Modal Propositional Logic.

- Propositional Logic: Prop. Propositional variables p_{i}, $\wedge, \vee, \neg, \rightarrow$.
- Modal Logic. Prop+ \square, \diamond.
- First-order logic. Prop $+\forall, \exists$, function symbols \dot{f}, relation symbols \dot{R}.

$$
\text { Prop } \subseteq \operatorname{Mod} \underset{\substack{\text { Standard } \\ \text { Translation }}}{\subseteq} \text { FOL }
$$

The standard translation (1).

Let $\dot{\mathrm{P}}_{i}$ be a unary relation symbol and $\dot{\mathrm{R}}$ a binary relation symbol.
We translate Mod into $\mathcal{L}=\left\{\dot{\mathrm{P}_{i}}, \dot{\mathrm{R}} ; i \in \mathbb{N}\right\}$.
For a variable x, we define ST_{x} recursively:

$$
\begin{aligned}
\mathrm{ST}_{x}\left(\mathrm{p}_{i}\right) & :=\dot{\mathrm{P}}_{i}(x) \\
\mathrm{ST}_{x}(\neg \varphi) & :=\neg \mathrm{ST}_{x}(\varphi) \\
\mathrm{ST}_{x}(\varphi \vee \psi) & :=\operatorname{ST}_{x}(\varphi) \vee \operatorname{ST}_{x}(\psi) \\
\mathrm{ST}_{x}(\diamond \varphi) & :=\exists y\left(\dot{\mathrm{R}}(x, y) \wedge \operatorname{ST}_{y}(\varphi)\right)
\end{aligned}
$$

The standard translation (2).

If $\langle M, R, V\rangle$ is a Kripke model, let $P_{i}:=V\left(\mathrm{p}_{i}\right)$. If P_{i} is a unary relation on M, let $V\left(\mathrm{p}_{i}\right):=P_{i}$.
Theorem.

$$
\langle M, R, V\rangle \models \varphi \leftrightarrow\left\langle M, P_{i}, R ; i \in \mathbb{N}\right\rangle \models \forall x \operatorname{ST}_{x}(\varphi)
$$

Corollary. Modal logic satisfies the compactness theorem.
Proof. Let Φ be a set of modal sentences such that every finite set has a model. Look at $\Phi^{*}:=\left\{\forall x \operatorname{ST}_{x}(\varphi) ; \varphi \in \Phi\right\}$. By the theorem, every finite subset of Φ^{*} has a model. By compactness for first-order logic, Φ^{*} has a model. But then Φ has a model.
q.e.d.

Bisimulations.

If $\langle M, R, V\rangle$ and $\left\langle M^{*}, R^{*}, V^{*}\right\rangle$ are Kripke models, then a relation $Z \subseteq M \times N$ is a bisimulation if

- If $x Z x^{*}$, then $x \in V\left(\mathrm{p}_{i}\right)$ if and only if $x^{*} \in V\left(\mathrm{p}_{i}\right)$.
- If $x Z x^{*}$ and $x R y$, then there is some y^{*} such that $x^{*} R^{*} y^{*}$ and $y Z y^{*}$.
- If $x Z x^{*}$ and $x^{*} R^{*} y^{*}$, then there is some y such that $x R y$ and $y Z y^{*}$.
A formula $\varphi(v)$ is called invariant under bisimulations if for all Kripke models \mathbf{M} and \mathbf{N}, all $x \in M$ and $y \in N$, and all bisimulations Z such that $x Z y$, we have

$$
\mathbf{M} \models \varphi(x) \leftrightarrow \mathbf{N} \models \varphi(y) .
$$

van Benthem.

Johan van Benthem
Theorem (van Benthem; 1976). A formula in one free variable v is invariant under bisimulations if and only if it is equivalent to $\mathrm{ST}_{v}(\psi)$ for some modal formula ψ.

Modal Logic is the bisimulation-invariant fragment of first-order logic.

Intuitionistic Logic (1).

Recall the game semantics of intuitionistic propositional logic: $\models_{\text {dialog }} \varphi$.

