
Cantor.

Georg Cantor
(1845-1918)
studied in Zürich, Berlin, Göttingen
Professor in Halle

Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

Perfect sets and iterations of operations lead to a notion
of ordinal number (1880).
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Cardinality (1).

The natural numbers 0
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5 6 7 8 ...

The even numbers 0 2 4 6 8 ...

There is a 1-1 correspondence (bijection) between N

and the even numbers.

There is a bijection between N × N and N.

There is a bijection between Q and N.

There is no bijection between the set of infinite 0-1
sequences and N.

There is no bijection between R and N.
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Cardinality (2).

Theorem (Cantor). There is no bijection between the set of
infinite 0-1 sequences and N.

Proof. Suppose that F were such a bijection, i.e., for every n, Fn is an infinite 0-1 sequence

and for every such sequence x there is some n such that Fn = x. Define

d(n) := 1− Fn(n). Then d is an infinite 0-1 sequence. So there is somem such that

d = Fm. But Fm(m) = d(m) = 1− Fm(m). Contradiction! q.e.d.

Theorem (Cantor). There is a bijection between the real
line and the real plane.

Proof. Let’s just do it for the set of infinite 0-1 sequences and the set of pairs of infinite 0-1

sequences:

If x is an infinite 0-1 sequence, then let x0(n) := x(2n), and x1(n) := x(2n+ 1). Let

F (x) := 〈x0, x1〉. F is a bijection. q.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube
es nicht!”
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Transfiniteness (1).

If X ⊆ R is a set of reals, we call x ∈ X isolated in X if no
sequence of elements of X converges to x.

Cantor’s goal: Given any set X, give a construction of a
nonempty subset that doesn’t contain any isolated points.

Idea: Let X isol be the set of all points isolated in X, and

define X ′ := X\X isol.

Problem: It could happen that x ∈ X ′ was the limit of a
sequence of points isolated in X. So it wasn’t isolated in X,
but is now isolated in X ′.

Solution: Iterate the procedure: X0 := X and
Xn+1 := (Xn)′.
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Transfiniteness (2).

X′ := X\Xisol; X0 := X and Xn+1 := (Xn)′.

Question: Is
⋂

n∈NXn a set without isolated points?

Answer: In general, no!

So, you could set X∞ :=
⋂

n∈NXn, and then X∞+1 := (X∞)′;

in general, X∞+n+1 := (X∞+n)′.

The indices used in transfinite iterations like this are called
ordinals.
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Sets (Preview).

The notion of cardinality needs a general notion of function
as a special relation between sets. In order to make the
notion of an ordinal precise, we also need sets.

What is a set?

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge

unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)
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Syllogistics versus Propositional Logic.

Deficiencies of Syllogistics:

Not expressible:

Every X is a Y and a Z. Ergo... Every X is a Y .

Deficiencies of Propositional Logic:

XaY can be represented as Y → X.

XeY can be represented as Y → ¬X.

Not expressible:

XiY and XoY .
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Frege.

Gottlob Frege
1848 - 1925

Studied in Jena and Göttingen.

Professor in Jena.

Begriffsschrift (1879).

Grundgesetze der Arithmetik (1893/1903).

“Every good mathematician is at least half a philosopher, and every good philosopher is at

least half a mathematician. (G. Frege)”
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Frege’s logical framework.

“Everything is M ” ∀xM(x)

“Something is M ” ∃xM(x) ≡ ¬∀x¬M(x)

“Nothing is M ” ∀x¬M(x)

“Some P is an M ” ∃x (P (x) ∧M(x))

≡ ¬∀x (P (x) → ¬M(x))

Second order logic allowing for
quantification over properties.
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Frege’s importance.

Notion of a formal system.

Formal notion of proof in a formal system.

Analysis of number-theoretic properties in terms of
second-order properties.
 Russell’s Paradox
(Grundlagekrise der Mathematik )
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Hilbert (1).

David Hilbert (1862-1943)
Student of Lindemann
1886-1895 Königsberg
1895-1930 Göttingen

1899: Grundlagen der Geometrie

“Man muss jederzeit an Stelle von ‘Punkten’, ‘Geraden’, ‘Ebenen’ ‘Tische’, ‘Stühle’,

‘Bierseidel’ sagen können.”

“It has to be possible to say ‘tables’, ‘chairs’ and ‘beer mugs’ instead of ‘points’, ‘lines’ and

‘planes’ at any time.”
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Hilbert (2).

