω�([0,1);WI), AI).

From the Gauss-Codazzi equation and the results of [1], we can assume that
there is a uniform upper bound on the absolute values of the sectional curvatures
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of the fibers (NI , h(s)), of the form const.b2. Then from [10, Proposition 2], it
follows that if � is small enough then there is a uniform positive lower bound on
the eigenvalues of b4j

E?
. Hence K is a bounded operator. Then it follows as in [9,

Lemma 1] that the (reduced) L2-cohomology of UI is isomorphic to the (reduced)
L2-cohomology of (Ω�([0,1);WI), AI), where Ω�([0,1);WI) acquires an L2-
inner product from Ω�(UI). From Hodge theory, the (reduced) L2-cohomology
of (Ω�([0,1);WI), AI) is isomorphic to the vector space of square-integrable
solutions to the equation

(AIA
�
I + A�I AI) = 0(2.21)

on [0,1), with absolute boundary conditions at f0g. However, as AIA�I + A�I AI

is a second-order ordinary differential operator, the solution space of (2.21) is
finite-dimensional. This proves the theorem.

3. Geometry of finite-volume negatively-curved manifolds. We review
some results from [6] and [7]. Let (M, g) be a complete connected Riemannian
manifold of finite volume whose sectional curvatures satisfy �b2 � K � �a2,
with 0 < a � b. Then M is diffeomorphic to the interior of a smooth compact
connected manifold-with-boundary M. The boundary components of M are dif-
feomorphic to infranilmanifolds. If N is such a boundary component then there
is a corresponding end E of M. Let s be a Busemann function for a ray exiting
E. Then after changing s by a constant if necessary, there are a neighborhood U
of E and a C1-diffeomorphism F : (0,1)� N ! U so that

F�
�
gjU
�

= ds2 + h(s),(3.1)

where for s 2 (0,1), h(s) is a Riemannian metric on N. We will think of s
as a coordinate function on U. The slices N(s) = fsg � N are projections of
horospheres in the universal cover eM. A priori, the Busemann function is only
C2-smooth on M and the Riemannian metric h(s) is only C1-smooth on N. Given
n 2 N, the curve s ! (s, n) is a unit-speed geodesic which intersects the slices
orthogonally. All of the rays in M which exit E arise in this way.

As s is C2-smooth, the second fundamental form S(s) of N(s) exists and is
continuous on N(s). From Jacobi field estimates, it satisfies

ah(s) � S(s) � bh(s)(3.2)

and the metric h(s) satisfies

e�2bsh(0) � h(s) � e�2ash(0).(3.3)

4. Infranilmanifolds. Let N be a boundary component of M. It has a reg-
ular covering by a nilmanifold ΓnN, with covering group F. Here N is a simply-
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connected connected nilpotent Lie group, Γ is a lattice in N and F is a finite
group of automorphisms of N which preserve Γ. Let n be the Lie algebra of
N. Let Λ�(n�)F denote the F-invariant subspace of Λ�(n�). Let 4N(s) denote the
differential form Laplacian on N(s) (which can be defined using quadratic forms
[12, Vol. I, Theorem VIII.15] even if h(s) is only C1-smooth). Given � 2 [0,1),
let PN(s)(�) denote the spectral projection onto the direct sum of the eigenspaces
of 4N(s) with eigenvalue less than or equal to �.

PROPOSITION 1. There are constants c1, c2 > 0 such that for all sufficiently
large s, the images of PN(s)(c2

1b2) and PN(s)(c2
2a2e2as) are isomorphic to Λ�(n�)F.

Proof. Suppose first that the parametrization F : (0,1)�N ! U is smooth.
From the Gauss-Codazzi equation, the intrinsic sectional curvatures RN(s) of N(s)
are bounded in absolute value by a universal constant times b2. From [1], there
is an � > 0 such that for all s 2 [1,1), there is a metric h0(s) on N(s), coming
from an F-invariant left-invariant inner product on N, with

e��h0(s) � h(s) � e�h0(s).(4.1)

By [2], there is an integer J > 0 such that the jth eigenvalue �p,j of the p-form
Laplacian satisfies

e�J��p,j(h0(s)) � �p,j(h(s)) � eJ��p,j(h0(s)).(4.2)

Thus without loss of generality, we may assume that h(s) comes from a left-
invariant inner product on N.

