Modal Propositional Logic.

- Propositional Logic: Prop. Propositional variables p_i , ∧, ∨, ¬, →.
- **•** Modal Logic. $\operatorname{Prop}+\Box$, \diamondsuit .
- First-order logic. Prop+ ∀, ∃, function symbols ḟ, relation symbols R.

$$\begin{array}{rcl} \operatorname{Prop} & \subseteq & \operatorname{Mod} & \subseteq & \operatorname{FOL} \\ & & & & \\$$

The standard translation (1).

Let \dot{P}_i be a unary relation symbol and \dot{R} a binary relation symbol.

We translate Mod into $\mathcal{L} = \{\dot{P}_i, \dot{R}; i \in \mathbb{N}\}.$

For a variable x, we define ST_x recursively:

$$ST_{x}(p_{i}) := \dot{P}_{i}(x)$$

$$ST_{x}(\neg\varphi) := \neg ST_{x}(\varphi)$$

$$ST_{x}(\varphi \lor \psi) := ST_{x}(\varphi) \lor ST_{x}(\psi)$$

$$ST_{x}(\Diamond\varphi) := \exists y \left(\dot{R}(x,y) \land ST_{y}(\varphi)\right)$$

The standard translation (2).

If $\langle M, R, V \rangle$ is a Kripke model, let $P_i := V(p_i)$. If P_i is a unary relation on M, let $V(p_i) := P_i$.

Theorem.

$$\langle M, R, V \rangle \models \varphi \iff \langle M, P_i, R; i \in \mathbb{N} \rangle \models \forall x \operatorname{ST}_x(\varphi)$$

Corollary. Modal logic satisfies the compactness theorem.

Proof. Let Φ be a set of modal sentences such that every finite set has a model. Look at $\Phi^* := \{\forall x \operatorname{ST}_x(\varphi) ; \varphi \in \Phi\}$. By the theorem, every finite subset of Φ^* has a model. By compactness for first-order logic, Φ^* has a model. But then Φ has a model. q.e.d.

Bisimulations.

If $\langle M, R, V \rangle$ and $\langle M^*, R^*, V^* \rangle$ are Kripke models, then a relation $Z \subseteq M \times N$ is a bisimulation if

- If xZx^* , then $x \in V(p_i)$ if and only if $x^* \in V(p_i)$.
- If xZx^* and xRy, then there is some y^* such that $x^*R^*y^*$ and yZy^* .
- If xZx^* and $x^*R^*y^*$, then there is some y such that xRy and yZy^* .

A formula $\varphi(v)$ is called invariant under bisimulations if for all Kripke models M and N, all $x \in M$ and $y \in N$, and all bisimulations Z such that xZy, we have

$$\mathbf{M} \models \varphi(x) \leftrightarrow \mathbf{N} \models \varphi(y).$$

van Benthem.

Johan van Benthem

Theorem (van Benthem; 1976). A formula in one free variable v is invariant under bisimulations if and only if it is equivalent to $ST_v(\psi)$ for some modal formula ψ .

Modal Logic is the bisimulation-invariant fragment of first-order logic.

Intuitionistic Logic (1).

Recall the game semantics of intuitionistic propositional logic: $\models_{\text{dialog}} \varphi$.

- $\models_{\text{dialog}} p \rightarrow \neg \neg p$,
- $\not\models_{\text{dialog}} \neg \neg p \rightarrow p$,

Kripke translation (1965) of intuitionistic propositional logic into modal logic:

$$\begin{array}{rcl} \mathrm{K}(\mathrm{p}_i) & := & \Box \mathrm{p}_i \\ \mathrm{K}(\varphi \lor \psi) & := & \mathrm{K}(\varphi) \lor \mathrm{K}(\psi) \\ \mathrm{K}(\neg \varphi) & := & \Box \neg \mathrm{K}(\varphi) \end{array}$$

Intuitionistic Logic (2).

Theorem.

