Euler.

Leonhard Euler (1707-1783)

- Member of the newly founded St. Petersburg Academy of Sciences (1727).
- 1741-1766: Director of Mathematics, later inofficial head of the Berlin Academy.

Euler diagrams.

Lettres à une Princesse d'Allemagne (1768-72).

(Diagrams with Existential import!)
"Every A is B."
"No A is B."
"Some (but only some) A is B."
"Some (but only some) A is not B."

Gergonne (1).

Joseph Diaz Gergonne (1771-1859).

- Very active in the wars after the French revolution.
- Discoverer of the duality principle in geometry.
- Essais de dialectique rationnelle (1816-1817):

AhB AxB AIB

AB

Gergonne (2).

Gergonne (3).

Syllogisms of the first figure: $A \bullet_{0} B, B \bullet_{1} C: A \bullet_{2} C$.

	h	x	l	c	o
h		$\neg \mathrm{l}, \neg \supset$	h	$\neg \mathrm{l}, \neg \mathrm{\rho}$	h
x	$\neg \mathrm{l}, \neg \mathrm{c}$		x	$\neg \mathrm{h}, \neg \mathrm{l}, \neg \mathrm{0}$	$\neg \mathrm{l}, \neg \mathrm{c}$
l	h	x	l	c	0
c	h	$\neg \mathrm{l}, \neg \supset$	c	c	
0	$\neg \mathrm{l}, \neg \mathrm{c}$	$\neg \mathrm{h}, \neg \mathrm{l}, \neg \mathrm{c}$	o	$\neg \mathrm{h}$	0

If $A \mathrm{x} B$ and $B \mathrm{c} C$, then $\neg A I C$ and $\neg A \supset C$.

De Morgan.

Augustus de Morgan (1806-1871).

- Professor of Mathematics at UCL (1828).
- Corresponded with Charles Babbage (1791-1871) and William Rowan Hamilton (1805-1865).
- 1866. First president of the London Mathematical Society.
- $x=43, x^{2}=1849 . y=45, y^{2}=2025$.

De Morgan rules. $\quad \neg(\Phi \wedge \Psi) \equiv \neg \Phi \vee \neg \Psi$

$$
\neg(\Phi \vee \Psi) \equiv \neg \Phi \wedge \neg \Psi
$$

Boole (1).

George Boole (1815-1864).

- School teacher in Doncaster, Liverpool, Waddington (1831-1849).
- Correspondence with de Morgan.
- Professor of Mathematics at Cork (1849).
- Developed an algebra of logic based on the idea of taking the extensions of predicates as objects of the algebra.
- 1 is the "universe of discourse", 0 is the empty extension.

Boole (2).

"No B is an A "

$$
b a=\mathbf{0}
$$

"Some B is an A "
"All B are A "
$b a \neq \mathbf{0}$.
$b(\mathbf{1}-a)=\mathbf{0}$.
"Some B is not an A " $\quad b(\mathbf{1}-a) \neq \mathbf{0}$.

Celarent.

- We assume: $b a=\mathbf{0}$ and $c(\mathbf{1}-b)=\mathbf{0}$.
- We have to show: $c a=0$.
- $b a=\mathbf{0}$ implies that $c b a=c \mathbf{0}=\mathbf{0}$.
- $c a=c a-\mathbf{0}=c a-c b a=a(c-b c)=a(c(\mathbf{1}-b))=a c \mathbf{0}=\mathbf{0}$.

Venn.

John Venn (1834-1923).

- Lecturer in Moral Science at Cambridge (1862).
- Area of interest: logic and probability theory.
- Symbolic Logic (1881).
- The Principles of Empirical Logic (1889).
- Alumni Cantabrigienses.

Venn diagrams.

Boolean Algebras (1).

A structure $\mathbf{B}=\langle B, 0,1,+, \cdot,-\rangle$ is a Boolean algebra if

- B is a set with $0,1 \in B$.
- + and • are binary operations on B satisfying the commutative and associative laws.
- - is a unary operation on B.
- + distributes over and vice versa: $x+(y \cdot z)=(x+y) \cdot(x+z)$ and $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.
- $x \cdot x=x+x=x$ (idempotence), $--x=x$.
- $-(x \cdot y)=(-x)+(-y),-(x+y)=(-x) \cdot(-y)$ (de Morgan's laws).
- $x \cdot(-x)=0, x+(-x)=1, x \cdot 1=x, x+0=x, x \cdot 0=0, x+1=1$.
- $-1=0,-0=1$.

Example. $B=\{0,1\}$.

Boolean Algebras (2).

$X:=\{$ Platon, Aristotle, Speusippus, Themistokles $\}$
Phil :=\{Platon, Aristotle, Speusippus $\}$
Rhet := \{Themistokles $\}$
Acad $:=\{$ Platon, Speusippus $\}$
Peri := \{Aristotle $\}$
$B:=\{\varnothing, X$, Phil, Rhet, Acad, Peri, Rhet + Peri, Rhet + Acad $\}$.

