
Early History of Computing.

1623.

Wilhelm Schickard (1592-1635)

1642.

Blaise Pascal (1623-1662)

1671.

Gottfried Wilhelm von Leibniz (1646-1716)

Core Logic – 2007/08-1ab – p. 2/38

Turing.

Alan Turing (1912-1954)

1936. On computable numbers. The Turing

Machine.

1938. PhD in Princeton.

1939-1942. Government Code and Cypher

School at Bletchley Park.

Enigma.

1946. Automatic Computing Engine (ACE).

1948. Reader in Manchester.

1950. Computing machinery and intelligence. The

Turing Test.

1952. Arrested for violation of British homosexual-

ity statutes.

Core Logic – 2007/08-1ab – p. 3/38

Turing Machines (1).

Entscheidungsproblem.

Is there an algorithm that decides whether a given formula
of predicate logic is a tautology or not?

Positive answer simple; negative answer hard. Define
“algorithm”.

Turing Machine. An idealized model of computation: an
infinite tape, a finite alphabet Σ of symbols that can be on
the tape, a read/write head, a finite set of actions A, a finite
set S of states and a function (“programme”) F : Σ × S → A.
One of the states is designated the HALT state. Write
T := 〈Σ, S, A, F 〉. There are only countably many Turing
machines.

Core Logic – 2007/08-1ab – p. 4/38

Turing Machines (2).

Turing Machine. An idealized model of computation: an infinite tape, a finite alphabet Σ of

symbols that can be on the tape, a read/write head, a finite set of actions A, a finite set S of

states and a function (“programme”) F : Σ × S → A. One of the states is designated the

HALT state. Write T := 〈Σ, S, A, F 〉. There are only countably many Turing machines.

Given some finite string s ∈ Σ∗ as input, the machine starts its computation according

to F .

There is a unique defined sequence of states that the computation runs through.

If one of them is HALT, we say that the machine halts and write T (s) ↓.

Otherwise, we say that the machine loops (diverges) and write T (s) ↑.

If T (s) ↓, then the machine outputs the content of the tape. We write T (s) for the

output.

We say that T accepts s if T (s) ↓ and T (s) = 1.

We say that T rejects s if T (s) ↓ and T (s) = 0.

A set X ⊆ Σ∗ is decidable if there is a Turing machine T such that s ∈ X if and only if

T accepts s and s /∈ X if and only if T rejects s.

Core Logic – 2007/08-1ab – p. 5/38

The Universal Turing Machine (1).

Fixing a finite alphabet Σ := {σ0, ..., σs} and a finite set of
actions A := {α0, ..., αa}, we can list all Turing machines:

If F : Σ × S → A is a Turing machine programme, we can
view it as a partial function
ΦF : {0, ..., s} × {0, ..., n} → {0, ..., a} for some natural
number n.

If now Φ : {0, ..., s} × {0, ..., n} → {0, ..., a} is a partial

function, we assign a natural number (the “Gödel number of
Φ”):

G(Φ) :=
∏

i≤s,j≤n

prime
Φ(i,j)+1
ij .

Core Logic – 2007/08-1ab – p. 6/38

The Universal Turing Machine (2).

G(Φ) :=
Y

i≤s,j≤n

prime
Φ(i,j)+1
ij .

Let

T ⊆ N := {n ; ∃F (G(ΦF) = n) }

be the set of numbers that are Gödel numbers of some
Turing machine. Let tn be the nth number in T and let Tn be
the Turing machine such that G(ΦTn

) = tn.

“It can be shown that a single special machine of that type can be made to do

the work of all. It could in fact be made to work as a model of any other machine.

The special machine may be called the universal machine. (Turing 1947).”

Core Logic – 2007/08-1ab – p. 7/38

The Universal Turing Machine (3).

Let T be the set of numbers that are Gödel numbers of some Turing machine. Let tn be the

nth number in T and let Tn be the (a) Turing machine such that G(ΦTn
) = tn.

A universal Turing machine is a Turing machine U with
alphabet {0, 1} such that at input 〈n, m〉 such that n ∈ T the

following happens:

If Tn(m) ↑, then U(n, m) ↑.

If Tn(m) ↓= k, then U(n, m) ↓= k.

The Halting Problem K is the set

K := {n ; U(n, n) ↓}.

Core Logic – 2007/08-1ab – p. 8/38

The Halting Problem.

Theorem (Turing). The Halting Problem is not decidable.