The vector space of F-invariant left-invariant differential forms on N is iso-
morphic to Λ�(n�)F. These differential forms push down to comprise a vector
space V of differential forms on N(s). The Laplacian 4N(s) has an orthogonal
direct sum decomposition

4N(s) = 4V �4V? .(4.3)

From [10, Proposition 2], there is a constant c2 > 0 such that for sufficiently
large s, the eigenvalues of 4V? are greater than c2

2a2e2as.
It remains to show that there is a constant c1 > 0 such that the eigenvalues of

4V are less than or equal to c2
1b2, uniformly in s. We follow the notation of [10,

Section 3]. Let feig be the orthonormal basis of n described in [10, Section 3],
with dual basis f� ig. Let Ei denote exterior multiplication by � i and let Ii denote
interior multiplication by ei. The exterior derivative d, acting on Ω�(N(s)), can
be written as d =

P
i EirN(s)

ei
, and its adjoint can be written as d� = �

P
i IirN(s)

ei
.

Now rN(s)
ei

acts on V as
P

j,k !
j
kiE

jIk, where f!j
kig are the components of the Levi-

Civita connection 1-form ! of the left-invariant metric. Hence 4V is quadratic
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in !. From [10, Lemma 3], there is a constant, which only depends on dim (N),
such that

k!k2
1 � const.kRN(s)k1.(4.4)

The proposition follows, under the assumption that the parametrizationF : (0,1)�
N ! U is smooth.

In the general case, thinking of N(s) as the graph of a C2-function on N, for
any � > 0 we can find a smooth hypersurface N0 of M which is �-close to N(s)
in the C2-topology. Then the proposition holds for N0. Using the continuity of
the eigenvalues with respect to the metric, in the C0-topology, as in (4.2), the
proposition follows. In fact, we can take c1 and c2 to only depend on dim (N),
although we will not need this.

Let fNIg
B
I=1 be the boundary components of M, with corresponding ends EI

and neighborhoods of the ends UI . By reducing UI if necessary, we may assume
that Proposition 1 holds for all s � 0, with c1b < c2a. As in [3, Proposition 2.1],
the essential spectrum of 4M

p is invariant under compactly-supported changes
of the metric. Thus without loss of generality, we may assume that the metric
on UI is a product near f0g � NI , with Proposition 1 still holding for s � 0.
Let Ω�

I denote the smooth compactly-supported forms on [0,1) � NI which
satisfy relative boundary conditions at f0g � NI . Let H0 be the L2-completion
of
LB

I=1 Ω�
I . The Laplacian 40 = dd� + d�d, defined initially on

LB
I=1 Ω�

I , is a
densely-defined self-adjoint operator on H0 and corresponds to relative boundary
conditions.

For later use, we write d and d� more explicitly. Fix I. Let fxign�1
i=1 be local

coordinates on NI and write the metric on UI as ds2 +
P

i,j hijdxidxj. We think of
s = x0 as another coordinate. Let Sij be the second fundamental form of fsg�NI .
We let Greek letters run over f0, : : : , n � 1g and we let Roman letters run over
f1, : : : , n� 1g. The nonzero Christoffel symbols are

Γijk = Γijk(h),(4.5)

Γ0ij = Sij,

Γij0 = �Sij,

Γi0j = �Sij.

Let E� denote exterior multiplication by dx� and let I� denote interior multipli-
cation by @x� . Covariant differentiation on forms is given in local coordinates
by

r@x� = @x� �
X
�,

Γ
��E�I .(4.6)
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Let br denote the covariant derivative on NI(s). Then

r@xi = br@xi �
X

j

SijE
jI0 +

X
j

Sj
iE

0Ij,(4.7)

r@s = @s +
X

i,j

Si
jE

jIi.

Let bd =
P

i Ei br@xi be the exterior derivative on NI(s), extended to act on

Ω�(NI(s))
L

(ds ^Ω�(NI(s))), and let bd� = �
P

i Ii br@xi be its adjoint. Then

d = bd + E0@s(4.8)

and

d� = �
X
�

I�r@x�(4.9)

= bd� � I0

0@@s +
X
i,j

Si
j(E

jIi � IiE
j)

1A .

5. Boundedness of the off-diagonal operators. Given I, consider NI to
be an infranilmanifold which is FI-covered by a nilmanifold ΓInNI and let nI be
the Lie algebra of NI . Let EI = [0,1)�Λ�(n�I )FI be the trivial vector bundle on
[0,1) with fiber Λ�(n�I )FI .

