Yde Venema Universiteit van Amsterdam staff.science.uva.nl/~yde

Core Logic: December 5, 2007

- ► Add connective (*) to the language ML of modal logic
- $\blacktriangleright \langle * \rangle p := \bigvee_{n \in \omega} \diamondsuit^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- ► Add connective (*) to the language ML of modal logic
- $\blacktriangleright \ \langle * \rangle p := \bigvee_{n \in \omega} \diamondsuit^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

 $\blacktriangleright \ \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$

- Add connective $\langle * \rangle$ to the language ML of modal logic
- $\blacktriangleright \ \langle * \rangle p := \bigvee_{n \in \omega} \diamondsuit^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- Fact ⟨*⟩p is the least fixpoint of the 'equation' x ↔ p ∨ ◊x
 (a fixpoint of a map f : C → C is an a ∈ C with fa = a)

- Add connective $\langle * \rangle$ to the language ML of modal logic
- $\blacktriangleright \langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- Fact ⟨*⟩p is the least fixpoint of the 'equation' x ↔ p ∨ ◊x
 (a fixpoint of a map f : C → C is an a ∈ C with fa = a)
- Notation: $\langle * \rangle p \equiv \mu x.p \lor \Diamond x.$

Other Examples

- common knowledge: $C_G p \equiv \nu x.p \land \bigwedge_{a \in G} K_a x$
- ► until: $Upq \equiv \mu x.p \lor (q \land \diamondsuit x)$
- ▶ no infinite paths: $F \equiv \mu x . \Box x$.

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$, U, C_G , F, . . .
 - explicit fixpoint operators μx , νx .

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$, U, C_G , F, . . .
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$, U, C_G , F, . . .
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour
- ► Many applications in process theory, epistemic logic, . . .

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$, U, C_G , F, . . .
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour
- ► Many applications in process theory, epistemic logic, . . .
- ► Rich theory:
 - game-theoretical semantics
 - connections with theory of automata on infinite objects
 - connections with theory of (complete) lattice expansions

General Program

Achieve a better understanding of modal fixpoint logics by studying the interaction between

- combinatorial
- model-theoretic and
- algebraic and
- coalgebraic

aspects of fixpoint logics.

General Program

Achieve a better understanding of modal fixpoint logics by studying the interaction between

- combinatorial
- model-theoretic and
- algebraic and
- coalgebraic

aspects of fixpoint logics.

Here: consider simple, 'flat' modal fixpoint logics, in full generality

Overview

- ► Introduction
- Flat Modal Fixpoint Logics
- Constructiveness & continuity

Overview

- ► Introduction
- Flat Modal Fixpoint Logics
- Constructiveness & continuity

Fix set Γ of formulas $\gamma(x, \boldsymbol{p})$ in which x occurs only positively

- Fix set Γ of formulas $\gamma(x, \boldsymbol{p})$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.

- Fix set Γ of formulas $\gamma(x, \boldsymbol{p})$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

$$\varphi ::= p \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \diamondsuit_i \varphi \mid \sharp_{\gamma}(\varphi)$$

- Fix set Γ of formulas $\gamma(x, \boldsymbol{p})$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

$$\varphi ::= p \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \diamondsuit_i \varphi \mid \sharp_{\gamma}(\varphi)$$

► Examples: CTL, LTL, (PDL), . . .

- Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

$$\varphi ::= p \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \diamondsuit_i \varphi \mid \sharp_{\gamma}(\varphi)$$

► Examples: CTL, LTL, (PDL), . . .

For simplification assume ML has only one diamond \diamondsuit , and Γ is singleton.

