
Foundations of Mathematics.

Two weeks ago: First-order logic as a foundations of
mathematics, completeness theorem.

Last week: Frege’s logicism: can we derive the basic
mathematical concepts from logic alone? No! So, we
need axioms and show that they form a consistent
foundations: Hilbert’s Programme.

Basic four areas of mathematical logic:

Set Theory

Proof Theory

Recursion Theory

Model Theory
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The Continuum Hypothesis (1).

If AC holds, then the real numbers R are wellorderable. That
means there is an ordinal α such that R and α are
equinumerous. Let c be the least such ordinal. We know by
Cantor’s theorem that this cannot be a countable ordinal.
There is an ordinal that is not equinumerous to the natural
numbers. We call it ω1.
Question. What is the relationship between c and ω1?

CH. ω1 = c. The least ordinal that is not equinumerous to
the natural numbers is the least ordinal that is
equinumerous to the real numbers.
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The Continuum Hypothesis (2).

Hilbert (1900). ICM in Paris: Mathematical Problems for
the XXth century.

“Es erhebt sich nun die Frage, ob das Continuum auch als wohlgeordnete

Menge aufgefaßt werden kann, was Cantor bejahen zu müssen glaubt.”

In other words: CH implies “there is a wellordering of the
real numbers”.

Question 1. Does ZF ⊢ AC?

Question 2. Does ZF ⊢ CH?

Question 2*. Does ZFC ⊢ CH?

All of these questions were wide open in 1930.
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Hilbert’s Programme (1).

1900: Hilbert’s 2nd problem. “Is there a finitistic proof of
the consistency of the arithmetical axioms?”

1917-1921: Hilbert develops a predecessor of modern
first-order logic.

Paul Bernays (1888-1977)

Assistant of Zermelo in Zürich (1912-1916).

Assistant of Hilbert in Göttingen (1917-1922).

Completeness of propositional logic.

“Hilbert-Bernays” (1934-1939).

Hilbert-Ackermann (1928).

Goal. Axiomatize mathematics and find a finitary
consistency proof.
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Hilbert’s Programme (2).

1922: Development of ε-calculus (Hilbert & Bernays).
General technique for consistency proofs:
“ε-substitution method”.

1924: Ackermann presents a (false) proof of the
consistency of analysis.

Richard Zach, The practice of finitism: epsilon calculus and consistency proofs in

Hilbert’s program, Synthese 137 (2003), p. 211-259

Richard Zach, Hilbert’s ‘Verunglückter Beweis’, the first epsilon theorem, and

consistency proofs, History and Philosophy of Logic 25 (2004), p. 79-94
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Hilbert’s Programme (2).

1922: Development of ε-calculus (Hilbert & Bernays).
General technique for consistency proofs:
“ε-substitution method”.

1924: Ackermann presents a (false) proof of the
consistency of analysis.

1925: John von Neumann (1903-1957)
corrects some errors and proves the con-
sistency of an ε-calculus without the in-
duction scheme.

1928: At the ICM in Bologna, Hilbert claims that the
work of Ackermann and von Neumann constitutes a
proof of the consistency of arithmetic.
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Brouwer (1).

L. E. J. (Luitzen Egbertus Jan) Brouwer
(1881-1966)

Student of Korteweg at the UvA.

1909-1913: Development of topology. Brouwer’s Fixed
Point Theorem.

1913: Succeeds Korteweg as full professor at the UvA.

1918: “Begründung der Mengenlehre unabhängig vom
Satz des ausgeschlossenen Dritten”.
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Brouwer (2).

1920: “Besitzt jede reelle Zahl eine
Dezimalbruch-Entwickelung?”. Start of the
Grundlagenstreit.

1921: Hermann Weyl (1885-1955),

“Über die neue Grundlagenkrise der
Mathematik”

1922: Hilbert, “Neubegründung der Mathematik”.

1928-1929: ICM in Bologna; Annalenstreit. Einstein
and Carathéodory support Brouwer against Hilbert.
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Intuitionism.

Constructive interpretation of existential quantifiers.

As a consequence, rejection of the tertium non datur.

The big three schools of philosophy of mathematics:
logicism, formalism, and intuitionism.

Nowadays, different positions in the philosophy of
mathematics are distinguished according to their view
on ontology and epistemology. Main positions are:
(various brands of) Platonism, Social Constructivism,
Structuralism, Formalism.
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Gödel (1).

Kurt Gödel (1906-1978)

Studied at the University of Vienna; PhD supervisor
Hans Hahn (1879-1934).

Thesis (1929): Gödel Completeness Theorem.