 $\models_{\text{dialog}} \varphi \leftrightarrow \mathbf{S4} \vdash \mathbf{K}(\varphi).$

Consequently, φ is intuitionistically valid if and only if $K(\varphi)$ holds on all transitive and reflexive frames.

$$\begin{split} &\models_{\text{dialog}} p \to \neg \neg p \quad \rightsquigarrow \quad \Box p \to \Box \diamondsuit \Box p \\ &\not\models_{\text{dialog}} \neg \neg p \to p \quad \rightsquigarrow \quad \Box \diamondsuit \Box p \to \Box p \\ &\not\models_{\text{dialog}} \varphi \lor \neg \varphi \quad \rightsquigarrow \quad K(\varphi) \lor \Box \neg K(\varphi) \\ & \quad \Box p \lor \Box \neg \Box p \\ & \quad \Box p \lor \Box \Diamond \neg p \end{split}$$

Provability Logic (1).

Leon Henkin (1952). "If φ is equivalent to PA $\vdash \varphi$, what do we know about φ ?"

M. H. LÖb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20 (1955), p.115-118: PA \vdash ((PA $\vdash \varphi$) $\rightarrow \varphi$) implies PA $\vdash \varphi$.

Interpret $\Box \varphi$ as $PA \vdash \varphi$. Then Löb's theorem becomes:

(Löb)
$$\Box(\Box\varphi \rightarrow \varphi) \rightarrow \Box\varphi$$
.

GL is the modal logic with the axiom (Löb).

Provability Logic (2).

Theorem (Segerberg-de Jongh-Kripke; 1971). GL $\vdash \varphi$ if and only if φ is true on all transitive converse wellfounded frames.

A translation *R* from the language of model logic into the language of arithmetic is called a realization if

$$R(\bot) = \bot$$
$$R(\neg \varphi) = \neg R(\varphi)$$
$$R(\varphi \lor \psi) = R(\varphi) \lor R(\psi)$$
$$R(\Box \varphi) = \mathsf{PA} \vdash R(\varphi).$$

Theorem (Solovay; 1976). $\mathbf{GL} \vdash \varphi$ if and only if for all realizations R, $\mathsf{PA} \vdash R(\varphi)$.

Modal Logics of Models (1).

One example: Modal logic of forcing extensions.

Joel D. Hamkins

A function *H* is called a Hamkins translation if

The Modal Logic of Forcing: Force := $\{\varphi; ZFC \vdash H(\varphi)\}$.

Modal Logics of Models (2).

 $\mathbf{Force} := \{\varphi \, ; \, \mathsf{ZFC} \vdash H(\varphi) \}.$

Theorem (Hamkins).

- 1. Force $\not\vdash$ S5.
- **2.** Force \vdash S4.
- 3. There is a model of set theory V such that the Hamkins translation of S5 holds in that model.

Joel D. **Hamkins**, A simple maximality principle, **Journal of Symbolic Logic** 68 (2003), p. 527–550

Theorem (Hamkins-L). Force = S4.2.

Joel D. **Hamkins**, Benedikt **Löwe**, The Modal Logic of Forcing, **Transactions of the AMS** 360 (2008)

Tarski (1).

Alfred Tarski 1902-1983

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- **9** 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.

Tarski (2).

- Undefinability of Truth.
- Algebraic Logic.
- Logic and Geometry.
 - A theory T admits elimination of quantifiers if every first-order formula is T-equivalent to a quantifier-free formula (Skolem, 1919).
 - 1955. Quantifier elimination for the theory of real numbers ("real-closed fields").
 - Basic ideas of modern algebraic model theory.
 - Connections to theoretical computer science: running time of the quantifier elimination algorithms.

The puzzle of truth.

- Eubulides. "A man says he is lying. Is what he says true or false?"
- Sophismata.
- Buridan's Proof of God's Existence.
 - (1) God exists.
 - (2) (1) and (2) are false.

Tarski & Truth (1).

Alfred Tarski, The concept of truth in the languages of the deductive sciences, Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych 34 (1933)

We say that a language \mathcal{L} is saturated if there are

- **9** an assignment $\varphi \mapsto t_{\varphi}$ of \mathcal{L} -terms to \mathcal{L} -sentences,
- a surjective assignment $x \mapsto F_x$ of \mathcal{L} -formulae in one free variable to objects.

Let *T* be an \mathcal{L} -theory and $\Phi(x)$ be an \mathcal{L} -formula with one free variable. We say that Φ is truth-adequate with respect to *T* if

- ▶ for all φ , either $T \vdash \Phi(t_{\varphi})$ or $T \vdash \neg \Phi(t_{\varphi})$ (totality), and
- **9** for all φ , we have that

 $T \vdash \varphi \leftrightarrow \Phi(\mathbf{t}_{\varphi})$

(Adequacy; "Tarski's T-convention").

