Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

2nd Semester 2010/11

Partially Controlled Situation Sequences.

A partially controlled situation sequence consists of a finite number of moments $t_1, ..., t_n$, a fixed collection of individuals, properties and relations, and for each moment *i*, a partially controlled situation with relations S_i with these individuals, properties and relations.

The semantics at each given moment t_i is the usual semantics for partially controlled situations defining

 φ is valid in S_i

and

 φ is invalid in S_i .

Reasoning and Formal Modelling for Forensic Science Lecture 11

Semantics of the temporal operators.

We fix a partially controlled situation sequence $S = (S_1, ..., S_n)$.

- $@_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $Q_i \varphi$ is invalid in S if φ is not valid in S_i .
- $\operatorname{until}_i \varphi$ is valid in S if φ is valid in S_j for all j = 1, ..., i.
- before_{*i*} φ is valid in *S* if φ is valid in *S_j* for all *j* = 1, ..., *i* 1.
- $\operatorname{until}_i \varphi$ is invalid in S if φ is not valid in S_j for some j = 1, ..., i.
- before_{*i*} φ is invalid in *S* if φ is not valid in *S_j* for some *j* = 1, ..., *i* 1.
- since_i φ is valid in S if φ is valid in S_j for all j = i, ..., n.
- after_i φ is valid in S if φ is valid in S_j for all j = i + 1, ..., n.
- since_i φ is invalid in S if φ is not valid in S_j for some j = i, ..., n.
- after_i φ is invalid in S if φ is not valid in S_i for some j = i + 1, ..., n.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

Aristotle, De Interpretatione (19 a 30)

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

Aristotle, De Interpretatione (19 a 30)

A sea-fight must either take place to-morrow or not, but it is not necessary that it should take place to-morrow, neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place to-morrow.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

Aristotle, De Interpretatione (19 a 30)

A sea-fight must either take place to-morrow or not, but it is not necessary that it should take place to-morrow, neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place to-morrow.

The problem of *futura contingentia* (future contingents).

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

Assume that p is not the case.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.
- In the past, "It will be the case that p is not the case" was necessarily true.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.
- In the past, "It will be the case that p is not the case" was necessarily true.
- Therefore, in the past, "It will be the case that p" was impossible.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.
- In the past, "It will be the case that p is not the case" was necessarily true.
- ▶ Therefore, in the past, "It will be the case that *p*" was impossible.
- Therefore, p is not possible.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Diodorus Cronus (IVth century BC):

The Master argument seems to have been developed from the following starting points: There is a general conflict between the following three statements: (1) every past true proposition is necessary; and (II) the impossible does not follow from the possible; and (III) something is possible which neither is true nor will be true. Being aware of this conflict, Diodorus used the plausibility of the first two statements in order to show that (IV) nothing is possible that neither is nor will be true. (Epictetus, Dissertations 2.19.1)

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.
- In the past, "It will be the case that p is not the case" was necessarily true.
- ▶ Therefore, in the past, "It will be the case that *p*" was impossible.
- Therefore, p is not possible.

Ergo: Everything that is possible is true.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

? stands for lack of knowledge, not for uncertainty. If we mark KILL(x, y) with "?", we do not mean that it is undecided whether x killed y, but we mean that we do not know whether x killed y.

Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

? stands for lack of knowledge, not for uncertainty. If we mark KILL(x, y) with "?", we do not mean that it is undecided whether x killed y, but we mean that we do not know whether x killed y.

Two types of uncertainty:

Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

? stands for lack of knowledge, not for uncertainty. If we mark KILL(x, y) with "?", we do not mean that it is undecided whether x killed y, but we mean that we do not know whether x killed y.

Two types of uncertainty:

 epistemic uncertainty: we do not know what the truth value is, but the statement has a truth value. Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

? stands for lack of knowledge, not for uncertainty. If we mark KILL(x, y) with "?", we do not mean that it is undecided whether x killed y, but we mean that we do not know whether x killed y.

Two types of uncertainty:

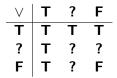
- epistemic uncertainty: we do not know what the truth value is, but the statement has a truth value.
- ontic uncertainty: the truth value is undecided.

Reasoning and Formal Modelling for Forensic Science Lecture 11

So, we have seen that we cannot simply assign "true" or "false" to future contingents. Why can't we just use our **?** truth value?

? stands for lack of knowledge, not for uncertainty. If we mark KILL(x, y) with "?", we do not mean that it is undecided whether x killed y, but we mean that we do not know whether x killed y.