Let Ω�([0,1); EI) be the smooth compactly-supported forms on [0,1), with
value in EI . Using Proposition 1, there is an embedding of Ω�([0,1); EI) into
Ω�(UI). Let Ω�

rel([0,1); EI) be the subspace of Ω�([0,1); EI) consisting of ele-
ments which satisfy relative boundary conditions at f0g. Let H0 be the completion
of
LB

I=1 Ω�
rel([0,1); EI) in H0 and let H1 be its orthogonal complement. Roughly

speaking, the elements of H0 correspond to fiberwise low-energy forms and the
elements of H1 correspond to fiberwise high-energy forms.

Let P0: H0 ! H0 and P1: H0 ! H1 be the orthogonal projections. With
respect to the orthogonal decomposition H0 = H0

L
H1, write

d =

 
A B
C D

!
.(5.1)

Then

d� =

 
A� C�

B� D�

!
(5.2)

and

40 =

 
AA� +A�A + BB� + C�C AC� + BD� +A�B + C�D
CA� +DB� + B�A +D�C DD� +D�D + B�B + CC�

!
.(5.3)
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PROPOSITION 2. The operators B: H1 ! H0 and C: H0 ! H1 are bounded.

Proof. We have

B = P0dP1 =
�
P1d�P0

��(5.4)

and

C = P1dP0.(5.5)

From (4.8) and (4.9), in order to show that B and C are bounded it is enough to
show that

P1@sP0 = P1(@sP0).(5.6)

is bounded. Let  be the circle of radius c1b around the origin in C , oriented
counterclockwise. From Proposition 1,

P0(s) =
I


(�� bd � bd�)�1 d�
2�i

.(5.7)

Here P0(s) is a projection on
LB

I=1 (Ω�(NI(s))
L

(ds ^Ω�(NI(s)))). We note that
the Hilbert space structure on

LB
I=1 (Ω�(NI(s))

L
(ds ^Ω�(NI(s)))) depends on s,

but the underlying topological vector space structure on
LB

I=1 (Ω�(NI)
L

(ds ^
Ω�(NI))) does not. Hence it makes sense to differentiate (5.7) with respect to s,
giving

@sP0 =
I


(�� bd � bd�)�1@s(bd + bd�)(�� bd � bd�)�1 d�
2�i

(5.8)

=
I


(�� bd � bd�)�1@s
bd�(�� bd � bd�)�1 d�

2�i

=
I


(�� bd � bd�)�1[bd�, V](�� bd � bd�)�1 d�
2�i

,

where V is as in (2.5).
As P1(s) = 1� P0(s), it follows from differentiating P2

0(s) = P0(s) that

P1(@sP0) = (@sP0)P0.(5.9)

If �0 2 Im(P0) is an eigenform for bd + bd� with eigenvalue �0 and �1 2 Im(P1) is
an eigenform for bd + bd� with eigenvalue �1 then

�
�1,
I


(�� bd � bd�)�1[bd�, V](�� bd � bd�)�1 d�
2�i

�0

�
(5.10)
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=
I

h�1, (�� �1)�1[bd�, V](�� �0)�1�0i

d�
2�i

= �
1

�1 � �0
h�1, [bd�, V]�0i.

It follows thatI


(�� bd � bd�)�1[bd�, V](�� bd � bd�)�1 d�
2�i

�0(5.11)

= �
�

(bd + bd�)���
Im(P1(s))

� �0

��1

P1(s)[bd�, V]�0.

Using (5.8) and (5.11), in order to prove the proposition it suffices to show
that as �0 runs over unit-length eigenforms of (bd + bd�)���

Im(P0(s))
, one has a bound

on the norm of

�
(bd + bd�)���

Im(P1(s)))
� �0

��1

P1(s)[bd�, V]�0

which is uniform in s. Writing

�
(bd + bd�)���

Im(P1(s)))
� �0

��1

P1(s)[bd�, V]�0(5.12)

=
�

(bd + bd�)���
Im(P1(s)))

� �0

��1

P1(s)bd�(V�0)

�

�
(bd + bd�)���

Im(P1(s)))
� �0

��1

P1(s)Vbd��0,

we know from (2.5) and Proposition 1 that we have bounds on
���V�0

��� and
���Vbd��0

���
given by const.b and const.b2, respectively. Hence it suffices to show that the
operators �

(bd + bd�)���
Im(P1(s)))

� �0

��1 bd�P1(s)(5.13)

and �
(bd + bd�)���

Im(P1(s)))
� �0

��1

P1(s)(5.14)

have uniform bounds on their operator norms.
Put b4 = (bd + bd�)2. As (5.13) vanishes on Im(bd�), using the Hodge de-

composition it is enough to consider its action on Im(bd). Given � 2 Im(P1(s)),
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we have

�
(bd + bd�)� �0

��1 bd�bd� =
bd + bd� + �0b4� �2

0

bd�bd�(5.15)

=
b4b4� �2

0

bd� +
�0b4� �2

0

bd�bd�.