Tarski & Truth (2).

 $T \vdash \varphi \leftrightarrow \Phi(\mathbf{t}_{\varphi}).$

Theorem (Undefinability of Truth). If \mathcal{L} is saturated and T is a consistent \mathcal{L} -theory, then there is no formula Φ that is truth-adequate for T.

Proof. Suppose Φ is truth-adequate. Consider $\varphi(x) := \neg \Phi(t_{F_x(x)})$. This is a formula in one variable, there is some e such that $F_e(x) = \neg \Phi(t_{F_x(x)})$. Consider $F_e(e) = \neg \Phi(t_{F_e(e)})$.

$$T \vdash F_e(e)$$

$$T \vdash \neg \Phi(t_{F_e(e)})$$

$$T \vdash \neg F_e(e)$$
 (by adequacy)

So, Φ cannot be total.

q.e.d.

Object language and metalanguage.

If \mathcal{L} is any (interpreted) language, let \mathcal{L}_T be $\mathcal{L} \cup \{T\}$ where T is a unary predicate symbol. If T is any consistent theory, just add the Tarski biconditional

$$\varphi \leftrightarrow \mathbf{T}(\mathbf{t}_{\varphi})$$

to get $T_{\mathbf{T}}$.

Now T is a truth-adequate predicate with respect to T_{T} , but only for sentences of \mathcal{L} .

The metalanguage $\mathcal{L}_{\mathbf{T}}$ can adequately talk about truth in the object language \mathcal{L} .

Unproblematic sentences.

•
$$T(t_{2+2=4})$$
. "2 + 2 = 4 is true."

- $T(t_{T(t_{2+2=4})})$. "It is true that 2 + 2 = 4 is true."
- $T(t_{\neg T(t_{T(t_{2+2=4})}) \rightarrow \varphi})$. "It is true that (If it is false that 2+2=4 is true, then φ holds.)"

Well-foundedness.

An inductive definition of truth (1).

Let \mathcal{L} be a language without truth predicate. We shall add a partial truth predicate \mathbf{T} to get $\mathcal{L}_{\mathbf{T}}$: Suppose we already have a partial truth predicate T interpreting \mathbf{T} . Then we can define $T^+ := \{ t_{\varphi} ; \varphi \text{ is true if } \mathbf{T} \text{ is interpreted by } T$. Let

$$T_{0} := \{ t_{\varphi} ; \varphi \text{ is a true } \mathcal{L}\text{-sentence} \}$$
$$T_{i+1} := (T_{i})^{+}$$
$$T_{\infty} := \bigcup_{i \in \mathbb{N}} T_{i}$$

Then T_{∞} is a partial truth predicate that covers all of the "unproblematic" cases. All?

An inductive definition of truth (2).

$$T_{0} := \{ t_{\varphi} ; \varphi \text{ is a true } \mathcal{L}\text{-sentence} \}$$

$$T_{i+1} := (T_{i})^{+}$$

$$T_{\infty} := \bigcup_{i \in \mathbb{N}} T_{i}$$

If φ is a formula, let $\mathbf{T}^{0}(\varphi) = \varphi$ and $\mathbf{T}^{n+1}(\varphi) = \mathbf{T}(\mathbf{t}_{\mathbf{T}^{n}(\varphi)})$.

Let ψ be the formalization of

"For all n, $T^n(2+2=4)$."

The formula ψ is not in the scope of any of the partial truth predicates T_i , so it can't be in T_{∞} .

But $T(t_{\psi})$ is intuitively "unproblematic".

An inductive definition of truth (3).

More formally: T_{∞} is not a fixed-point of the ⁺ operation.

 $T_{\infty} \stackrel{\subseteq}{\neq} (T_{\infty})^+.$

Use ordinals as indices:

$$T_{\omega} := T_{\infty}$$
$$T_{\alpha+1} := (T_{\alpha})^{+}$$
$$T_{\lambda} := \bigcup_{\alpha \leq \lambda} T_{\alpha}$$

Theorem. There is a (countable) ordinal α such that $T_{\alpha} = T_{\alpha+1}$.

The source of the problem.

- What is the source of the problem with the Liar?
- Why didn't we have any problems with the "unproblematic" sentences?