- $\models_{\text {dialog }} \mathrm{p} \rightarrow \neg \neg \mathrm{p}$,
- $\forall_{\text {dialog }} \neg \neg \mathrm{p} \rightarrow \mathrm{p}$,
- $\not \vDash_{\text {dialog }} \varphi \vee \neg \varphi$.

Kripke translation (1965) of intuitionistic propositional logic into modal logic:

$$
\begin{aligned}
\mathrm{K}\left(\mathrm{p}_{i}\right) & :=\square \mathrm{p}_{i} \\
\mathrm{~K}(\varphi \vee \psi) & :=\mathrm{K}(\varphi) \vee \mathrm{K}(\psi) \\
\mathrm{K}(\neg \varphi) & :=\square \neg \mathrm{K}(\varphi)
\end{aligned}
$$

Intuitionistic Logic (2).

Theorem.

$$
\models_{\text {dialog }} \varphi \leftrightarrow \mathbf{S} 4 \vdash \mathrm{~K}(\varphi) .
$$

Consequently, φ is intuitionistically valid if and only if $\mathrm{K}(\varphi)$ holds on all transitive and reflexive frames.

$$
\begin{aligned}
\models_{\text {dialog }} \mathrm{p} \rightarrow \neg \neg \mathrm{p} \leadsto & \square \mathrm{p} \rightarrow \square \diamond \square \mathrm{p} \\
\forall_{\text {dialog }} \neg \neg \mathrm{p} \rightarrow \mathrm{p} \rightsquigarrow & \square \diamond \square \mathrm{p} \rightarrow \square \mathrm{p} \\
\forall_{\text {dialog }} \varphi \vee \neg \varphi \rightsquigarrow & \mathrm{K}(\varphi) \vee \square \neg \mathrm{K}(\varphi) \\
& \square \mathrm{p} \vee \square \neg \square \mathrm{p} \\
& \square \mathrm{p} \vee \square \diamond \neg \mathrm{p}
\end{aligned}
$$

Provability Logic (1).

Leon Henkin (1952). "If φ is equivalent to $\mathrm{PA} \vdash \varphi$, what do we know about φ ?"
M. H. Löb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20 (1955), p.115-118:
$\mathrm{PA} \vdash((\mathrm{PA} \vdash \varphi) \rightarrow \varphi)$ implies $\mathrm{PA} \vdash \varphi$.
Interpret $\square \varphi$ as PA $\vdash \varphi$. Then Löb's theorem becomes:

$$
\text { (Löb) } \square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi \text {. }
$$

GL is the modal logic with the axiom (Löb).

Provability Logic (2).

Theorem (Segerberg-de Jongh-Kripke; 1971). GL $\vdash \varphi$ if and only if φ is true on all transitive converse wellfounded frames.

A translation R from the language of model logic into the language of arithmetic is called a realization if

$$
\begin{aligned}
R(\perp) & =\perp \\
R(\neg \varphi) & =\neg R(\varphi) \\
R(\varphi \vee \psi) & =R(\varphi) \vee R(\psi) \\
R(\square \varphi) & =\mathrm{PA} \vdash R(\varphi) .
\end{aligned}
$$

Theorem (Solovay; 1976). GL $\vdash \varphi$ if and only if for all realizations R, $\mathrm{PA} \vdash R(\varphi)$.

Modal Logics of Models (1).

One example: Modal logic of forcing extensions.

A function H is called a Hamkins translation if

$$
\begin{aligned}
H(\perp) & =\perp \\
H(\neg \varphi) & =\neg H(\varphi) \\
H(\varphi \vee \psi) & =H(\varphi) \vee H(\psi) \\
H(\diamond \varphi) & =\text { "there is a forcing extension in which } H(\varphi) \text { holds". }
\end{aligned}
$$

The Modal Logic of Forcing: Force $:=\{\varphi ;$ ZFC $\vdash H(\varphi)\}$.

Modal Logics of Models (2).

Force : $=\{\varphi ;$ ZFC $\vdash H(\varphi)\}$.
Theorem (Hamkins).

1. Force $\nvdash \mathrm{S} 5$.
2. Force \vdash S4.
3. There is a model of set theory V such that the Hamkins translation of S 5 holds in that model.