By Proposition 1, the operator norm of
b4b4��2

0

, acting on Im(P1(s)), is at most

c2
2a2e2as

c2
2a2e2as�c2

1b2 . If T = �0b4��2
0

bd� then T �T = �2
0
bdbd�

(b4��2
0)2

which, acting on Im(bd),

equals �2
0
b4

(b4��2
0)2

. Hence the norm of T , acting on Im(bd)
T

Im(P1(s)), is at most

c1bc2aeas

c2
2a2e2as�c2

1b2 .

By Proposition 1, the operator norm of (5.14) is at most 1
c2aeas�c1b . The

proposition follows.

6. High energy forms.

PROPOSITION 3. The operatorDD� +D�D+B�B+CC� has vanishing essential
spectrum.

Proof. Without loss of generality, we consider the neighborhood UI of a single
end. By standard arguments [3], it suffices to show that as c !1, the infimum
of

jDJj2 + jD�Jj2 + jBJj2 + jC�Jj2,(6.1)

where J runs over smooth unit-length elements of H1 with compact support
in [c,1) � NI , goes to infinity. In this proof, all norms will be L2-norms on
UI = [0,1)� NI .

Taking c > 0, we can ignore boundary terms in the following equations. We
have

jDJj2 + jD�Jj2 = jdJ � BJj2 + jd�J � C�Jj2.(6.2)

From Proposition 2, B and C� are bounded. In terms of the two-component vector
(dJ � BJ, d�J � C�J), we can write

jdJ � BJj2 + jd�J � C�Jj2 = j(dJ � BJ, d�J � C�J)j2(6.3)

= j(dJ, d�J)� (BJ, C�J)j2

�
�
j(dJ, d�J)j � j(BJ, C�J)j

�2

�

�
max (

q
jdJj2 + jd�Jj2 � const.jJj, 0)

�2

,(6.4)
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where “const.” in this proof will denote something that is independent of c. Hence
it suffices to consider jdJj2 + jd�Jj2.

From Bochner’s equation,

jdJj2 + jd�Jj2 = jrJj2 +
Z

UI

n�1X
p,q,r,s=0

RM
pqrshE

pIqJ, ErIsJi(6.5)

� jrJj2 � const.jJj2.

Letting rvert denote covariant differentiation in vertical directions, we have

jrJj2 = jrvertJj2 + jr@sJj
2.(6.6)

Thus

jdJj2 + jd�Jj2 � jrvertJj2 � const.jJj2(6.7)

�
�
j brJj � j(rvert � br)Jj

�2
� const.jJj2.

Using (4.7), we obtain

jdJj2 + jd�Jj2 � max
�
j brJj � const.jJj, 0

�2
� const.jJj2.(6.8)

Applying Bochner’s equation fiberwise gives

jbdJj2 + jbd�Jj2 = j brJj2 +
Z

UI

n�1X
p,q,r,s=1

RZ
pqrshE

pIqJ, ErIsJi.(6.9)

From the Gauss-Codazzi equation,

Z
UI

n�1X
p,q,r,s=1

RZ
pqrshE

pIqJ, ErIsJi(6.10)

=
Z

UI

n�1X
p,q,r,s=1

(RM
pqrs + SprSqs � SpsSqr)hE

pIqJ, ErIsJi.

Hence

j brJj2 � jbdJj2 + jbd�Jj2 � const.jJj2.(6.11)

(We note that the right-hand side of (6.10) makes sense even if the Busemann
function s is only C2-smooth. Hence (6.11) is valid in this generality.) From
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Proposition 1, we have

jbdJj2 + jbd�Jj2 � c2
2a2e2acjJj2.(6.12)

Taking c !1, the proposition follows.