Flat Modal Fixpoint Logics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,

 $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(P) := \{ s \in S \mid Rst \text{ for some } t \in P \}$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,

 $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(P) := \{ s \in S \mid Rst \text{ for some } t \in P \}$

• Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S}: \wp(S)^{n} \to \wp(S).$$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,

 $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(P) := \{ s \in S \mid Rst \text{ for some } t \in P \}$

• Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S} : \wp(S)^{n} \to \wp(S).$$

$$p_{i}^{S}(\boldsymbol{P}) := P_{i}$$

$$(\varphi \lor \psi)^{S}(\boldsymbol{P}) := \varphi^{S}(\boldsymbol{P}) \cup \psi^{S}(\boldsymbol{P})$$

$$(\neg \varphi)^{S}(\boldsymbol{P}) := S \setminus \varphi^{S}(\boldsymbol{P})$$

$$(\Diamond \varphi)^{S}(\boldsymbol{P}) := \langle R \rangle \varphi^{S}(\boldsymbol{P})$$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,
 - $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(P) := \{ s \in S \mid Rst \text{ for some } t \in P \}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S}: \wp(S)^{n} \to \wp(S).$$

$$p_i^S(\mathbf{P}) := P_i$$

$$(\varphi \lor \psi)^S(\mathbf{P}) := \varphi^S(\mathbf{P}) \cup \psi^S(\mathbf{P})$$

$$(\neg \varphi)^S(\mathbf{P}) := S \setminus \varphi^S(\mathbf{P})$$

$$(\Diamond \varphi)^S(\mathbf{P}) := \langle R \rangle \varphi^S(\mathbf{P})$$

• How to define the semantics of \sharp^S ?

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(P) := \{ s \in S \mid Rst \text{ for some } t \in P \}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S} : \wp(S)^{n} \to \wp(S).$$

$$p_{i}^{S}(\boldsymbol{P}) := P_{i}$$

$$(\varphi \lor \psi)^{S}(\boldsymbol{P}) := \varphi^{S}(\boldsymbol{P}) \cup \psi^{S}(\boldsymbol{P})$$

$$(\neg \varphi)^{S}(\boldsymbol{P}) := S \setminus \varphi^{S}(\boldsymbol{P})$$

$$(\Diamond \varphi)^{S}(\boldsymbol{P}) := \langle R \rangle \varphi^{S}(\boldsymbol{P})$$

How to define the semantics of *β*?
 Want: *β*(*P*) is the least fixpoint of the map *γ*^S_P = λX.*γ*^S(X, *P*).

Venema

Knaster-Tarski Theorem

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

In particular, $f(q) \in \mathsf{PRE}(f)$, so by definition, $q \leq fq$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then
$$f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$$
, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

In particular, $f(q) \in \mathsf{PRE}(f)$, so by definition, $q \leq fq$.

Hence q = fq and so $\bigwedge \mathsf{PRE}(f)$ is the least fixpoint of f.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}\$ form an increasing chain in C.

Core Logic

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}$ form an increasing chain in C.

 $\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$

10

Core Logic

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}\$ form an increasing chain in C.

$$\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$$

Definition LFP. f is constructive if LFP. $f = f^{\omega}(\bot) = \bigvee_{n \in \omega} f^n(\bot)$.

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}$ form an increasing chain in C.

$$\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$$

Definition LFP. f is constructive if LFP. $f = f^{\omega}(\bot) = \bigvee_{n \in \omega} f^n(\bot)$.

This definition applies to non-complete lattices too!

Flat Modal Fixpoint Logics

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$
- x positive in $\gamma \Rightarrow \gamma^S : \wp(S)^{n+1} \to \wp(S)$ order preserving in first coord.

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$
- x positive in $\gamma \Rightarrow \gamma^S : \wp(S)^{n+1} \to \wp(S)$ order preserving in first coord.
- ▶ By Knaster-Tarski we may define $\sharp^S : \wp(S)^n \to \wp(S)$ by

 $\sharp^S(\boldsymbol{P}) := \mathsf{LFP}.\gamma^S_{\boldsymbol{P}}.$

Questions

- ► When are fixpoint connectives constructive?
- ► How to axiomatize flat fixpoint logics?

Overview

- ► Introduction
- ► Flat modal fixpoint logics
- Constructiveness & continuity

Proposition (folklore?) Let S be an LTS and let x be positive in $\gamma(x, p)$.

Proposition (folklore?) Let S be an LTS and let x be positive in $\gamma(x, p)$.

(1) If S is image-finite then \sharp_{γ} is constructive on S.

Proposition (folklore?) Let S be an LTS and let x be positive in $\gamma(x, p)$.

(1) If S is image-finite then \sharp_{γ} is constructive on S.

