
Euler.

Leonhard Euler (1707-1783)

Member of the newly founded
St. Petersburg Academy of
Sciences (1727).

1741-1766: Director of Mathe-
matics, later inofficial head of the
Berlin Academy.
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Euler diagrams.

Lettres à une Princesse d’Allemagne (1768-72).

BA

B
A

B
A

B
A

“Every A is B.”

“No A is B.”

“Some (but only some) A is

B.”

“Some (but only some) A is

not B.”

(Diagrams with Existential import!)
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Gergonne (1).

Joseph Diaz Gergonne (1771-1859).

Very active in the wars after the French revolution.

Discoverer of the duality principle in geometry.

Essais de dialectique rationnelle (1816-1817):
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Gergonne (2).

ABBA

B

c

AAcB

A
B

AIB

BA

AxB

BA

AhB

Any two non-empty extensions (“sets”) A and B are in
exactly one of Gergonne’s five relations:

h est hors de

x s’entre-croise avec

I est identique à

c est contenue dans

c

contiens

Core Logic – 2007/08-1ab – p. 5/35



Gergonne (3).

Syllogisms of the first figure: A •0 B, B •1 C : A •2 C.

h x I c

c

h ¬I,¬ c

h ¬I,¬ c

h

x ¬I,¬c x ¬h,¬I,¬ c ¬I,¬c
I h x I c

c
c h ¬I,¬ c

c c

c ¬I,¬c ¬h,¬I,¬c c ¬h c

If AxB and BcC, then ¬AIC and ¬A

c

C.
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De Morgan.

Augustus de Morgan (1806-1871).

Professor of Mathematics at UCL (1828).

Corresponded with Charles Babbage (1791-1871)

and William Rowan Hamilton (1805-1865).

1866. First president of the London Mathematical

Society.

x = 43, x2 = 1849. y = 45, y2 = 2025.

De Morgan rules. ¬(Φ ∧Ψ) ≡ ¬Φ ∨ ¬Ψ

¬(Φ ∨Ψ) ≡ ¬Φ ∧ ¬Ψ
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Boole (1).

George Boole (1815-1864).

School teacher in Doncaster, Liverpool,

Waddington (1831-1849).

Correspondence with de Morgan.

Professor of Mathematics at Cork (1849).

Developed an algebra of logic based on the idea of
taking the extensions of predicates as objects of the
algebra.

1 is the “universe of discourse”, 0 is the empty
extension.
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Boole (2).

“No B is an A” ba = 0.

“Some B is an A” ba 6= 0.

“All B are A” b(1− a) = 0.

“Some B is not an A” b(1− a) 6= 0.

Celarent.

We assume: ba = 0 and c(1− b) = 0.

We have to show: ca = 0.

ba = 0 implies that cba = c0 = 0.

ca = ca− 0 = ca− cba = a(c− bc) = a(c(1− b)) = ac0 = 0.
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Venn.

John Venn (1834-1923).

Lecturer in Moral Science at Cambridge (1862).

Area of interest: logic and probability theory.

Symbolic Logic (1881).

The Principles of Empirical Logic (1889).

Alumni Cantabrigienses.

Venn diagrams.
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Boolean Algebras (1).

A structure B = 〈B, 0, 1, +, ·,−〉 is a Boolean algebra if

B is a set with 0, 1 ∈ B.

+ and · are binary operations on B satisfying the commutative and associative laws.

− is a unary operation on B.

+ distributes over · and vice versa: x+ (y · z) = (x+ y) · (x+ z) and

x · (y + z) = (x · y) + (x · z).

x · x = x+ x = x (idempotence), −− x = x.

−(x · y) = (−x) + (−y), −(x+ y) = (−x) · (−y) (de Morgan’s laws).

x · (−x) = 0, x+ (−x) = 1, x · 1 = x, x+ 0 = x, x · 0 = 0, x+ 1 = 1.

−1 = 0, −0 = 1.

Example. B = {0, 1}.
· 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 1
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Boolean Algebras (2).

X := {Platon, Aristotle, Speusippus, Themistokles}
Phil := {Platon,Aristotle, Speusippus}

Rhet := {Themistokles}

Acad := {Platon, Speusippus}

Peri := {Aristotle}

B := {∅, X,Phil,Rhet,Acad,Peri,Rhet + Peri,Rhet + Acad}.
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Boolean Algebras (3).