7. Proof of Theorem 2. We will use the general identity that

 
� �
 �

!�1

=

 
(�� ���1)�1 �(�� ���1)�1���1

���1(�� ���1)�1 ��1 + ��1(�� ���1)�1���1

!
,(7.1)

provided that � and �� ���1 are invertible.
By a standard argument as in [3, Proposition 2.1], the essential spectra of

4M
p and 40

p are the same. For simplicity, we will omit the subscript p. Using
Proposition 3, it is enough to show that 40 and

L =

 
AA� +A�A 0

0 DD� +D�D + B�B + CC�

!
(7.2)

have the same essential spectra. To show this, from [12, Vol. IV, Theorem XIII.14]
it suffices to show that

�
40 + kI

��1
� (L + kI)�1 is compact for some k > 0.

We put  
� �
 �

!
= 40 + kI.(7.3)

Explicitly,

� = AA� +A�A + BB� + C�C + kI,(7.4)

� = AC� + BD� +A�B + C�D

 = CA� +DB� + B�A +D�C

� = DD� +D�D + B�B + CC� + kI.

As k > 0, the operators � and � are invertible, with k��1k � k�1 and
k��1k � k�1. By Proposition 3, ��1 is compact. By an elementary argument,
kD��1=2k � 1, kD���1=2k � 1, k��1=2Dk � 1 and k��1=2D�k � 1. Then D��1,
D���1, ��1D and ��1D� are compact with norm at most k�1=2.

We claim that � � ���1 is invertible if k is large enough. To see this, we
write

�� ���1 = �1=2
�

I � ��1=2���1��1=2
�
�1=2.(7.5)
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Then it suffices to show that k��1=2���1��1=2k < 1 if k is large enough.
Writing things out, we have

��1=2���1��1=2 = ��1=2 �AC� + BD� +A�B + C�D
�
��1(7.6)

�
�
CA� +DB� + B�A +D�C

�
��1=2.

Now the operators ��1=2A, ��1=2A�, A���1=2, A��1=2, D���1D, D��1D�,
D��1D and D���1D� all have norm at most one. From Proposition 2, B and C
are bounded. Writing out (7.6) into its sixteen terms, we see that the structure
is such that by taking k large, we can make the norm of any individual term
as small as desired. Hence by taking k large enough, we can make � � ���1
invertible.

Writing

�
�� ���1

��1
A = ��1=2

�
I � ��1=2���1��1=2

��1
��1=2A,(7.7)

we see that
�
�� ���1

��1
A is bounded. Similarly, (�� ���1)�1A�, A(� �

���1)�1 and A�
�
�� ���1

��1
are bounded. It now follows from (7.1) that

all components of
��� �

 �

���1
except for the upper left component are compact.

We note that the same statement is true about (L+ kI)�1. It remains to show that

�
�� ���1

��1
�
�
AA� +A�A + kI

��1(7.8)

is compact.
Let us write

�� ���1 = AA� +A�A + kI �
�
���1 � BB� � C�C

�
.(7.9)

Then formally,

�
�� ���1

��1
=
�
AA� +A�A + kI

��1=2(7.10)

� (I � X)�1 �AA� +A�A + kI
��1=2 ,

where

X =
�
AA� +A�A + kI

��1=2(7.11)

�
�
���1 � BB� � C�C

� �
AA� +A�A + kI

��1=2 .
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It follows that�
�� ���1

��1
�
�
AA� +A�A + kI

��1(7.12)

=
�
AA� +A�A + kI

��1=2

 
1X
i=1

Xi

!�
AA� +A�A + kI

��1=2 ,

provided that the sum converges. We will show that X is compact and that the
sum norm-converges if k is large enough, which will prove the theorem.

We have

���1 =
�
AC� + BD� +A�B + C�D

�
��1 �CA� +DB� + B�A +D�C

�
.(7.13)

Consider first the terms of (7.13) that are explicitly quadratic in D, namely

BD���1DB� + C�D��1D�C + BD���1D�C + C�D��1DB�.(7.14)

As d2 = 0, we have AB = �BD, CA = �DC and D2 = �CB. Then (7.14) equals

BD���1DB� + BD��1D�B� + C�D��1D�C + C�D���1DC(7.15)

+ BD���1D�C + C�D��1DB� �AB��1B�A� �A�C���1CA.