Proof. Suppose it is decidable. Then there is a Turing machine T such that

T (n) ↓= 0 ↔ n ∈ K ↔ U(n, n) ↓

T (n) ↓= 1 ↔ n /∈ K ↔ U(n, n) ↑

By universality, there is some e ∈ T such that T = Te, i.e.,

T (n) ↓= 0 ↔ Te(n) ↓= 0 ↔ U(e, n) ↓= 0

T (n) ↓= 1 ↔ Te(n) ↓= 1 ↔ U(e, n) ↓= 1

Substitute n = e in the above equivalences and get:

U(e, e) ↓= 1 ↔ U(e, e) ↑ .

Contradiction! q.e.d.

Core Logic – 2007/08-1ab – p. 9/38

Computability (1).

Alonzo Church Stephen Kleene

1903-1995 1909-1994

“Both Turing and Gödel preferred the terminology ‘computable’ for this class of

functions. When Turing’s 1939 paper appeared, he had already been recruited

as a cryptanalyst three days after Britain was plunged into World War II. Gödel

moved to set theory. Neither Turing nor Gödel had much influence on the

terminology of the subject after 1939.

The present terminology came from Church and Kleene. They had both

committed themselves to the new ‘recursive’ terminology before they had ever

heard of Turing or his results. (Soare 1996)”

Robert I. Soare, Computability and recursion, Bulletin of Symbolic Logic 2 (1996),

p.284-321

Core Logic – 2007/08-1ab – p. 10/38

Computability (2).

computable recursive

computably enumerable recursively enumerable

Computability Theory Recursion Theory

The class of Church-recursive functions is the smallest
class containing projections and the successor function
closed under primitive recursion, substitution and
µ-recursion.

Theorem. A function is Turing-computable if and only if it is
Church-recursive.

Church-Turing Thesis. Every algorithm is represented by
a Turing machine.

Core Logic – 2007/08-1ab – p. 11/38

The Entscheidungsproblem.

Theorem (Church). The set of all (codes for) tautologies in
predicate logic is undecidable, i.e., there is no Turing
machine T such that

T (n) ↓= 0 ↔ ϕn is a tautology

T (n) ↓= 1 ↔ ϕn is not a tautology.

Alonzo Church, An Unsolvable Problem of Elementary Number Theory, American Journal

of Mathematics 58 (1936), p. 345-363

Core Logic – 2007/08-1ab – p. 12/38

Gödel’s Constructible Universe (1).

Johan von Neumann Kurt Gödel

(1903-1957) (1906-1978)

Usual (“von Neumann”) construction of the set-theoretic universe is built on the

ordinals and the power set operation: Vα+1 := ℘(Vα).

Constructible approach (Gödel). Only add those subsets that are defined by formulae:

Let X be given, then A ⊆ X is defined over X if there is a formula ϕ and finitely many

parameters p0, ..., pn ∈ X such that

x ∈ A ↔ X |= ϕ[x, p0, ..., pn].

Let Def(X) := {A ⊆ X ; A is defined over X} ⊆ ℘(X).

Lα+1 := Def(Lα).

Core Logic – 2007/08-1ab – p. 13/38

Gödel’s Constructible Universe (2).

Vα+1 := ℘(Vα).

Lα+1 := Def(Lα).

Let L be the universe defined by Gödel’s L-operation. Then:

Theorem (Gödel; 1938). L |= ZFC + CH.

Corollary. If ZF is consistent, then ZFC + CH is consistent.

Consequences.

Question 1, Question 2 and Question 2* cannot have a negative answer.

The system ZFC + CH cannot be logically stronger than ZF, i.e.,

ZFC + CH 6⊢ Cons(ZF).

L is a minimal model of set theory.

Core Logic – 2007/08-1ab – p. 14/38

Gödel’s Constructible Universe (3).

A new axiom? V=L. “The set-theoretic universe is
minimal”.

Gödel Rephrased. ZF + V=L ⊢ AC + CH.

Possible solutions.

Prove V=L from ZF.

Assume V=L as an axiom. (V=L is generally not
accepted as an axiom of set theory.)

Find a different proof of AC and CH from ZF.

Prove AC and CH to be independent by creating models
of ZF + ¬AC, ZF + ¬CH, and ZFC + ¬CH.

Core Logic – 2007/08-1ab – p. 15/38

Cohen.

Paul Cohen (b. 1934)

Technique of Forcing (1963). Take a model M of ZFC and
a partial order P ∈ M . Then there is a model construction of

a new model MP, the forcing extension. By choosing P

carefully, we can control properties of MP.

Let κ > ω1. If P is the set of finite partial functions from κ× ω

into 2, then MP |= ¬CH.

Theorem (Cohen). ZFC 6⊢ CH.

Theorem (Cohen). ZF 6⊢ AC.

Core Logic – 2007/08-1ab – p. 16/38

Modal logic (1).

Modalities.