If X is a set, let ℘(X) be the power set of X, i.e., the set of

all subsets of X.
For A, B ∈ ℘(X), we can define

A ·B := A ∩B,

A + B := A ∪B,

0 := ∅,

1 := X,

−A := X\A.

Then 〈℘(X), 0, 1, +, ·,−〉 is a Boolean algebra, denoted by
Pow(X).
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Boolean Algebras (4).

Define the notion of isomorphism of Boolean algebras:
Let B = 〈B, 0, 1, +, ·,−〉 and C = 〈C,⊥,⊤,⊕,⊗,⊖〉 be
Boolean algebras. A function f : B → C is a Boolean
isomorphism if

f is a bijection,

for all x, y ∈ B, we have f(x + y) = f(x)⊕ f(y),
f(x · y) = f(x)⊗ f(y), f(−x) = ⊖f(x), f(0) = ⊥,
f(1) = ⊤.

Stone Representation Theorem. If B is a Boolean
algebra, then there is some set X such that B is isomorphic
to a subalgebra of Pow(X).
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Circuits.

+ corresponds to having two switches in parallel: if
either (or both) of the switches are ON, then the current
can flow.

· corresponds to having two switches in series: if either
(or both) of the switches are OFF, then the current is
blocked.
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Mathematics and real content.

Mathematics getting more abstract...

Imaginary numbers.

Nicolo Tartaglia Girolamo Cardano

(1499-1557) (1501-1576)

Carl Friedrich Gauss (1777-1855)

Ideal elements in number theory.
Richard Dedekind (1831-1916)
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The Delic problem (1).

If a cube has height, width and depth 1, then its volume is

1× 1× 1 = 13 = 1.
If a cube has height, width and depth 2, then its volume is

2× 2× 2 = 23 = 8.
In order to have volume 2, the height, width and depth of

the cube must be 3
√

2:

3
√

2× 3
√

2× 3
√

2 = (
3
√

2)3 = 2.
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The Delic problem (2).

Question. Given a compass and a ruler that has only
integer values on it, can you give a geometric construction

of 3
√

2?
Example. If x is a number that is constructible with ruler

and compass, then
√

x is constructible.

Proof.

If x is the sum of two squares (i.e., x = n2 +m2), then this is easy by Pythagoras. In

general:
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The Delic problem (3).

It is easy to see what a positive solution to the Delic
problem would be. But a negative solution would require
reasoning about all possible geometric constructions.
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Geometries (1).

We call a structure 〈P, L, I〉 a plane geometry if
I ⊆ P × L is a relation.

We call the elements of P “points”, the elements of L

“lines” and we read pIℓ as “p lies on ℓ”.

If ℓ and ℓ∗ are lines, we say that ℓ and ℓ∗ are parallel if
there is no point p such that pIℓ and pIℓ∗.

Example. If P = R2, then we call ℓ ⊆ P a line if

ℓ = {〈x, y〉 ; y = a · x + b}

for some a, b ∈ R. Let L be the set of lines. We write pIℓ

if p ∈ ℓ. Then 〈P,L, I〉 is a plane geometry.
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Geometries (2).

(A1) For every p 6= q ∈ P there is exactly one ℓ ∈ L such
that pIℓ and qIℓ.

(A2) For every ℓ 6= ℓ∗ ∈ L, either ℓ and ℓ∗ are parallel, or
there is exactly one p ∈ P such that pIℓ and pIℓ∗.

(N) For every p ∈ P there is an ℓ ∈ L such that p doesn’t
lie on ℓ and for every ℓ ∈ L there is an p ∈ P such that p

doesn’t lie on ℓ.

(P2) For every ℓ 6= ℓ∗ ∈ L, there is exactly one p ∈ P

such that pIℓ and pIℓ∗.

A plane geometry that satisfies (A1), (A2) and (N) is called
a plane. A plane geometry that satisfies (A1), (P2) and (N)
is called a projective plane.
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Geometries (3).

(A1) For every p 6= q ∈ P there is exactly one ℓ ∈ L such that pIℓ and qIℓ.

(A2) For every ℓ 6= ℓ∗ ∈ L, either ℓ and ℓ∗ are parallel, or there is exactly one p ∈ P

such that pIℓ and pIℓ∗.