Thus

���1 � BB� � C�C = B
�
D���1D +D��1D� � I

�
B�(7.16)

+ C�
�
D���1D +D��1D� � I

�
C

+ BD���1D�C + C�D��1DB� + O(D),

where O(D) denotes the terms that are linear in D.
We have

D���1D +D��1D� � I(7.17)

=
�
D�D +DD� � �

�
��1 + D���1(D� � �D)��1

+ D��1(D�� � �D�)��1,

D��1D = D2��1 +D��1(D� � �D)��1(7.18)

= �CB��1 +D��1(D� � �D)��1

and

D���1D� = (D�)2��1 +D���1(D�� � �D�)��1(7.19)

= �B�C���1 +D���1(D�� � �D�)��1.
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Furthermore,

D�D +DD� � � = �B�B � CC� � kI,(7.20)

D� � �D = [D2,D�] + [D,B�B + CC�](7.21)

= �[CB,D�] + [D,B�B + CC�]

and

D�� � �D� = [(D�)2,D] + [D�,B�B + CC�](7.22)

= �[B�C�,D] + [D�,B�B + CC�].

Substituting (7.20) – (7.22) into (7.17) – (7.19), we see thatD���1D+D��1D��I,
D��1D and D���1D� are compact. Substituting (7.16) into (7.11), we see that
the contributions to X of the terms listed in (7.16) are all compact.

Next, from (7.13), the terms in ���1 � BB� � C�C that are explicitly pro-
portionate to D are

AC���1DB� +AC���1D�C + BD���1CA� + BD���1B�A(7.23)

+A�B��1DB� +A�B��1D�C + C�D��1CA� + C�D��1B�A.

One sees that their contributions to (7.11) are all compact. Finally, the remaining
terms in ���1 � BB� � C�C that are constant in D are

�
AC� +A�B

�
��1 �CA� + B�A

�
�AB��1B�A� �A�C���1CA.(7.24)

Their contributions to (7.11) are all compact.
One can show as before that the norm of X can be made arbitrarily small by

making k large enough.
This proves Theorem 2 under our assumption that the metric on M is a

product near each f0g � NI . However, as in [3, Proposition 2.1], the essential
spectrum of 4M

p is invariant under a compactly-supported change of the metric.
Furthermore, the essential spectrum of a self-adjoint ordinary differential operator
on [0,1) is independent of the choice of (self-adjoint) boundary condition at f0g
[5, Volume II, Chapter XIII.7, Corollary 3] and is also unchanged by a compactly-
supported perturbation of the operator. Thus Theorem 2 also holds for the original
metric on M.

8. Proof of Theorem 3. We now specialize to the case of functions. In this
case, EI is a trivial real line bundle on [0,1). Consider the quadratic form (1.3)
in the case B = 1, with f 2 C1([0,1)) and f (0) = 0.
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Let v(s) denote the volume of (N, h(s)). Then

dv

ds
= �

Z
N

X
i

Si
idvol(s).(8.1)

If F : (0,1)� N ! U is smooth then the Gauss-Codazzi equation gives

� @s

X
i

Si
i +
X

ij

SijSij = �Ric(@s, @s),(8.2)

which in turn implies that

d2v
ds2 =

Z
N

24�Ric(@s, @s)�
X

ij

SijSij +

 X
i

Si
i

!2
35 dvol(s).(8.3)

This last equation makes sense even if F is not smooth, showing that v is C2-
smooth in s.

LEMMA 4. (AA� +A�A)0 is unitarily equivalent to the operator

�
d2

ds2 +
1
2

d2 ln v

ds2 +
1
4

�
d ln v

ds

�2

,(8.4)

which is densely-defined and self-adjoint on L2([0,1)), with Dirichlet boundary
conditions.

Proof. Putting k(s) = v(s)1=2f , we have

h f , f i = hk, kiL2(8.5)

and

Q( f ) =
Z
1

0

�
d
ds

(v�1=2k)
�2

v(s)ds(8.6)

=
Z 1

0

�
v�1=2 dk

ds
�

1
2

v�3=2 dv
ds

k
�2

v(s)ds

=
Z
1

0

�
dk
ds
�

1
2

v�1 dv

ds
k
�2

ds

=
Z 1

0

"�
dk
ds

�2

� v�1 dv
ds

k
dk
ds

+
1
4

�
v�1 dv

ds

�2

k2

#
ds

=
Z
1

0

"�
dk
ds

�2

�
1
2

d ln v

ds
dk2

ds
+

1
4

�
d ln v

ds

�2

k2

#
ds
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=
Z
1

0

"�
dk
ds

�2

+

 
1
2

d2 ln v
ds2 +

1
4

�
d ln v

ds

�2
!

k2

#
ds.

The lemma follows.

