
Modal Propositional Logic.

Propositional Logic: Prop. Propositional variables pi,
∧, ∨, ¬, →.

Modal Logic. Prop+ �, ♦.

First-order logic. Prop+ ∀, ∃, function symbols ḟ,

relation symbols Ṙ.

Prop ⊆ Mod ⊆ FOL

Standard

Translation
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The standard translation (1).

Let Ṗi be a unary relation symbol and Ṙ a binary relation
symbol.

We translate Mod into L = {Ṗi, Ṙ ; i ∈ N}.

For a variable x, we define STx recursively:

STx(pi) := Ṗi(x)

STx(¬ϕ) := ¬STx(ϕ)

STx(ϕ ∨ ψ) := STx(ϕ) ∨ STx(ψ)

STx(♦ϕ) := ∃y
(

Ṙ(x, y) ∧ STy(ϕ)
)
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The standard translation (2).

If 〈M,R, V 〉 is a Kripke model, let Pi := V (pi). If Pi is a unary
relation on M , let V (pi) := Pi.

Theorem.

〈M,R, V 〉 |= ϕ ↔ 〈M,Pi, R ; i ∈ N〉 |= ∀x STx(ϕ)

Corollary. Modal logic satisfies the compactness theorem.

Proof. Let Φ be a set of modal sentences such that every finite set has a model. Look at

Φ∗ := {∀x STx(ϕ) ; ϕ ∈ Φ}. By the theorem, every finite subset of Φ∗ has a model. By

compactness for first-order logic, Φ∗ has a model. But then Φ has a model. q.e.d.
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Bisimulations.

If 〈M,R, V 〉 and 〈M∗, R∗, V ∗〉 are Kripke models, then a

relation Z ⊆M ×N is a bisimulation if

If xZx∗, then x ∈ V (pi) if and only if x∗ ∈ V (pi).

If xZx∗ and xRy, then there is some y∗ such that x∗R∗y∗

and yZy∗.

If xZx∗ and x∗R∗y∗, then there is some y such that xRy
and yZy∗.

A formula ϕ(v) is called invariant under bisimulations if for
all Kripke models M and N, all x ∈M and y ∈ N , and all
bisimulations Z such that xZy, we have

M |= ϕ(x) ↔ N |= ϕ(y).
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van Benthem.

Johan van Benthem

Theorem (van Benthem; 1976). A formula in one free
variable v is invariant under bisimulations if and only if it is
equivalent to STv(ψ) for some modal formula ψ.

Modal Logic is the bisimulation-invariant fragment of
first-order logic.
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Intuitionistic Logic (1).

Recall the game semantics of intuitionistic propositional
logic: |=dialog ϕ.

|=dialog p → ¬¬p,

6|=dialog ¬¬p → p,

6|=dialog ϕ ∨ ¬ϕ.

Kripke translation (1965) of intuitionistic propositional logic
into modal logic:

K(pi) := �pi

K(ϕ ∨ ψ) := K(ϕ) ∨ K(ψ)

K(¬ϕ) := �¬K(ϕ)

Core Logic – 2007/08-1ab – p. 7/30



Intuitionistic Logic (2).

Theorem.

|=dialog ϕ↔ S4 ⊢ K(ϕ).

Consequently, ϕ is intuitionistically valid if and only if K(ϕ)
holds on all transitive and reflexive frames.

|=dialog p → ¬¬p  �p → �♦�p

6|=dialog ¬¬p → p  �♦�p → �p

6|=dialog ϕ ∨ ¬ϕ  K(ϕ) ∨�¬K(ϕ)

�p ∨�¬�p

�p ∨�♦¬p
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Provability Logic (1).

Leon Henkin (1952). “If ϕ is equivalent to PA ⊢ ϕ, what do
we know about ϕ?”

M.H. Löb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20

(1955), p.115-118:

PA ⊢ ((PA ⊢ ϕ) → ϕ) implies PA ⊢ ϕ.

Interpret �ϕ as PA ⊢ ϕ. Then Löb’s theorem becomes:

(Löb) �(�ϕ→ ϕ) → �ϕ.

GL is the modal logic with the axiom (Löb).
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Provability Logic (2).

Theorem (Segerberg-de Jongh-Kripke; 1971). GL ⊢ ϕ if
and only if ϕ is true on all transitive converse wellfounded
frames.

A translation R from the language of model logic into the
language of arithmetic is called a realization if

R(⊥) = ⊥

R(¬ϕ) = ¬R(ϕ)

R(ϕ ∨ ψ) = R(ϕ) ∨R(ψ)

R(�ϕ) = PA ⊢ R(ϕ).

Theorem (Solovay; 1976). GL ⊢ ϕ if and only if for all
realizations R, PA ⊢ R(ϕ).
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Modal Logics of Models (1).

One example: Modal logic of forcing extensions.