1931: “Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I”.
Gödel’s First Incompleteness Theorem and a proof
sketch of the Second Incompleteness Theorem.
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Gödel (2).

1935-1940: Gödel proves the consistency of the Axiom
of Choice and the Generalized Continuum Hypothesis
with the axioms of set theory (solving one half of
Hilbert’s 1st Problem).

1940: Emigration to the USA: Princeton.

Close friendship to Einstein, Morgenstern and von
Neumann.

Suffered from severe hypochondria and paranoia.

Strong views on the philosophy of mathematics.
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Gödel’s Incompleteness Theorem (1).

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann

constitutes a proof of the consistency of arithmetic.

1930: Gödel announces his result (G1) in Königsberg in
von Neumann’s presence.

Von Neumann independently derives the Second
Incompleteness Theorem (G2) as a corollary.

Letter by Bernays to Gödel (January 1931): There may
be finitary methods not formalizable in PA.

1931: Hilbert suggests new rules to avoid Gödel’s
result. Finitary versions of the ω-rule.

By 1934, Hilbert’s programme in the original formulation
has been declared dead.
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Gödel’s Incompleteness Theorem (2).

Theorem (Gödel’s Second Incompleteness Theorem). If T

is a consistent axiomatizable theory containing PA, then
T 6⊢ Cons(T ).

“consistent”: T 6⊢ ⊥.

“axiomatizable”: T can be listed by a computer
(“computably enumerable”, “recursively enumerable”).

“containing PA”: T ⊢ PA.

“Cons(T )”: The formalized version (in the language of

arithmetic) of the statement ‘for all T -proofs P , ⊥
doesn’t occur in P ’.
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Gödel’s Incompleteness Theorem (3).

Thus: Either PA is inconsistent or the deductive closure
of PA is not a complete theory.

All three conditions are necessary:

Theorem (Presburger, 1929). There is a weak
system of arithmetic that proves its own consistency
(“Presburger arithmetic”).

If T is inconsistent, then T ⊢ ϕ for all ϕ.

If N is the standard model of the natural numbers,
then Th(N) is a complete extension of PA (but not

axiomatizable).
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Gentzen.

Gerhard Gentzen (1909-1945)

Student of Hermann Weyl (1933).

1934: Hilbert’s assistant in Göttingen.

1934: Introduction of the Sequent Calculus.

1936: Proof of the consistency of PA from a transfinite
wellfoundedness principle.

Theorem (Gentzen). Let T ⊇ PA such that T proves
the existence and wellfoundedness of (a code for) the
ordinal ε0. Then T ⊢ Cons(PA).
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Arithmetic and orderings (1).

What is ε0?
The first transfinite closure ordinal of the ordinal operations
“addition”, “multiplication”, and “exponentiation”.

But: Ordinals are not objects of arithmetic (neither
first-order not second-order). So what should it mean that
an arithmetical theory proves that “ε0 is well-ordered”?
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Arithmetic and orderings (2).

What should it mean that an arithmetical theory proves that “ε0 is well-ordered”?

Let α be a countable ordinal. By definition, there is some
bijection f : N → α. Define

n <f m :↔ f(n) < f(m).

Clearly, f is an isomorphism between 〈N, <f 〉 and α.

If g : N × N → {0, 1} is an arbitrary function, we can interpret
it as a binary relation on N:

n <g m :↔ g(n, m) = 1.
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Arithmetic and orderings (3).

Let us work in second-order arithmetic

〈N, NN, 2N×N,+,×, 0, 1, app〉

g : N × N → {0, 1} codes a wellfounded relation if and only if

¬∃F ∈ N
N∀n ∈ N(g(F (n+ 1), F (n)) = 1).

“Being a code for an ordinal < ε0” is definable in the
language of second-order arithmetic (ordinal notation
systems).
TI(ε0) is defined to be the formalization of “every code g for

an ordinal < ε0 codes a wellfounded relation”.
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More proof theory (1).

TI(ε0): “every code g for an ordinal < ε0 codes a wellfounded relation”

Generalization: If “being a code for an ordinal < α” can be
defined in second-order arithmetic, then let TI(α) mean

“every code g for an ordinal < α codes a wellfounded
relation”.

The proof-theoretic ordinal of a theory T .

|T | := sup{α ; T ⊢ TI(α)}

Rephrasing Gentzen. |PA| = ε0.
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More proof theory (2).

Results from Proof Theory.

The proof-theoretic ordinal of primitive recursive
arithmetic is ωω.

(Jäger-Simpson) The proof-theoretic ordinal of
arithmetic with arithmetical transfinite recursion is Γ0

(the limit of the Veblen functions).

These ordinals are all smaller than ωCK
1

, the least

noncomputable ordinal.
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