Methodology of Syllogistics.

- Start with a list of obviously valid moods (perfect syllogisms $\cong " a x i o m s ") . . . ~$
- ...and a list of conversion rules,
- derive all valid moods from the perfect syllogisms by conversions,
- and find counterexamples for all other moods.

Notation (1).

Syllogistics is a term logic, not propositional or predicate logic.
We use capital letters A, B, and C for terms, and sometimes X and Y for variables for terms.

Terms (termini) form part of a categorical proposition. Each categorical proposition has two terms: a subject and a predicate, connected by a copula.

Notation (2).

There are four copulae:

- The universal affirmative: Every - is a -.
- The universal negative: No - is a -.
- The particular affirmative: Some - is a -.
- The particular negative: Some - is not a - .

Every B is an $A . \rightsquigarrow A a B$
No B is an $A . \rightsquigarrow A \mathrm{e} B$
Some B is an $A . \rightsquigarrow A \mathrm{~B} B$
Some B is not an $A . \rightsquigarrow A \circ B$
Contradictories: a-o \& e-i.

Notation (3).

$$
\begin{array}{lcc}
& \text { Every } B \text { is an } A & A \mathbf{a} B \\
\text { Barbara } & \text { Every } C \text { is a } B & B \mathbf{a} C \\
\cline { 2 - 4 } & \text { Every } C \text { is an } A & A \mathbf{a} C
\end{array}
$$

Each syllogism contains three terms and three categorial propositions. Each of its categorial propositions contains two of its terms. Two of the categorial propositions are premises, the other is the conclusion.
The term which is the predicate in the conclusion, is called the major term, the subject of the conclusion is called the minor term, the term that doesn't occur in the conclusion is called the middle term.

Notation (4).

Abstract

Only one of the premises contains the major term. This one is called the-major premise, the other one the minor premise.

$$
\begin{array}{cc}
\text { Ist Figure } & \text { IInd Figure } \\
A-B, B-C: A-C & B-A, B-C: A-C \\
\text { IIIrd Figure } & \text { IVth Figure } \\
A-B, C-B: A-C & B-A, C-B: A-C
\end{array}
$$

Notation (5).

If you take a figure, and insert three copulae, you get a mood.

Ist Figure: A

Combinatorics of moods.

With four copulae and three slots, we get

$$
4^{3}=64
$$

moods from each figure, i.e., $4 \times 64=256$ in total. Of these, 24 have been traditionally seen as valid.

A	\mathbf{a}	B	,	B	\mathbf{i}	C	$:$	A	\mathbf{i}	C		
D	\mathbf{a}	r			\mathbf{i}				\mathbf{i}		\rightsquigarrow	Darii

$\begin{array}{llllllllllll}A & \mathbf{a} & B & , & C & \mathbf{i} & B & : & A & \mathbf{i} & C & \\ \mathrm{D} & \mathbf{a} & \mathrm{t} & & & \mathbf{i} & \mathbf{s} & & & \mathbf{i} & & \rightsquigarrow \\ \text { Datisi }\end{array}$

The 24 valid moods (1).

Ist fi gure	$A \mathrm{a} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{a} C$	Barbara
	$A \mathrm{e} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{e} C$	Celarent
	$A \mathrm{a} B$,	$B \mathrm{i} C$	$:$	$A \mathrm{i} C$	Darii
	$A \mathrm{e} B$,	$B \mathrm{i} C$	$:$	$A \mathrm{o} C$	Ferio
	$A \mathrm{a} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{i} C$	Barbari
	$A \mathrm{e} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{o} C$	Celaront
	$B \mathrm{e} A$,	$B \mathrm{a} C$	$:$	$A \mathrm{e} C$	Cesare fig gure
	$B \mathrm{a} A$,	$B \mathrm{e} C$	$:$	$A \mathrm{e} C$	Camestres
$B \mathrm{e} A$,	$B \mathrm{i} C$	$:$	$A \mathrm{o} C$	Festino	
$B \mathrm{a} A$,	$B \mathrm{o} C$	$:$	$A \mathrm{o} C$	Baroco	
$B \mathrm{e} A$,	$B \mathrm{a} C$	$:$	$A \mathrm{o} C$	Cesaro	
$B \mathrm{a} A$,	$B \mathrm{e} C$	$:$	$A \mathrm{o} C$	Camestrop	

The 24 valid moods (2).