Joel D. Hamkins, A simple maximality principle, Journal of Symbolic Logic 68 (2003), p. 527-550

Theorem (Hamkins-L). Force $=$ S4.2.
Joel D. Hamkins, Benedikt Löwe, The Modal Logic of Forcing, Transactions of the AMS 360 (2008)

Tarski (1).

Alfred Tarski 1902-1983

- Teitelbaum (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.

Tarski (2).

- Undefinability of Truth.
- Algebraic Logic.
- Logic and Geometry.
- A theory T admits elimination of quantifiers if every first-order formula is T-equivalent to a quantifier-free formula (Skolem, 1919).
- 1955. Quantifier elimination for the theory of real numbers ("real-closed fields").
- Basic ideas of modern algebraic model theory.
- Connections to theoretical computer science: running time of the quantifier elimination algorithms.

The puzzle of truth.

- Eubulides. "A man says he is lying. Is what he says true or false?"
- Sophismata.
- Buridan's Proof of God's Existence.
(1) God exists.
(2) (1) and (2) are false.

Tarski \& Truth (1).

Alfred Tarski, The concept of truth in the languages of the deductive sciences, Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych 34 (1933)

We say that a language \mathcal{L} is saturated if there are

- an assignment $\varphi \mapsto \mathrm{t}_{\varphi}$ of \mathcal{L}-terms to \mathcal{L}-sentences,
- a surjective assignment $x \mapsto \mathrm{~F}_{x}$ of \mathcal{L}-formulae in one free variable to objects.

Let T be an \mathcal{L}-theory and $\Phi(x)$ be an \mathcal{L}-formula with one free variable. We say that Φ is truth-adequate with respect to T if

- for all φ, either $T \vdash \Phi\left(\mathrm{t}_{\varphi}\right)$ or $T \vdash \neg \Phi\left(\mathrm{t}_{\varphi}\right)$ (totality), and
- for all φ, we have that

$$
T \vdash \varphi \leftrightarrow \Phi\left(\mathrm{t}_{\varphi}\right)
$$

(Adequacy; "Tarski's T-convention").

Tarski \& Truth (2).

$$
T \vdash \varphi \leftrightarrow \Phi\left(\mathrm{t}_{\varphi}\right) .
$$

Theorem (Undefinability of Truth). If \mathcal{L} is saturated and T is a consistent \mathcal{L}-theory, then there is no formula Φ that is truth-adequate for T.

Proof. Suppose Φ is truth-adequate. Consider $\varphi(x):=\neg \Phi\left(\mathrm{t}_{\mathrm{F}_{x}(x)}\right)$. This is a formula in one variable, there is some e such that $\mathrm{F}_{e}(x)=\neg \Phi\left(\mathrm{t}_{\mathrm{F}_{x}(x)}\right)$. Consider $\mathrm{F}_{e}(e)=\neg \Phi\left(\mathrm{t}_{\mathrm{F}_{e}(e)}\right)$.

$$
\begin{array}{llll}
T & \vdash & \mathrm{~F}_{e}(e) & \\
T & \vdash & \neg \Phi\left(\mathrm{t}_{\mathrm{F}_{e}(e)}\right) \\
T & \vdash & \neg \mathrm{~F}_{e}(e) \quad \text { (by adequacy) }
\end{array}
$$

So, Φ cannot be total.

Object language and metalanguage.

If \mathcal{L} is any (interpreted) language, let $\mathcal{L}_{\mathbf{T}}$ be $\mathcal{L} \cup\{\mathbf{T}\}$ where T is a unary predicate symbol. If T is any consistent theory, just add the Tarski biconditional

$$
\varphi \leftrightarrow \mathbf{T}\left(\mathrm{t}_{\varphi}\right)
$$

to get T_{T}.
Now \mathbf{T} is a truth-adequate predicate with respect to $T_{\mathbf{T}}$, but only for sentences of \mathcal{L}.
The metalanguage $\mathcal{L}_{\mathbf{T}}$ can adequately talk about truth in the object language \mathcal{L}.

Unproblematic sentences.