Self-reference

- Liar. "This sentence is false."
- Nested Liar. "The second sentence is false."—"The first sentence is true."

"This sentence has five words."

Pointer Semantics (1).

- Haim **Gaifman**, Pointers to truth, **Journal of Philosophy** 89 (1992), p. 223–261
- Haim Gaifman, Operational pointer semantics: solution to self-referential puzzles. I. Proceedings TARK II, p. 43–59
- Thomas Bolander, Logical Theories for Agent Introspection, PhD thesis, Technical University of Denmark 2003

Pointer Language: Let p_n be (countably many) propositional variables.

- **D** Every \mathbf{p}_n is an expression.
- \perp and \top are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_i is an expression, then $\bigwedge_i E_i$ and $\bigvee_i E_i$ are expressions.

If E is an expression and n is a natural number, then n : E is a clause. (Interpretation. " p_n states E".)

Pointer Semantics (2).

- Every \mathbf{p}_n is an expression.
- \perp and \top are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_i is an expression, then $\bigwedge_i E_i$ and $\bigvee_i E_i$ are expressions.

If E is an expression and n is a natural number, then n : E is a clause.

Examples.

The Liar:	$0: \neg p_0.$
The Truthteller:	$0: p_0.$
One Nested Liar:	$0: \neg p_1.$
	$1 : p_0.$
Two Nested Liars:	$0: \neg p_1.$
	$1: \neg p_0.$

Pointer Semantics (3).

- Every \mathbf{p}_n is an expression.
- \perp and \top are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_i is an expression, then $\bigwedge_i E_i$ and $\bigvee_i E_i$ are expressions.

If E is an expression and n is a natural number, then n : E is a clause.

- An interpretation is a function $I : \mathbb{N} → \{0, 1\}$ assigning truth values to propositional letters. *I* extends naturally to all expressions.
- If n : E is a clause, we say that I respects n : E if I(n) = I(E).
- If Σ is a set of clauses, we say that it is paradoxical if there is no interpretation that respects all clauses in Σ.

Paradoxicality of the Liar.

The Liar: $0: \neg p_0$.The Truthteller: $0: p_0$.One Nested Liar: $0: \neg p_1$.Two Nested Liars: $0: \neg p_1$. $1: p_0$. $1: \neg p_0$.

Paradoxical

Nonparadoxical

There are four relevant interpretations:

I_{00}	$0\mapsto 0; 1\mapsto 0$
I_{01}	$0\mapsto 0; 1\mapsto 1$
I_{10}	$0\mapsto 1; 1\mapsto 0$
I_{11}	$0 \mapsto 1; 1 \mapsto 1$

The Truthteller.

What is the problem with the truthteller and the two nested liars?

Both I_{01} and I_{10} are interpretations, so the two nested liars are nonparadoxical. But: the interpretations disagree about the truthvalues.

We call a set of clauses Σ determined if there is a unique interpretation.

The truthteller and the two nested liars are nonparadoxical but also nondetermined.

The dependency graph.

Let Σ be a (syntactically consistent) set of clauses. Then we can define the dependency graph of Σ as follows:

• $V := \{n; p_n \text{ occurs in some clause in } \Sigma\}.$

• nEm if and only if $n : X \in \Sigma$ and p_m occurs in X. Liar and Truthteller:

Nested Liar(s):

n is selfreferential if there is a path from n to n in the dependency graph.

Note. Selfreference does not imply paradoxicality!

Yablo's Paradox.

- Let $E_n := \bigwedge_{i>n} \neg p_i$ and $\Upsilon := \{n : E_n ; n \in \mathbb{N}\}.$
- The dependency graph of Υ is $\langle \mathbb{N}, < \rangle$. No clause is self-referential in Υ .

• Claim. Σ is paradoxical.

Proof. Let *I* be an interpretation.

If I(n) = 1, then $\bigwedge_{i>n} \neg p_i$ is true, so I(i) = 0 for all i > n, in particular for i = n + 1. But then $I(\bigwedge_{i>n+1} \neg p_i) = 0$, so $I(\bigvee_{i>n+1} p_i) = 1$. Pick i_0 such that $I(i_0) = 1$ to get a contradiction.

So, I(n) = 0 for all *n*. But then $I(\bigwedge_n \neg p_n) = 1$. Contradiction. q.e.d.

So: Paradoxicality does not imply self-reference.