IIIrd fi gure	$A \mathrm{a} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Darapti
$A \mathrm{i} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Disamis	
$A \mathrm{a} B$,	$C \mathrm{i} B$	$:$	$A \mathrm{i} C$	Datisi	
$A \mathrm{e} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Felapton	
	$A \mathrm{o} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Bocardo
$A \mathrm{e} B$,	$C \mathrm{i} B$	$:$	$A \mathrm{o} C$	Ferison	
IVth fi gure	$B \mathrm{a} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Bramantip
	$B \mathrm{a} A$,	$C \mathrm{e} B$	$:$	$A \mathrm{e} C$	Camenes
$B \mathrm{i} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Dimaris	
$B \mathrm{e} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Fesapo	
$B \mathrm{e} A$,	$C \mathrm{i} B$	$:$	$A \mathrm{o} C$	Fresison	
$B \mathrm{a} A$,	$C \mathrm{e} B$	$:$	$A \mathrm{o} C$	Camenop	

Reminder.

In syllogistics, all terms are nonempty. Barbari. $A \mathrm{a} B, B \mathrm{a} C$: $A \mathrm{il}$.

Every unicorn is a white horse. Every white horse is white.

Some unicorn is white.
In particular, this white unicorn exists.

The perfect moods.

Tह́入عเo้ $\mu \varepsilon ̀ \nu$ oũv $\varkappa \alpha \lambda \tilde{\omega} \sigma \cup \lambda \lambda o \gamma เ \sigma \mu o ̀ \nu$
тòv $\mu \eta \delta \varepsilon v o ̀ s ~ \alpha ̈ \lambda \lambda o u ~ \pi \rho o \sigma \delta \varepsilon o ́ \mu \varepsilon v o v ~ \pi \alpha \rho \alpha ̀ ~$

$\dot{\alpha} \nu \gamma \varkappa \alpha \tilde{o} o v . ~(A n . P r . ~ I . i) ~$
Aristotle discusses the first figure in Analytica Priora I.iv, identifies Barbara, Celarent, Darii and Ferio as perfect and then concludes

$$
\begin{aligned}
& \sigma \cup \lambda \lambda o \gamma เ \sigma \mu o i ̀ \tau \varepsilon ́ \lambda \varepsilon เ o i ́ ~ \varepsilon i \sigma \iota ~ . . . ~ \chi \alpha \lambda \tilde{\omega} \text { ठ̀̀ } \\
& \text { тò тoเoũтov } \sigma \chi \tilde{n} \mu \alpha \text { трผ̃тov. (An.Pr. I.iv) }
\end{aligned}
$$

Axioms of Syllogistics.

So the Axioms of Syllogistics according to Aristotle are:

Barbara. $A \mathrm{a} B, B \mathrm{a} C$: $A \mathrm{a} C$
Celarent. $A \mathrm{e} B, B \mathrm{a} C: A \mathrm{e} C$
Darii. $A \mathrm{a} B, B \mathrm{i} C$: $A \mathrm{i} C$
Ferio. $A \mathrm{e} B, B \mathrm{i} C: A \mathrm{o} C$

Simple and accidental conversion.

- Simple (simpliciter).
- $X \mathrm{i} Y \rightsquigarrow Y \mathrm{i} X$.
- $X e Y \rightsquigarrow Y \mathrm{e} X$.
- Accidental (per accidens).
- XaY $\rightsquigarrow X i Y$.
- $X \mathrm{e} Y \rightsquigarrow X \mathrm{o} Y$.

Syllogistic proofs (1).

We use the letters $t_{i j}$ for terms and the letters k_{i} stand for copulae. We write a mood in the form

$$
\begin{array}{r}
t_{11} k_{1} t_{12} \\
t_{21} k_{2} t_{22} \\
\hline t_{31} k_{3} t_{32}
\end{array}
$$

for example,

$$
\begin{aligned}
& \mathrm{AaB} \\
& \mathrm{BaC} \\
& \hline \mathrm{AaC}
\end{aligned}
$$

for Barbara. We write M_{i} for $t_{i 1} k_{i} t_{i 2}$ and define some operations on moods.

Syllogistic proofs (2).

- For $i \in\{1,2,3\}$, the operation s_{i} can only be applied if k_{i} is either ' i ' or ' e '. In that case, s_{i} interchanges $t_{i 1}$ and $t_{i 2}$.
- For $i \in\{1,2\}$, let p_{i} be the operation that changes k_{i} to its subaltern (if it has one), while p_{3} is the operation that changes k_{3} to its superaltern (if it has one).
- Let m be the operation that exchanges M_{1} and M_{2}.
- For $i \in\{1,2\}$, let c_{i} be the operation that first changes k_{i} and k_{3} to their contradictories and then exchanges M_{i} and M_{3}.
- Let per ${ }_{\pi}$ be the permutation π of the letters A, B, and C , applied to the mood.

Syllogistic proofs (3).