- $\mathbf{T}\left(\mathrm{t}_{2+2=4}\right)$. " $2+2=4$ is true."
- $\mathbf{T}\left(\mathrm{t}_{\mathbf{T}\left(\mathrm{t}_{2+2=4}\right)}\right)$. "It is true that $2+2=4$ is true."
- $\mathbf{T}\left(\mathrm{t}_{\neg \mathbf{T}\left(\mathrm{t}_{\mathbf{T}\left(\mathrm{t}_{2+2=4}\right)}\right) \rightarrow \varphi}\right)$. "It is true that (If it is false that $2+2=4$ is true, then φ holds.)"

Well-foundedness.

An inductive definition of truth (1).

Let \mathcal{L} be a language without truth predicate. We shall add a partial truth predicate T to get \mathcal{L}_{T} :
Suppose we already have a partial truth predicate T interpreting \mathbf{T}. Then we can define $T^{+}:=\left\{\mathrm{t}_{\varphi} ; \varphi\right.$ is true if \mathbf{T} is interpreted by T.
Let

$$
\begin{aligned}
T_{0} & :=\left\{\mathrm{t}_{\varphi} ; \varphi \text { is a true } \mathcal{L} \text {-sentence }\right\} \\
T_{i+1} & :=\left(T_{i}\right)^{+} \\
T_{\infty} & :=\bigcup_{i \in \mathbb{N}} T_{i}
\end{aligned}
$$

Then T_{∞} is a partial truth predicate that covers all of the "unproblematic" cases. All?

An inductive definition of truth (2).

$$
\begin{aligned}
T_{0} & :=\left\{\mathrm{t}_{\varphi} ; \varphi \text { is a true } \mathcal{L} \text {-sentence }\right\} \\
T_{i+1} & :=\left(T_{i}\right)^{+} \\
T_{\infty} & :=\bigcup_{i \in \mathbb{N}} T_{i}
\end{aligned}
$$

If φ is a formula, let $\mathbf{T}^{0}(\varphi)=\varphi$ and $\mathbf{T}^{n+1}(\varphi)=\mathbf{T}\left(\mathrm{t}_{\mathbf{T}^{n}(\varphi)}\right)$.
Let ψ be the formalization of
"For all $n, \mathbf{T}^{n}(2+2=4)$."
The formula ψ is not in the scope of any of the partial truth predicates T_{i}, so it can't be in T_{∞}.
But $\mathbf{T}\left(\mathrm{t}_{\psi}\right)$ is intuitively "unproblematic".

An inductive definition of truth (3).

More formally: T_{∞} is not a fixed-point of the ${ }^{+}$operation.

$$
T_{\infty} \varsubsetneqq\left(T_{\infty}\right)^{+}
$$

Use ordinals as indices:

$$
\begin{aligned}
T_{\omega} & :=T_{\infty} \\
T_{\alpha+1} & :=\left(T_{\alpha}\right)^{+} \\
T_{\lambda} & :=\bigcup_{\alpha<\lambda} T_{\alpha}
\end{aligned}
$$

Theorem. There is a (countable) ordinal α such that $T_{\alpha}=T_{\alpha+1}$.

The source of the problem.

- What is the source of the problem with the Liar?
- Why didn't we have any problems with the "unproblematic" sentences?

Self-reference

- Liar. "This sentence is false."
- Nested Liar. "The second sentence is false."-"The first sentence is true."

- "This sentence has five words."

Pointer Semantics (1).

- Haim Gaifman, Pointers to truth, Journal of Philosophy 89 (1992), p. 223-261
- Haim Gaifman, Operational pointer semantics: solution to self-referential puzzles. I. Proceedings TARK II, p. 43-59
- Thomas Bolander, Logical Theories for Agent Introspection, PhD thesis, Technical University of Denmark 2003

Pointer Language: Let p_{n} be (countably many) propositional variables.

- Every \mathbf{p}_{n} is an expression.
- \perp and T are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_{i} is an expression, then $\bigwedge_{i} E_{i}$ and $\bigvee_{i} E_{i}$ are expressions.

If E is an expression and n is a natural number, then $n: E$ is a clause. (Interpretation. " p_{n} states E ".)

Pointer Semantics (2).