Two types of uncertainty:


- epistemic uncertainty: we do not know what the truth value is, but the statement has a truth value.
- ontic uncertainty: the truth value is undecided.

In dealing with *futura contingentia*, we have to do with ontic uncertainty.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Different types of undecidedness

Reasoning and Formal Modelling for Forensic Science Lecture 11

Different types of undecidedness

Reasoning and Formal Modelling for Forensic Science Lecture 11


Prof. Dr. Benedikt Löwe

If you use this truth table, then $p \vee \neg p$ is not valid anymore.

Different types of undecidedness

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

If you use this truth table, then $p \vee \neg p$ is not valid anymore. But we would like to represent that we know that there will either be a sea-battle tomorrow or no sea-battle tomorrow.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Another solution is that we represent the two possibilities by two Partially Controlled Situation Sequences:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Another solution is that we represent the two possibilities by two Partially Controlled Situation Sequences:

► The first one, consisting of S₁ and S₂ where S₁ represents today and S₂ represents tomorrow with a sea-battle.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Another solution is that we represent the two possibilities by two Partially Controlled Situation Sequences:

- ► The first one, consisting of S₁ and S₂ where S₁ represents today and S₂ represents tomorrow with a sea-battle.
- The second one, consisting of S₁ and S'₂ where S₁ represents today and S'₂ represents tomorrow with no sea-battle.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Another solution is that we represent the two possibilities by two Partially Controlled Situation Sequences:

- ▶ The first one, consisting of *S*₁ and *S*₂ where *S*₁ represents today and *S*₂ represents tomorrow with a sea-battle.
- The second one, consisting of S₁ and S'₂ where S₁ represents today and S'₂ represents tomorrow with no sea-battle.

The way this is typically represented is a tree:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Another solution is that we represent the two possibilities by two Partially Controlled Situation Sequences:

- ▶ The first one, consisting of *S*₁ and *S*₂ where *S*₁ represents today and *S*₂ represents tomorrow with a sea-battle.
- The second one, consisting of S₁ and S'₂ where S₁ represents today and S'₂ represents tomorrow with no sea-battle.

The way this is typically represented is a tree:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

What is a tree?

Reasoning and Formal Modelling for Forensic Science Lecture 11

What is a tree?

A tree is a finite collection of *moments*, connected by a relation "lies in the future of", such that there is no branching into the past.

Reasoning and Formal Modelling for Forensic Science Lecture 11

What is a tree?

A tree is a finite collection of *moments*, connected by a relation "lies in the future of", such that there is no branching into the past.

Technically: If you consider any moment m and look at the moments in the past of m, they form a linear order.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Branching time (2).

What is a tree?

A tree is a finite collection of *moments*, connected by a relation "lies in the future of", such that there is no branching into the past.

Technically: If you consider any moment m and look at the moments in the past of m, they form a linear order.

Some terminology: trees always have an earliest moment, called the root of the tree.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Branching time (2).

What is a tree?

A tree is a finite collection of *moments*, connected by a relation "lies in the future of", such that there is no branching into the past.

Technically: If you consider any moment m and look at the moments in the past of m, they form a linear order.

Some terminology: trees always have an earliest moment, called the root of the tree.

Why trees?

Reasoning and Formal Modelling for Forensic Science Lecture 11

Branching time (2).

What is a tree?

A tree is a finite collection of *moments*, connected by a relation "lies in the future of", such that there is no branching into the past.

Technically: If you consider any moment m and look at the moments in the past of m, they form a linear order.

Some terminology: trees always have an earliest moment, called the root of the tree.

Why trees?

Ontic uncertainty decreases over time: if you are looking into the past, you do not have ontic uncertainties anymore, only epistemic uncertainties. It is only with future contingents that you have ontic uncertainties. Reasoning and Formal Modelling for Forensic Science Lecture 11

Sequences as special cases.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Sequences as special cases.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

The sequences we were dealing with last time are special cases of trees:

Sequences as special cases.

The sequences we were dealing with last time are special cases of trees:

If we have a finite collection of moments t_0 , ..., t_n in a sequence we can define " t_i lies in the future of t_j " if and only if j < i. Since sequences have no branching, they clearly have no branching into the past, so they are special cases of trees.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

A tree of partially controlled situations consists of a finite tree of moments t_1 , ..., t_n together with its relation "lies in the future of", a fixed collection of individuals, properties and relations, and for each moment *i*, a partially controlled situation with relations S_i with these individuals, properties and relations. Reasoning and Formal Modelling for Forensic Science Lecture 11

A tree of partially controlled situations consists of a finite tree of moments t_1 , ..., t_n together with its relation "lies in the future of", a fixed collection of individuals, properties and relations, and for each moment *i*, a partially controlled situation with relations S_i with these individuals, properties and relations.