Given any set \mathfrak{B} of "basic moods", a \mathfrak{B}-proof of a mood $M=M_{1}, M_{2}: M_{3}$ is a sequence $\left\langle\mathrm{o}_{1}, \ldots, \mathrm{o}_{n}\right\rangle$ of operations such that

- Only o_{1} can be of the form c_{1} or c_{2} (but doesn't have to be).
- The sequence of operations, if applied to M, yields an element of \mathfrak{B}.

Syllogistic proofs (4).

$\left\langle s_{1}, m, s_{3}\right.$, per $\left._{A C}\right\rangle$ is a proof of Disamis (from Darii) :

$\left\langle s_{2}\right\rangle$ is a proof of Datisi (from Darii) :

Syllogistic proofs (5).

$\left\langle\mathrm{c}_{1}\right.$, per $\left._{\mathrm{BC}}\right\rangle$ is a proof of Bocardo by contradiction (from Barbara) :

Syllogistic proofs (6).

Let \mathfrak{B} be a set of moods and M be a mood. We write $\mathfrak{B} \vdash M$ if there is \mathfrak{B}-proof of M.

Mnemonics (1).

Bárbara, Célarént, Darií, Ferióque prióris, Césare, Cámestrés, Festíno, Baróco secúndae. Tértia Dáraptí, Disámis, Datísi, Felápton, Bocárdo, Feríson habét. Quárta ínsuper áddit Brámantíp, Camenés, Dimáris, Fesápo, Fresíson.
"These words are more full of meaning than any that were ever made." (Augustus de Morgan)

Mnemonics (2).

- The fi rst letter indicates to which one of the four perfect moods the mood is to be reduced: 'B' to Barbara, 'C' to Celarent, 'D' to Darii, and 'F' to Ferio.
- The letter ' s ' after the i th vowel indicates that the corresponding proposition has to be simply converted, i.e., a use of s_{i}.
- The letter ' p ' after the i th vowel indicates that the corresponding proposition has to be accidentally converted ("per accidens"), i.e., a use of p_{i}.
- The letter 'c' after the fi rst or second vowel indicates that the mood has to be proved indirectly by proving the contradictory of the corresponding premiss, i.e., a use of c_{i}.
- The letter ' m ' indicates that the premises have to be interchanged ("moved"), i.e., a use of m.
- All other letters have only aesthetic purposes.

A metatheorem.

We call a proposition negative if it has either ' e ' or ' o ' as copula.
Theorem (Aristotle). If M is a mood with two negative premises, then

$$
\mathfrak{B}_{\text {BCDF }} \nvdash M .
$$

Metaproof (1).

Suppose o $:=\left\langle\mathrm{o}_{1}, \ldots, \mathrm{o}_{n}\right\rangle$ is a $\mathfrak{B}_{\mathrm{BCDF}}$-proof of M.

- The s-rules don't change the copula, so if M has two negative premises, then so does $\mathrm{s}_{i}(M)$.
- The superaltern of a negative proposition is negative and the superaltern of a positive proposition is positive. Therefore, if M has two negative premises, then so does $\mathrm{p}_{i}(M)$.
- The m-rule and the per-rules don't change the copula either, so if M has two negative premises, then so do $\mathrm{m}(M)$ and $\operatorname{per}_{\pi}(M)$.

As a consequence, if $\mathrm{o}_{1} \neq \mathrm{c}_{i}$, then o(M) has two negative premisses. We check that none of Barbara, Celarent, Darii and Ferio has two negative premisses, and are done, as o cannot be a proof of M.

Metaproof (2).

So, $\mathrm{o}_{1}=\mathrm{c}_{i}$ for either $i=1$ or $i=2$. By defi nition of c_{i}, this means that the contradictory of one of the premisses is the conclusion of $o_{1}(M)$. Since the premisses were negative, the conclusion of $o_{1}(M)$ is positive. Since the other premiss of M is untouched by o_{1}, we have that $\mathrm{o}_{1}(M)$ has at least one negative premiss and a positive conclusion. The rest of the proof $\left\langle\mathrm{o}_{2}, \ldots, \mathrm{o}_{n}\right\rangle$ may not contain any instances of c_{i}.

Note that none of the rules $\mathrm{s}, \mathrm{p}, \mathrm{m}$ and per change the copula of the conclusion from positive to negative.

So, o(M) still has at least one negative premiss and a positive conclusion. Checking Barbara, Celarent, Darii and Ferio again, we notice that none of them is of that form. Therefore, o is not a $\mathfrak{B}_{\mathrm{BCDF}}$-proof of M. Contradiction.

Other metatheoretical results.

- If M has two particular premises (i.e., with copulae 'i' or ' 0 '), then BCDF $\vdash M$ (Exercise 15).
- If M has a positive conclusion and one negative premiss, then BCDF $\forall M$.
- If M has a universal conclusion (i.e., with copula 'a' or ' e ') and one particular premiss, then BCDF $\forall M$.