Joel D.Hamkins

A function H is called a Hamkins translation if

H(⊥) = ⊥

H(¬ϕ) = ¬H(ϕ)

H(ϕ ∨ ψ) = H(ϕ) ∨H(ψ)

H(♦ϕ) = “there is a forcing extension in which H(ϕ) holds”.

The Modal Logic of Forcing: Force := {ϕ ; ZFC ⊢ H(ϕ)}.
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Modal Logics of Models (2).

Force := {ϕ ; ZFC ⊢ H(ϕ)}.

Theorem (Hamkins).

1. Force 6⊢ S5.

2. Force ⊢ S4.

3. There is a model of set theory V such that the Hamkins
translation of S5 holds in that model.

Joel D.Hamkins, A simple maximality principle, Journal of Symbolic Logic 68 (2003),

p. 527–550

Theorem (Hamkins-L). Force = S4.2.

Joel D.Hamkins, Benedikt Löwe, The Modal Logic of Forcing, Transactions of the AMS

360 (2008)
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Tarski (1).

Alfred Tarski
1902-1983

Teitelbaum (until c. 1923).

1918-1924. Studies in Warsaw. Student of Lesniewski.

1924. Banach-Tarski paradox.

1924-1939. Work in Poland.

1933. The concept of truth in formalized languages.

From 1942 at the University of California at Berkeley.
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Tarski (2).

Undefinability of Truth.

Algebraic Logic.

Logic and Geometry.

A theory T admits elimination of quantifiers if every
first-order formula is T -equivalent to a quantifier-free
formula (Skolem, 1919).

1955. Quantifier elimination for the theory of real
numbers (“real-closed fields”).

Basic ideas of modern algebraic model theory.

Connections to theoretical computer science:
running time of the quantifier elimination algorithms.
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The puzzle of truth.

Eubulides. “A man says he is lying. Is what he says true
or false?”

Sophismata.

Buridan’s Proof of God’s Existence.

(1) God exists.

(2) (1) and (2) are false.
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Tarski & Truth (1).

Alfred Tarski, The concept of truth in the languages of the

deductive sciences, Prace Towarzystwa Naukowego Warsza-

wskiego, Wydzial III Nauk Matematyczno-Fizycznych 34

(1933)

We say that a language L is saturated if there are

an assignment ϕ 7→ tϕ of L-terms to L-sentences,

a surjective assignment x 7→ Fx of L-formulae in one free variable to objects.

Let T be an L-theory and Φ(x) be an L-formula with one free variable. We

say that Φ is truth-adequate with respect to T if

for all ϕ, either T ⊢ Φ(tϕ) or T ⊢ ¬Φ(tϕ) (totality), and

for all ϕ, we have that

T ⊢ ϕ ↔ Φ(tϕ)

(Adequacy; “Tarski’s T-convention”).
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Tarski & Truth (2).

T ⊢ ϕ↔ Φ(tϕ).

Theorem (Undefinability of Truth). If L is saturated and T is
a consistent L-theory, then there is no formula Φ that is
truth-adequate for T .

Proof. Suppose Φ is truth-adequate. Consider ϕ(x) := ¬Φ(tFx(x)). This is a formula in one

variable, there is some e such that Fe(x) = ¬Φ(tFx(x)). Consider Fe(e) = ¬Φ(tFe(e)).

T ⊢ Fe(e)

T ⊢ ¬Φ(tFe(e))

T ⊢ ¬Fe(e) (by adequacy)

So, Φ cannot be total. q.e.d.
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Object language and metalanguage.

If L is any (interpreted) language, let LT be L ∪ {T} where

T is a unary predicate symbol. If T is any consistent theory,
just add the Tarski biconditional

ϕ↔ T(tϕ)

to get TT.

Now T is a truth-adequate predicate with respect to TT, but
only for sentences of L.

The metalanguage LT can adequately talk about truth in
the object language L.
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Unproblematic sentences.

T(t2+2=4). “2 + 2 = 4 is true.”

T(tT(t2+2=4)). “It is true that 2 + 2 = 4 is true.”

T(t¬T(tT(t2+2=4))→ϕ). “It is true that (If it is false that

2 + 2 = 4 is true, then ϕ holds.)”

Well-foundedness.
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An inductive definition of truth (1).

Let L be a language without truth predicate. We shall add a
partial truth predicate T to get LT:
Suppose we already have a partial truth predicate T

interpreting T. Then we can define T+ := {tϕ ; ϕ is true if T

is interpreted by T .
Let

T0 := {tϕ ; ϕ is a true L-sentence}

Ti+1 := (Ti)
+

T∞ :=
⋃

i∈N

Ti

Then T∞ is a partial truth predicate that covers all of the
“unproblematic” cases. All?
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An inductive definition of truth (2).

T0 := {tϕ ; ϕ is a true L-sentence}

Ti+1 := (Ti)
+

T∞ :=
[

i∈N

Ti

If ϕ is a formula, let T0(ϕ) = ϕ and Tn+1(ϕ) = T(tTn(ϕ)).