(N) For every p ∈ P there is an ℓ ∈ L such that p doesn’t lie on ℓ and for every ℓ ∈ L

there is an p ∈ P such that p doesn’t lie on ℓ.

Let P := 〈R2,L,∈〉. Then P is a plane.

(WE) (“the weak Euclidean postulate”) For every ℓ ∈ L and every
p ∈ P such that p doesn’t lie on ℓ, there is an ℓ∗ ∈ L

such that pIℓ∗ and ℓ and ℓ∗ are parallel.

(SE) (“the strong Euclidean postulate”) For every ℓ ∈ L and every
p ∈ P such that p doesn’t lie on ℓ, there is exactly one
ℓ∗ ∈ L such that pIℓ∗ and ℓ and ℓ∗ are parallel.

P is a strongly Euclidean plane.
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Geometries (4).

Question. Do (A1), (A2), (N), and (WE) imply (SE)?

It is easy to see what a positive solution would be, but a
negative solution would require reasoning over all possible
proofs.

Semantic version of the question. Is every weakly
Euclidean plane strongly Euclidean?

Core Logic – 2007/08-1ab – p. 23/35



Syntactic versus semantic.

Does Φ imply ψ? Does every Φ-structure satisfy ψ?

Positive Give a proof Check all structures

∃ ∀

Negative Check all proofs Give a counterexample

∀ ∃
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Euclid’s Fifth Postulate (1).

Ptolemy (c.85-c.165)

Proclus (411-485)

Omar Khayyam (1048-1131)

Nasir ad-Din at-Tusi (1201-1274)

Girard Desargues (1591-1661)

Blaise Pascal (1623-1662)

Gerolamo Saccheri (1667-1733): Hypothesis of the acute angle

Heinrich Lambert (1728-1777)

John Playfair (1748-1819)

Adrien-Marie Legendre (1752-1833): (SE) is equivalent to “the sum of angles of a

triangle is equal to 180◦”.
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Euclid’s Fifth Postulate (2).

“the scandal of elementary geometry” (D’Alembert 1767)

“In the theory of parallels we are even now not further than Euclid. This is a shameful part of

mathematics...” (Gauss 1817)

Johann Carl Friedrich Gauss Nikolai Ivanovich Lobachevsky János Bolyai

(1777-1855) (1792-1856) (1802-1860)

1817 1829 1823
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A non-Euclidean geometry.

Take the usual geometry P = 〈R2,L,∈〉 on the Euclidean
plane.

Consider U := {x ∈ R2 ; ‖x‖ < 1}. We define the restriction

of L to U by LU := {ℓ ∩ U ; ℓ ∈ L}.
U := 〈U,LU,∈〉.
Theorem. U is a weakly Euclidean plane which is not
strongly Euclidean.
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Cantor (1).

Georg Cantor
(1845-1918)
studied in Zürich, Berlin, Göttingen
Professor in Halle

Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

Perfect sets and iterations of operations lead to a notion
of ordinal number (1880).

Core Logic – 2007/08-1ab – p. 28/35



Cantor (2).

Georg Cantor (1845-1918)

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.

Cantor is supported by Dedekind and Felix Klein.

1884: Cantor suffers from a severe depression.

1888-1891: Cantor is the leading force in the foundation
of the Deutsche Mathematiker-Vereinigung.

Development of the foundations of set theory:
1895-1899.
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Cardinality (1).

The natural numbers 0

��

1

��
-
-
-
-
-
-

2

��
<

<
<

<
<

<
<

3

##
G

G
G

G
G

G
G

G
G

G 4

&&MMMMMMMMMMMMM 5 6 7 8 ...

The even numbers 0 2 4 6 8 ...

There is a 1-1 correspondence (bijection) between N

and the even numbers.

There is a bijection between N× N and N.

There is a bijection between Q and N.

There is no bijection between the set of infinite 0-1
sequences and N.

There is no bijection between R and N.
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Cardinality (2).

Theorem (Cantor). There is no bijection between the set of
infinite 0-1 sequences and N.

Theorem (Cantor). There is a bijection between the real
line and the real plane.

Proof. Let’s just do it for the set of infinite 0-1 sequences and the set of pairs of infinite 0-1

sequences:

If x is an infinite 0-1 sequence, then let

x0(n) := x(2n), and

x1(n) := x(2n+ 1).

Let F (x) := 〈x0, x1〉. F is a bijection. q.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube
es nicht!”
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