Boolean Algebras (3).

If X is a set, let $\wp(X)$ be the power set of X, i.e., the set of all subsets of X.
For $A, B \in \wp(X)$, we can define

- $A \cdot B:=A \cap B$,
- $A+B:=A \cup B$,
- $0:=\varnothing$,
- $1:=X$,
- $-A:=X \backslash A$.

Then $\langle\wp(X), 0,1,+, \cdot,-\rangle$ is a Boolean algebra, denoted by $\operatorname{Pow}(X)$.

Boolean Algebras (4).

Define the notion of isomorphism of Boolean algebras:
Let $\mathbf{B}=\langle B, 0,1,+, \cdot,-\rangle$ and $\mathbf{C}=\langle C, \perp, \top, \oplus, \otimes, \ominus\rangle$ be
Boolean algebras. A function $f: B \rightarrow C$ is a Boolean isomorphism if

- f is a bijection,
- for all $x, y \in B$, we have $f(x+y)=f(x) \oplus f(y)$,

$$
f(x \cdot y)=f(x) \otimes f(y), f(-x)=\ominus f(x), f(0)=\perp,
$$

$$
f(1)=\top .
$$

Stone Representation Theorem. If B is a Boolean algebra, then there is some set X such that B is isomorphic to a subalgebra of $\operatorname{Pow}(X)$.

Circuits.

- + corresponds to having two switches in parallel: if either (or both) of the switches are $\mathbf{O N}$, then the current can flow.

2 . corresponds to having two switches in series: if either (or both) of the switches are OFF, then the current is blocked.

Mathematics and real content.

Mathematics getting more abstract...
Imaginary numbers.
Nicolo Tartaglia Girolamo Cardano
(1499-1557) (1501-1576)

Carl Friedrich Gauss (1777-1855)
Ideal elements in number theory. Richard Dedekind (1831-1916)

The Delic problem (1).

If a cube has height, width and depth 1 , then its volume is $1 \times 1 \times 1=1^{3}=1$.
If a cube has height, width and depth 2 , then its volume is $2 \times 2 \times 2=2^{3}=8$.
In order to have volume 2, the height, width and depth of the cube must be $\sqrt[3]{2}$:

$$
\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2}=(\sqrt[3]{2})^{3}=2
$$

The Delic problem (2).

Question. Given a compass and a ruler that has only integer values on it, can you give a geometric construction of $\sqrt[3]{2}$?
Example. If x is a number that is constructible with ruler and compass, then \sqrt{x} is constructible.

Proof.
If x is the sum of two squares (i.e., $x=n^{2}+m^{2}$), then this is easy by Pythagoras. In general:

The Delic problem (3).

It is easy to see what a positive solution to the Delic problem would be. But a negative solution would require reasoning about all possible geometric constructions.

Geometries (1).

- We call a structure $\langle P, L, I\rangle$ a plane geometry if $I \subseteq P \times L$ is a relation.
- We call the elements of P "points", the elements of L "lines" and we read $p I \ell$ as " p lies on ℓ ".
- If ℓ and ℓ^{*} are lines, we say that ℓ and ℓ^{*} are parallel if there is no point p such that $p I \ell$ and $p I \ell^{*}$.
- Example. If $P=\mathbb{R}^{2}$, then we call $\ell \subseteq P$ a line if

$$
\ell=\{\langle x, y\rangle ; y=a \cdot x+b\}
$$

for some $a, b \in \mathbb{R}$. Let \mathcal{L} be the set of lines. We write $p I \ell$ if $p \in \ell$. Then $\langle P, \mathcal{L}, I\rangle$ is a plane geometry.

Geometries (2).

- (A1) For every $p \neq q \in P$ there is exactly one $\ell \in L$ such that $p I \ell$ and $q I \ell$.
- (A2) For every $\ell \neq \ell^{*} \in L$, either ℓ and ℓ^{*} are parallel, or there is exactly one $p \in P$ such that $p I \ell$ and $p I \ell^{*}$.
- (N) For every $p \in P$ there is an $\ell \in L$ such that p doesn't lie on ℓ and for every $\ell \in L$ there is an $p \in P$ such that p doesn't lie on ℓ.
- (P2) For every $\ell \neq \ell^{*} \in L$, there is exactly one $p \in P$ such that $p I \ell$ and $p I \ell^{*}$.

A plane geometry that satisfies (A1), (A2) and (N) is called a plane. A plane geometry that satisfies (A1), (P2) and (N) is called a projective plane.

Geometries (3).

- (A1) For every $p \neq q \in P$ there is exactly one $\ell \in L$ such that $p I \ell$ and $q I \ell$.
- (A2) For every $\ell \neq \ell^{*} \in L$, either ℓ and ℓ^{*} are parallel, or there is exactly one $p \in P$ such that $p I \ell$ and $p I \ell^{*}$.
- (N) For every $p \in P$ there is an $\ell \in L$ such that p doesn't lie on ℓ and for every $\ell \in L$ there is an $p \in P$ such that p doesn't lie on ℓ.