Let ψ be the formalization of

“For all n, Tn(2 + 2 = 4).”

The formula ψ is not in the scope of any of the partial truth
predicates Ti, so it can’t be in T∞.

But T(tψ) is intuitively “unproblematic”.
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An inductive definition of truth (3).

More formally: T∞ is not a fixed-point of the + operation.

T∞ $ (T∞)+.

Use ordinals as indices:

Tω := T∞

Tα+1 := (Tα)+

Tλ :=
[

α<λ

Tα

Theorem. There is a (countable) ordinal α such that
Tα = Tα+1.
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The source of the problem.

What is the source of the problem with the Liar?

Why didn’t we have any problems with the
“unproblematic” sentences?

Self-reference

Liar. “This sentence is false.” • ZZ

Nested Liar. “The second sentence is false.”–“The first
sentence is true.”

• (( •hh

“This sentence has five words.”
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Pointer Semantics (1).

Haim Gaifman, Pointers to truth, Journal of Philosophy 89 (1992), p. 223–261

Haim Gaifman, Operational pointer semantics: solution to self-referential puzzles. I.

Proceedings TARK II, p. 43–59

Thomas Bolander, Logical Theories for Agent Introspection, PhD thesis, Technical

University of Denmark 2003

Pointer Language: Let pn be (countably many) propositional
variables.

Every pn is an expression.

⊥ and ⊤ are expressions.

If E is an expression, then ¬E is an expression.

If Ei is an expression, then
V

i Ei and
W

i Ei are expressions.

If E is an expression and n is a natural number, then n : E is
a clause. (Interpretation. “pn states E”.)
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Pointer Semantics (2).

Every pn is an expression.

⊥ and ⊤ are expressions.

If E is an expression, then ¬E is an expression.

If Ei is an expression, then
V

i Ei and
W

i Ei are expressions.

If E is an expression and n is a natural number, then n : E is a clause.

Examples.

The Liar: 0 : ¬p0.

The Truthteller: 0 : p0.

One Nested Liar: 0 : ¬p1.

1 : p0.

Two Nested Liars: 0 : ¬p1.

1 : ¬p0.
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Pointer Semantics (3).

Every pn is an expression.

⊥ and ⊤ are expressions.

If E is an expression, then ¬E is an expression.

If Ei is an expression, then
V

i Ei and
W

i Ei are expressions.

If E is an expression and n is a natural number, then n : E is a clause.

An interpretation is a function I : N → {0, 1} assigning
truth values to propositional letters. I extends naturally
to all expressions.

If n : E is a clause, we say that I respects n : E if
I(n) = I(E).

If Σ is a set of clauses, we say that it is paradoxical if
there is no interpretation that respects all clauses in Σ.
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Paradoxicality of the Liar.

The Liar: 0 : ¬p0. The Truthteller: 0 : p0.

One Nested Liar: 0 : ¬p1. Two Nested Liars: 0 : ¬p1.

1 : p0. 1 : ¬p0.

Paradoxical Nonparadoxical

There are four relevant interpretations:

I00 0 7→ 0; 1 7→ 0

I01 0 7→ 0; 1 7→ 1

I10 0 7→ 1; 1 7→ 0

I11 0 7→ 1; 1 7→ 1
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The Truthteller.

What is the problem with the truthteller and the two nested
liars?
Both I01 and I10 are interpretations, so the two nested liars
are nonparadoxical. But: the interpretations disagree about
the truthvalues.
We call a set of clauses Σ determined if there is a unique
interpretation.
The truthteller and the two nested liars are nonparadoxical
but also nondetermined.
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The dependency graph.

Let Σ be a (syntactically consistent) set of clauses. Then
we can define the dependency graph of Σ as follows:

V := {n ; pn occurs in some clause in Σ}.

nEm if and only if n : X ∈ Σ and pm occurs in X.

Liar and Truthteller:

0 XX

Nested Liar(s):

0
((
1hh

n is selfreferential if there is a path from n to n in the
dependency graph.

Note. Selfreference does not imply paradoxicality!
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Yablo’s Paradox.

Let En :=
∧

i>n ¬pi and Υ := {n : En ; n ∈ N}.

The dependency graph of Υ is 〈N, <〉. No clause is

self-referential in Υ.

Claim. Σ is paradoxical.
Proof. Let I be an interpretation.

If I(n) = 1, then
V

i>n ¬pi is true, so I(i) = 0 for all i > n, in particular for i = n+ 1.

But then I(
V

i>n+1 ¬pi) = 0, so I(
W

i>n+1 pi) = 1. Pick i0 such that I(i0) = 1 to get

a contradiction.

So, I(n) = 0 for all n. But then I(
V

n ¬pn) = 1. Contradiction. q.e.d.

So: Paradoxicality does not imply self-reference.
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