(2) If $\gamma \in EF_x$ then \sharp_{γ} is constructive on S, with EF_x *x*-existential fragment given by

```
\varphi \ ::= \ x \ \mid \ `x\text{-free'} \ \mid \ \perp \ \mid \ \top \ \mid \ \varphi_1 \lor \varphi_2 \ \mid \ \varphi_1 \land \varphi_2 \ \mid \ \diamondsuit_i \varphi
```

Proposition (folklore?) Let S be an LTS and let x be positive in $\gamma(x, p)$.

(1) If S is image-finite then \sharp_{γ} is constructive on S.

(2) If $\gamma \in EF_x$ then \sharp_{γ} is constructive on S, with EF_x *x*-existential fragment given by

```
\varphi \ ::= \ x \ \mid \ `x\text{-free'} \ \mid \ \perp \ \mid \ \top \ \mid \ \varphi_1 \lor \varphi_2 \ \mid \ \varphi_1 \land \varphi_2 \ \mid \ \diamondsuit_i \varphi
```

Proof

In both cases, γ is continuous in $\boldsymbol{x}.$

Continuity

Definition Let S be an LTS. A formula γ is continuous in x on S if

$$\gamma^{S}(X, \mathbf{P}) = \bigcup_{F \subseteq \omega X} \gamma^{S}(F, \mathbf{P}).$$

(This is equivalent to requiring γ^S_P to be Scott continuous on $\wp(S)$.)

Core Logic

Continuity

Definition Let S be an LTS. A formula γ is continuous in x on S if

$$\gamma^{S}(X, \mathbf{P}) = \bigcup_{F \subseteq \omega X} \gamma^{S}(F, \mathbf{P}).$$

(This is equivalent to requiring γ^S_P to be Scott continuous on $\wp(S)$.)

Proposition

 $\gamma \ {\rm continuous} \Rightarrow \sharp_\gamma \ {\rm constructive}$

Continuity

Definition

Let S be an LTS. A formula γ is continuous in x on S if

$$\gamma^{S}(X, \mathbf{P}) = \bigcup_{F \subseteq \omega X} \gamma^{S}(F, \mathbf{P}).$$

(This is equivalent to requiring γ^S_P to be Scott continuous on $\wp(S)$.)

Proposition

 $\gamma \text{ continuous} \Rightarrow \sharp_{\gamma} \text{ constructive}$

Proposition

Let S be an LTS and let x be positive in $\gamma(x, \mathbf{p})$. If S is image-finite or if $\gamma \in EF_x$ then γ^S is continuous in x.

Constructiveness & Continuity

Venema

Core Logic

Characterizing Continuity

Characterizing Continuity

Theorem (Fontaine & Venema) Let $\gamma(x, p)$ be a modal formula. Then γ is continuous in x if and only if γ is equivalent to some $\gamma' \in EF_x$.

Characterizing Continuity

Theorem (Fontaine & Venema) Let $\gamma(x, p)$ be a modal formula. Then γ is continuous in x if and only if γ is equivalent to some $\gamma' \in EF_x$.

Corollary

Let $\gamma(x, p)$ be a modal formula.

If γ is continuous in x then it is 'uniformly continuous': $\exists k < \omega, \forall S \text{ LTS}$:

$$\gamma^{S}(X, \mathbf{P}) = \bigcup_{F \subseteq \mathbf{k}+1} \gamma^{S}(F, \mathbf{P}).$$

Characterizing Continuity

Theorem (Fontaine & Venema) Let $\gamma(x, p)$ be a modal formula.

Then γ is continuous in x if and only if γ is equivalent to some $\gamma' \in EF_x$.

Corollary

Let $\gamma(x, \mathbf{p})$ be a modal formula. If γ is continuous in x then it is 'uniformly continuous': $\exists k < \omega, \forall S \text{ LTS}$:

$$\gamma^{S}(X, \mathbf{P}) = \bigcup_{F \subseteq \mathbf{k+1}X} \gamma^{S}(F, \mathbf{P}).$$

Questions

- \sharp_{γ} constructive $\Rightarrow \gamma$ continuous?
- Is it decidable whether a formula γ is continuous/constructive in x?