Aristotelian modal logic.

Modalities.

- $\mathbf{A} p \bumpeq$ " p " (no modality, "assertoric").
- $\mathbf{N} p \bumpeq$ "necessarily p ".
- $\mathbf{P} p \bumpeq$ "possibly p " (equivalently, "not necessarily not p ").
- $\mathrm{C} p \bumpeq$ "contingently p " (equivalently, "not necessarily not p and not necessarily p ").

Every (assertoric) mood $p, q: r$ represents a modal mood $\mathbf{A} p, \mathbf{A} q$: A r. For each mood, we combinatorially have $4^{3}=64$ modalizations, i.e., $256 \times 64=16384$ modal moods.

Modal conversions.

- Simple.
- $\mathbf{N} X e Y \rightsquigarrow \mathbf{N} Y \mathrm{e} X$
- $\mathbf{N} X \mathrm{i} Y \rightsquigarrow \mathbf{N} Y \mathrm{i} X$
- $\mathbf{C X e} Y \rightsquigarrow \mathbf{C} Y \mathrm{e} X$
- $\mathbf{C} X i Y \rightsquigarrow \mathbf{C} Y \mathrm{i} X$
- $\mathbf{P} X \mathrm{e} Y \rightsquigarrow \mathbf{P} Y \mathrm{e} X$
- $\mathbf{P} X \mathrm{i} Y \rightsquigarrow \mathbf{P} Y \mathrm{i} X$
- Accidental.
- $\mathbf{N} X \mathrm{a} Y \rightsquigarrow \mathbf{N} X \mathrm{i} Y$
- $\mathbf{C X a Y} \rightsquigarrow \mathbf{C X i Y}$
- $\mathbf{P} X a Y \rightsquigarrow \mathbf{P} X \mathrm{i} Y$
- $\mathbf{N} X e Y \rightsquigarrow \mathbf{N} X o Y$
- $\mathbf{C X e Y} \rightsquigarrow \mathbf{C X o Y}$
- $\mathbf{P} X e Y \rightsquigarrow \mathbf{P} X o Y$
- Relating to the symmetric nature of contingency.
- $\mathbf{C X i Y} \rightsquigarrow \mathbf{C X e Y}$
- $\mathbf{C X e Y} \rightsquigarrow \mathbf{C X i Y}$
- $\mathbf{C X a Y} \rightsquigarrow \mathbf{C X o Y}$
- $\mathbf{C X o Y} \rightsquigarrow \mathbf{C X a Y}$
- $\mathbf{N} X \mathrm{x} Y \rightsquigarrow \mathbf{A} X \mathrm{x} Y$
(Axiom T: $\square \varphi \rightarrow \varphi$)

Modal axioms.

What are the "perfect modal syllogisms"?

- Valid assertoric syllogisms remain valid if \mathbf{N} is added to all three propositions.
Barbara $(A a B, B a C: A a C) \rightsquigarrow$ NNN Barbara (N $A a B, \mathbf{N B a C : N A a C) .}$

First complications in the arguments for Bocardo and Baroco.

- By our conversion rules, the following can be added to valid assertoric syllogisms:
- NNA,
- NAA,
- ANA.
- Anything else is problematic.

The "two Barbaras".

NAN Barbara

$\mathbf{N} A a B$
$\mathbf{A} B a C$
$\mathbf{N} A a C$

ANN Barbara
A $A \mathrm{a} B$
$\mathbf{N} B a C$
$\mathbf{N} A \mathrm{a} C$

From the modern point of view, both modal syllogisms are invalid, yet Aristotle claims that NAN Barbara is valid, but ANN Barbara is not.

De dicto versus De re.

We interpreted $\mathrm{N} A \mathrm{a} B$ as
"The statement ' $A \mathrm{a} B$ ' is necessarily true.'
(De dicto interpretation of necessity.)

Alternatively, we could interpret $\mathrm{N} A \mathrm{a} B$ de re (Becker 1933):
"Every B happens to be something which is necessarily an A."

Aristotelian temporal logic: the sea battle

According to the square of oppositions, exactly one of "it is the case that p " and "it is not the case that p " is true.
Either "it is the case that there will be a sea battle tomorrow" or "it is not the case that there will be a sea battle tomorrow".

Problematic for existence of free will, and for Aristotelian metaphysics.

The Master argument.

Diodorus Cronus (IVth century BC).

- Assume that p is not the case.
- In the past, "It will be the case that p is not the case" was true.
- In the past, "It will be the case that p is not the case" was necessarily true.
- Therefore, in the past, "It will be the case that p " was impossible.
- Therefore, p is not possible.

Ergo: Everything that is possible is true.