For each moment t_m , we have *its past*, the collection of all moments t_i such that t_m lies in the future of t_i .

Reasoning and Formal Modelling for Forensic Science Lecture 11

A tree of partially controlled situations consists of a finite tree of moments t_1 , ..., t_n together with its relation "lies in the future of", a fixed collection of individuals, properties and relations, and for each moment *i*, a partially controlled situation with relations S_i with these individuals, properties and relations.

For each moment t_m , we have *its past*, the collection of all moments t_i such that t_m lies in the future of t_i . This is a partially controlled situation sequence (in the sense of Lecture 10).

Reasoning and Formal Modelling for Forensic Science Lecture 11

A tree of partially controlled situations consists of a finite tree of moments t_1 , ..., t_n together with its relation "lies in the future of", a fixed collection of individuals, properties and relations, and for each moment *i*, a partially controlled situation with relations S_i with these individuals, properties and relations.

For each moment t_m , we have *its past*, the collection of all moments t_i such that t_m lies in the future of t_i . This is a partially controlled situation sequence (in the sense of Lecture 10).

But we do not really have "its future", since there are many possible futures in a tree.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

A branch through a tree is a maximal sequence starting from the root and going all the way through the tree without any branching. Reasoning and Formal Modelling for Forensic Science Lecture 11

A branch through a tree is a maximal sequence starting from the root and going all the way through the tree without any branching. We call these branches histories. Reasoning and Formal Modelling for Forensic Science Lecture 11

A branch through a tree is a maximal sequence starting from the root and going all the way through the tree without any branching. We call these branches histories.

If t_i is a moment, then it has several possible futures: each history that passes through t_i determines a possible future: if H is a branch that passes through t_i , we say that the H-future of t_i is the collection of moments t_j in H that lie in the future of t_i . Reasoning and Formal Modelling for Forensic Science Lecture 11

A branch through a tree is a maximal sequence starting from the root and going all the way through the tree without any branching. We call these branches histories.

If t_i is a moment, then it has several possible futures: each history that passes through t_i determines a possible future: if H is a branch that passes through t_i , we say that the *H*-future of t_i is the collection of moments t_j in H that lie in the future of t_i .

Note: if *H* is a history in a tree of partially controlled situations, then it is in particular a sequence of partially controlled situations, and thus the semantics for sequences (Lecture 10) apply. So, if *H* is such a history, then " φ is valid in *H*" is defined as last time.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

- $@_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $@_i \varphi$ is invalid in S if φ is not valid in S_i .

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

- $Q_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $@_i \varphi$ is invalid in S if φ is not valid in S_i .
- before_i φ is valid in S if φ is valid in S_j for all t_j in the past of t_i .
- before_i φ is invalid in S if φ is not valid in S_j for some t_j in the past of t_i.

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

- $Q_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $@_i \varphi$ is invalid in S if φ is not valid in S_i .
- before_i φ is valid in S if φ is valid in S_j for all t_j in the past of t_i .
- before_i φ is invalid in S if φ is not valid in S_j for some t_j in the past of t_i .
- after_i φ is valid in S if φ is valid in S_j for all t_j in the future of t_i .
- after_i φ is invalid in S if φ is not valid in S_j for some t_j in the future of t_i .

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

- $Q_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $@_i \varphi$ is invalid in S if φ is not valid in S_i .
- before_i φ is valid in S if φ is valid in S_j for all t_j in the past of t_i .
- before_i φ is invalid in S if φ is not valid in S_j for some t_j in the past of t_i .
- after_i φ is valid in S if φ is valid in S_j for all t_j in the future of t_i .
- after_i φ is invalid in S if φ is not valid in S_j for some t_j in the future of t_j.

We can now start to talk about possibility and introduce a new operator $possible_i$ standing for "it is a possible future at moment t_i that".

Reasoning and Formal Modelling for Forensic Science Lecture 11

We fix a tree of moments and partially controlled situations $S_1, ..., S_n$.

- $Q_i \varphi$ is valid in *S* if φ is valid in *S_i*.
- $@_i \varphi$ is invalid in S if φ is not valid in S_i .
- before_i φ is valid in S if φ is valid in S_j for all t_j in the past of t_i .
- before_i φ is invalid in S if φ is not valid in S_j for some t_j in the past of t_i .
- after_i φ is valid in S if φ is valid in S_j for all t_j in the future of t_i .
- after_i φ is invalid in S if φ is not valid in S_j for some t_j in the future of t_j.