“the standard modalities”. “necessarily”, “possibly”.

temporal. “henceforth”, “eventually”, “hitherto”.

deontic. “it is obligatory”, “it is allowed”.

epistemic. “p knows that”.

doxastic. “p believes that”.

Core Logic – 2007/08-1ab – p. 17/38

Modal logic (2).

Modalities as operators.
McColl (late XIXth century); Lewis-Langford (1932). ♦ as
an operator on propositional expressions:

♦ϕ “Possibly ϕ”.

� for the dual operator:

�ϕ “Necessarily ϕ”.

Iterated modalities:

�♦ϕ “It is necessary that ϕ is possible”.

Core Logic – 2007/08-1ab – p. 18/38

Modal logic (3).

What modal formulas should be axioms? This depends on
the interpretation of ♦ and �.
Example. �ϕ → ϕ (“axiom T”).

Necessity interpretation. “If ϕ is necessarily true, then it
is true.”

Epistemic interpretation. “If p knows that ϕ, then ϕ is
true.”

Doxastic interpretation. “If p believes that ϕ, then ϕ is
true.”

Deontic interpretation. “If ϕ is obligatory, then ϕ is true.”

Core Logic – 2007/08-1ab – p. 19/38

Early modal semantics.

Topological Semantics (McKinsey / Tarski).
Let 〈X, τ〉 be a topological space and V : N → ℘(X) a
valuation for the propositional variables.

〈X, τ, x, V 〉 |= ♦ϕ if and only if x is in the closure of
{z ; 〈X, τ, z, V 〉 |= ϕ}.

〈X, τ〉 |= ϕ if for all x ∈ X and all valuations V ,
〈X, τ, x, V 〉 |= ϕ.

Theorem (McKinsey-Tarski; 1944). 〈X, τ〉 |= ϕ if and only if
S4 ⊢ ϕ.

(S4 = {T,��ϕ → �ϕ})

Core Logic – 2007/08-1ab – p. 20/38

Possible Worlds.

Leibniz: There are as many possible worlds as there are
things that can be conceived without contradiction. ϕ is
necessarily true if its negation implies a contradiction.
 ϕ is necessarily true if it is true in all possible worlds.

Core Logic – 2007/08-1ab – p. 21/38

Kripke.

Saul Kripke
(b. 1940)

Saul Kripke, A completeness theorem in modal logic,
Journal of Symbolic Logic 24 (1959), p. 1-14.

“Naming and Necessity ”.

Core Logic – 2007/08-1ab – p. 22/38

Kripke semantics (1).

Let M be a set and R ⊆ M × M a binary relation. We call
M = 〈M, R〉 a Kripke frame. Let V : N → ℘(M) be a

valuation function. Then we call MV = 〈M, R, V 〉 a Kripke
model.

MV , x |= pn iff x ∈ V (n)

MV , x |= ♦ϕ iff ∃y(xRy & MV , y |= ϕ)

MV , x |= �ϕ iff ∀y(xRy → MV , y |= ϕ)

MV |= ϕ iff ∀x(MV , x |= ϕ)

M |= ϕ iff ∀V (MV |= ϕ)

Core Logic – 2007/08-1ab – p. 23/38

Kripke semantics (2).

M
V , x |= ♦ϕ iff ∃y(xRy & M

V , y |= ϕ)

M
V , x |= �ϕ iff ∀y(xRy → M

V , y |= ϕ)

M
V |= ϕ iff ∀x(MV , x |= ϕ)

M |= ϕ iff ∀V (MV |= ϕ)

Let 〈M, R〉 be a reflexive frame, i.e., for all x ∈ M , xRx.
Then M |= T.

(T = �ϕ → ϕ)

Let 〈M, R〉 be a transitive frame, i.e., for all x, y, z ∈ M , if
xRy and yRz, then xRz.
Then M |= ��ϕ → �ϕ.

Core Logic – 2007/08-1ab – p. 24/38

Kripke semantics (3).

Theorem (Kripke).

1. T ⊢ ϕ if and only if for all reflexive frames M, we have
M |= ϕ.

2. S4 ⊢ ϕ if and only if for all reflexive and transitive frames
M, we have M |= ϕ.

3. S5 ⊢ ϕ if and only if for all frames M with an
equivalence relation R, we have M |= ϕ.

Core Logic – 2007/08-1ab – p. 25/38

Modal Propositional Logic.

Propositional Logic: Prop. Propositional variables pi,
∧, ∨, ¬, →.

Modal Logic. Prop+ �, ♦.

First-order logic. Prop+ ∀, ∃, function symbols ḟ,

relation symbols Ṙ.

Prop ⊆ Mod ⊆ FOL

Standard

Translation

Core Logic – 2007/08-1ab – p. 26/38