- Every \mathbf{p}_{n} is an expression.
- \perp and T are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_{i} is an expression, then $\bigwedge_{i} E_{i}$ and $\bigvee_{i} E_{i}$ are expressions.

If E is an expression and n is a natural number, then $n: E$ is a clause.

Examples.

The Liar:

$$
0: \neg \mathrm{p}_{0} .
$$

The Truthteller: $0: \mathrm{p}_{0}$.
One Nested Liar: $0: \neg \mathrm{p}_{1}$.

$$
1: p_{0} .
$$

Two Nested Liars: $0: \neg \mathrm{p}_{1}$.
$1: \neg \mathrm{p}_{0}$.

Pointer Semantics (3).

- Every \mathbf{p}_{n} is an expression.
- \perp and T are expressions.
- If E is an expression, then $\neg E$ is an expression.
- If E_{i} is an expression, then $\bigwedge_{i} E_{i}$ and $\bigvee_{i} E_{i}$ are expressions.

If E is an expression and n is a natural number, then $n: E$ is a clause.

- An interpretation is a function $I: \mathbb{N} \rightarrow\{0,1\}$ assigning truth values to propositional letters. I extends naturally to all expressions.
- If $n: E$ is a clause, we say that I respects $n: E$ if $I(n)=I(E)$.
- If Σ is a set of clauses, we say that it is paradoxical if there is no interpretation that respects all clauses in Σ.

Paradoxicality of the Liar.

The Liar: $\quad 0: \neg \mathrm{p}_{0}$. The Truthteller: $0: \mathrm{p}_{0}$.
One Nested Liar: $0: \neg \mathrm{p}_{1}$. Two Nested Liars: $0: \neg \mathrm{p}_{1}$.
$1: \mathrm{p}_{0} . \quad 1: \neg \mathrm{p}_{0}$.
Paradoxical
Nonparadoxical
There are four relevant interpretations:

$$
\begin{array}{ll}
I_{00} & 0 \mapsto 0 ; 1 \mapsto 0 \\
I_{01} & 0 \mapsto 0 ; 1 \mapsto 1 \\
I_{10} & 0 \mapsto 1 ; 1 \mapsto 0 \\
I_{11} & 0 \mapsto 1 ; 1 \mapsto 1
\end{array}
$$

The Truthteller.

What is the problem with the truthteller and the two nested liars?
Both I_{01} and I_{10} are interpretations, so the two nested liars are nonparadoxical. But: the interpretations disagree about the truthvalues.
We call a set of clauses Σ determined if there is a unique interpretation.
The truthteller and the two nested liars are nonparadoxical but also nondetermined.

The dependency graph.

Let Σ be a (syntactically consistent) set of clauses. Then we can define the dependency graph of Σ as follows:

- $V:=\left\{n ; \mathrm{p}_{n}\right.$ occurs in some clause in $\left.\Sigma\right\}$.
- $n E m$ if and only if $n: X \in \Sigma$ and p_{m} occurs in X.

Liar and Truthteller:

Nested Liar(s):

n is selfreferential if there is a path from n to n in the dependency graph.

Note. Selfreference does not imply paradoxicality!

Yablo's Paradox.

- Let $E_{n}:=\bigwedge_{i>n} \neg \mathrm{p}_{i}$ and $\Upsilon:=\left\{n: E_{n} ; n \in \mathbb{N}\right\}$.
- The dependency graph of Υ is $\langle\mathbb{N},<\rangle$. No clause is self-referential in Υ.
- Claim. Σ is paradoxical.

Proof. Let I be an interpretation.
If $I(n)=1$, then $\bigwedge_{i>n} \neg \mathrm{p}_{i}$ is true, so $I(i)=0$ for all $i>n$, in particular for $i=n+1$. But then $I\left(\bigwedge_{i>n+1} \neg \mathrm{p}_{i}\right)=0$, so $I\left(\bigvee_{i>n+1} \mathrm{p}_{i}\right)=1$. Pick i_{0} such that $I\left(i_{0}\right)=1$ to get a contradiction.
So, $I(n)=0$ for all n. But then $I\left(\bigwedge_{n} \neg \mathrm{p}_{n}\right)=1$. Contradiction.
q.e.d.

So: Paradoxicality does not imply self-reference.