We can now start to talk about possibility and introduce a new operator $possible_i$ standing for "it is a possible future at moment t_i that".

But this breaks that symmetry: there is no (meaningful) corresponding operator for "it is a possible past that".

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

We now give the semantics for the new operator possible.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

We now give the semantics for the new operator possible.

possible_iφ is valid in S if there is a branch H passing through t_i such that φ is valid in H.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

We now give the semantics for the new operator possible.

- possible_iφ is valid in S if there is a branch H passing through t_i such that φ is valid in H.
- possible_i φ is invalid in S if for all branches H passing through t_i , φ is not valid in H.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Once more the sea battle:

 s_1 s_2 s_2 ' Reasoning and Formal Modelling for Forensic Science Lecture 11

Once more the sea battle:

There are two histories: $H := (S_1, S_2)$ and $H' := (S_1, S'_2)$.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Once more the sea battle:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

There are two histories: $H := (S_1, S_2)$ and $H' := (S_1, S'_2)$. Let us represent the sea-battle by a propositional letter p which is false in S_1 and S'_2 and true in S_2 .

Once more the sea battle:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

There are two histories: $H := (S_1, S_2)$ and $H' := (S_1, S'_2)$. Let us represent the sea-battle by a propositional letter p which is false in S_1 and S'_2 and true in S_2 .

In *H*, we have $possible_i p$, whereas in *H'*, we have $possible_i \neg p$.

Once more the sea battle:

Reasoning and Formal Modelling for Forensic Science Lecture 11

Prof. Dr. Benedikt Löwe

There are two histories: $H := (S_1, S_2)$ and $H' := (S_1, S'_2)$. Let us represent the sea-battle by a propositional letter p which is false in S_1 and S'_2 and true in S_2 .

In *H*, we have $possible_i p$, whereas in *H'*, we have $possible_i \neg p$.

But we also get:

possible_i $\neg(p \lor \neg p)$ is invalid.

Subjective possibilities (1).

Reasoning and Formal Modelling for Forensic Science Lecture 11

Subjective possibilities (1).

We have only talked about objective ontic uncertainty, i.e., things that at the time of modelling have no decided truth value.

Reasoning and Formal Modelling for Forensic Science Lecture 11

Subjective possibilities (1).

We have only talked about objective ontic uncertainty, i.e., things that at the time of modelling have no decided truth value.

But sometimes, we are modelling things from the point of view of the agents in the story. It might be that we as modellers already know what happened later, but the agents in the story had to make their decisions under ontic uncertainty. Reasoning and Formal Modelling for Forensic Science Lecture 11

Subjective possibilities (2).

Reasoning and Formal Modelling for Forensic Science Lecture 11

Subjective possibilities (2).

Bart was travelling through France with his highly poisonous carpet viper. One evening, he stays in a fancy Sofitel, removes the snake from its terrarium and goes to bed together with his snake without any protection. The snake bites him a few minutes later. By sheer coincidence, the person in the room next to him is one of the leading experts on snake venom. He hears a suspicious sound, calls house keeping, finds Bart, administers the anti-venom that he carries with him, and saves Bart's life. Reasoning and Formal Modelling for Forensic Science Lecture 11

Subjective possibilities (2).

Bart was travelling through France with his highly poisonous carpet viper. One evening, he stays in a fancy Sofitel, removes the snake from its terrarium and goes to bed together with his snake without any protection. The snake bites him a few minutes later. By sheer coincidence, the person in the room next to him is one of the leading experts on snake venom. He hears a suspicious sound, calls house keeping, finds Bart, administers the anti-venom that he carries with him, and saves Bart's life.

In trying to figure out what happened (accident, suicide attempt, psychotic episode), we need to model the possible futures from Bart's perspective, even though we already know which of the future contingents happened. Reasoning and Formal Modelling for Forensic Science Lecture 11

An example.

Reasoning and Formal Modelling for Forensic Science Lecture 11

An example.

The police are investigating a series of burglaries. In each case, a well-to-do family has received a letter saying that they won a ticket to the opera, and when they went, the burglars broke into their home. The neighbourhood is on alert and police patrols are controlling the streets in the night. On 24 February, Philip Batch, one of the inspectors of the investigating team receives such a letter. The police plans to hide a number of agents in the house of the inspector, but Batch is uncertain: he thinks that this is a trap. By reducing the number of agents on the streets, the burglars would find it easier to get to their real target, which is still unknown to the police.

Reasoning and Formal Modelling for Forensic Science Lecture 11