Now let P be an even periodic element of C1(R ) which is not real-analytic.
Put

VP =
1
2

dP
ds

+
1
4

P2.(8.7)

Let O0P be the operator � d2

ds2 + VP acting on L2([0,1)), with Dirichlet boundary
conditions at 0.

LEMMA 5. O0P has an infinite number of gaps in its essential spectrum.

Proof. As dP
ds is odd and P2 is even, if VP were real-analytic then dP

ds would
be real-analytic, which would imply that P is real-analytic. Thus VP is not real-
analytic. From [12, Vol. IV, Thm. XIII.91(d)], the operator OP = � d2

ds2 + VP

on L2(R ) has an absolutely continuous spectrum which consists of an infinite
number of disjoint closed intervals in [0,1), tending toward infinity. Let O00P be
the operator � d2

ds2 + VP acting on L2(( � 1, 0]), again with Dirichlet boundary
conditions at 0. Then the essential spectrum of OP is the union of the essential
spectra of O0P and O00P. As the essential spectra of both O0P and O00P tend toward
infinity, the lemma follows.

Proof of Theorem 3. Start with a complete finite-volume hyperbolic metric
on a punctured 2-torus. On the cusp, the metric is ds2 + e�2sd�2 for s 2 [s0,1),
with s0 > 0.

Let p be an even periodic element of C1(R ) which is not real-analytic. Let
� 2 C10 ([0,1)) be a nonincreasing function which is identically one on [0, 1]
and identically zero on [2,1). For � > 0 and s � s0, put

v�(s) = e�s��
R s�s0

0
p(u)(1��(�u))du.(8.8)

Keep the metric on the complement of the cusp unaltered and change the metric
on the cusp to ds2 +v�(s)2d�2. From Theorem 2 and Lemma 4, the essential spec-
trum of the Laplacian of the new metric is the same as the essential spectrum
of the operator O0�1��p. Then from Lemma 5, the Laplacian of the new metric
has an infinite number of gaps in its essential spectrum. Hence it has an infinite
number of gaps in its spectrum. One can check that as � ! 0, the sectional
curvatures of the new metric become pinched arbitrarily close to �1.

Remark. It seems likely that by taking p to be almost-periodic, one can find
similar examples in which the essential spectrum is a Cantor set.



SPECTRUM OF A FINITE-VOLUME NEGATIVELY-CURVED MANIFOLD 205

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-
1109
E-mail: lott@math.lsa.umich.edu

REFERENCES

[1] J. Cheeger, K. Fukaya and M. Gromov, Nilpotent structures and invariant metrics on collapsed mani-
folds, J. Amer. Math. Soc. 5 (1992), 327–372.

[2] J. Dodziuk, Eigenvalues of the Laplacian on Forms, Proc. Amer. Math. Soc. 85 (1982), 437–443.
[3] H. Donnelly and P. Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke

Math. J. 46 (1979), 497–503.
[4] H. Donnelly and F. Xavier, On the differential form spectrum of negatively curved Riemannian mani-

folds, Amer. J. Math. 106 (1984), 169–185.
[5] N. Dunford and J. Schwartz, Linear Operators, Interscience Publishers, New York, 1963.
[6] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980), 435–476.
[7] E. Heintze and H.-C. Im Hof, Geometry of horospheres, J. Differential Geom. 12 (1977), 481–491.
[8] J. Lott, The zero-in-the-spectrum question, Enseign. Math. 42 (1996), 341–376.
[9] , L2-cohomology of geometrically infinite hyperbolic 3-manifolds, Geom. Funct. Anal. 7

(1997), 81–119.
[10] , Collapsing and the differential form laplacian, preprint, 1999,

http://www.math.lsa.umich.edu/˜lott.
[11] W. Müller, Manifolds with Cusps of Rank One, Lecture Notes in Math., vol. 1244, Springer-Verlag, New

York, 1987.
[12] M. Reed and B. Simon, Methods in Mathematical Physics, Academic Press, New York, 1978.
[13] Z. Shen, On complete manifolds of nonnegative kth-Ricci curvature, Trans. Amer. Math. Soc. 338

(1993), 289–310.
[14] , On complete Riemannian manifolds with collapsed ends, Pacific J. Math. 163 (1994),

175–182.