Let $\mathrm{P}:=\left\langle\mathbb{R}^{2}, \mathcal{L}, \in\right\rangle$. Then P is a plane.

- (WE) ("the weak Euclidean postulate") For every $\ell \in L$ and every $p \in P$ such that p doesn't lie on ℓ, there is an $\ell^{*} \in L$ such that $p I \ell^{*}$ and ℓ and ℓ^{*} are parallel.
- (SE) ("the strong Euclidean postulate") For every $\ell \in L$ and every $p \in P$ such that p doesn't lie on ℓ, there is exactly one $\ell^{*} \in L$ such that $p I \ell^{*}$ and ℓ and ℓ^{*} are parallel.

P is a strongly Euclidean plane.

Geometries (4).

Question. Do (A1), (A2), (N), and (WE) imply (SE)?
It is easy to see what a positive solution would be, but a negative solution would require reasoning over all possible proofs.

Semantic version of the question. Is every weakly Euclidean plane strongly Euclidean?

Syntactic versus semantic.

	Does Φ imply $\psi \boldsymbol{?}$	Does every Φ-structure satisfy $\psi \boldsymbol{?}$
Positive	Give a proof	Check all structures
	\exists	\forall
Negative	Check all proofs	Give a counterexample
	\forall	\exists

Euclid's Fifth Postulate (1).

- Ptolemy (c.85-c.165)
- Proclus (411-485)
- Omar Khayyam (1048-1131)
- Nasir ad-Din at-Tusi (1201-1274)
- Girard Desargues (1591-1661)
- Blaise Pascal (1623-1662)
- Gerolamo Saccheri (1667-1733): Hypothesis of the acute angle
- Heinrich Lambert (1728-1777)
- John Playfair (1748-1819)
- Adrien-Marie Legendre (1752-1833): (SE) is equivalent to "the sum of angles of a triangle is equal to 180°.

Euclid's Fifth Postulate (2).

"the scandal of elementary geometry" (D'Alembert 1767)
"In the theory of parallels we are even now not further than Euclid. This is a shameful part of mathematics..." (Gauss 1817)

1817

Nikolai Ivanovich Lobachevsky
(1792-1856)

1829

János Bolyai
(1802-1860)

1823

A non-Euclidean geometry.

Take the usual geometry $\mathbf{P}=\left\langle\mathbb{R}^{2}, \mathcal{L}, \in\right\rangle$ on the Euclidean plane.
Consider $\mathbb{U}:=\left\{x \in \mathbb{R}^{2} ;\|x\|<1\right\}$. We define the restriction of \mathcal{L} to \mathbb{U} by $\mathcal{L}^{\mathbb{U}}:=\{\ell \cap \mathbb{U} ; \ell \in \mathcal{L}\}$.
$\mathbf{U}:=\left\langle\mathbb{U}, \mathcal{L}^{\mathbb{U}}, \in\right\rangle$.
Theorem. U is a weakly Euclidean plane which is not strongly Euclidean.

Cantor (1).

Georg Cantor (1845-1918) studied in Zürich, Berlin, Göttingen Professor in Halle

- Work in analysis leads to the notion of cardinality (1874): most real numbers are transcendental.
- Correspondence with Dedekind (1831-1916): bijection between the line and the plane.
- Perfect sets and iterations of operations lead to a notion of ordinal number (1880).

Cantor (2).

Georg Cantor (1845-1918)

- 1877. Leopold Kronecker (1823-1891) tried to prevent publication of Cantor's work.
- Cantor is supported by Dedekind and Felix Klein.
- 1884: Cantor suffers from a severe depression.
- 1888-1891: Cantor is the leading force in the foundation of the Deutsche Mathematiker-Vereinigung.
- Development of the foundations of set theory: 1895-1899.

Cardinality (1).

- There is a 1-1 correspondence (bijection) between \mathbb{N} and the even numbers.
- There is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}.
- There is a bijection between \mathbb{Q} and \mathbb{N}.
- There is no bijection between the set of infinite 0-1 sequences and \mathbb{N}.
- There is no bijection between \mathbb{R} and \mathbb{N}.

Cardinality (2).

Theorem (Cantor). There is no bijection between the set of infinite 0-1 sequences and \mathbb{N}.

Theorem (Cantor). There is a bijection between the real line and the real plane.

Proof. Let's just do it for the set of infinite $0-1$ sequences and the set of pairs of infinite $0-1$ sequences:
If x is an infinite $0-1$ sequence, then let

$$
\begin{aligned}
& x_{0}(n):=x(2 n), \text { and } \\
& x_{1}(n):=x(2 n+1)
\end{aligned}
$$

Let $F(x):=\left\langle x_{0}, x_{1}\right\rangle . F$ is a bijection. q.e.d.

Cantor to Dedekind (1877): "Ich sehe es, aber ich glaube es nicht!"