1928: Hilbert-Ackermann
Grundzüge der Theoretischen Logik

Wilhelm Ackermann (1896-1962)
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First order logic (1).

A first-order language L is a set {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} of

function symbols and relation symbols together with a
signature σ : I ∪ J → N.

σ(ḟi) = n is interpreted as “ḟi represents an n-ary

function”.

σ(Ṙi) = n is interpreted as “Ṙi represents an n-ary
relation”.

In addition to the symbols from L, we shall be using the
logical symbols ∀, ∃, ∧, ∨, →, ¬, ↔, equality =, and a set of
variables Var.
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First order logic (2).

We fix a first-order language L = {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

Definition of an L-term.

Every variable is an L-term.

If σ(ḟi) = n, and t1, ..., tn are L-terms, then ḟi(t1, ..., tn) is
an L-term.

Nothing else is an L-term.

Example. Let L = {×̇} be a first order language with a
binary function symbol.

×̇(x, x) is an L-term (normally written as x×̇x, or x2).

×̇(×̇(x, x), x) is an L-term (normally written as (x×̇x)×̇x, or x3).
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First order logic (3).

Definition of an L-formula.

If t and t∗ are L-terms, then t = t∗ is an L-formula.

If σ(Ṙi) = n, and t1, ..., tn are L-terms, then Ṙi(t1, ..., tn)
is an L-formula.

If ϕ and ψ are L-formulae and x is a variable, then ¬ϕ,
ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ∀x (ϕ) and ∃x (ϕ) are
L-formulae.

Nothing else is an L-formula.

An L-formula without free variables is called an L-sentence.
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Semantics (1).

We fix a first-order language L = {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

A tuple X = 〈X, 〈fi ; i ∈ I〉, 〈Rj ; j ∈ J〉〉 is called an

L-structure if fi is an σ(ḟi)-ary function on X and Ri is an

σ(Ṙi)-ary relation on X.

An X-interpretation is a function ι : Var → X.

If ι is an X-interpretation and X is an L then ι extends to a
function ι̂ on the set of all L-terms.

If X is an L-structure and ι is an X-interpretation, we define
a semantics for all L-formulae by recursion.
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Semantics (2).

If X is an L-structure and ι is an X-interpretation, we define a semantics for all L-formulae

by recursion.

X, ι |= t = t∗ if and only if ι̂(t) = ι̂(t∗).

X, ι |= Ṙj(t1, ..., tn) if and only if R(ι̂(t1), ..., ι̂(tn)).

X, ι |= ϕ ∧ ψ if and only if X, ι |= ϕ and X, ι |= ψ.

X, ι |= ¬ϕ if and only if it is not the case that X, ι |= ϕ.

X, ι |= ∀x (ϕ) if and only if for all X-interpretations ι∗

with ι ∼x ι
∗, we have X, ι∗ |= ϕ.

X |= ϕ if and only if for all X-interpretations ι, we have
X, ι |= ϕ.

Object Language ↔ Metalanguage.
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Semantics (3).

Object Language ↔ Metalanguage.

Let X be an L-structure. The theory of X, Th(X), is the set

of all L-sentences ϕ such that X |= ϕ.

Under the assumption that the tertium non datur holds for
the metalanguage, the theory of X is always complete:

For every sentence ϕ, we either have ϕ ∈ Th(X) or
¬ϕ ∈ Th(X).

Core Logic – 2007/08-1ab – p. 19/59



Deduction (1).

Let Φ be a set of L-sentences. A Φ-proof is a finite
sequence 〈ϕ1, ..., ϕn〉 of L-formulae such that for all i, one of

the following holds:

ϕi ≡ t = t for some L-term
t,

ϕi ∈ Φ, or

there are j, k < i such
that ϕj and ϕk are the pre-

misses and ϕi is the con-
clusion in one of the rows
of the following table.

Premisses Conclusion

ϕ ∧ ψ ϕ

ϕ ∧ ψ ψ

ϕ ψ ϕ ∧ ψ

ϕ ¬ϕ ψ

ϕ→ ψ ¬ϕ→ ψ ψ

∀x (ϕ) ϕ s
x

ϕ
y

x
∀x (ϕ))

t = t∗ ϕ t
x

ϕ t∗

x
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Deduction (2).

If Φ is a set of L-sentences and ϕ is an L-formula, we write
Φ ⊢ ϕ if there is a Φ-proof in which ϕ occurs.

We call a set Φ of sentences a theory if whenever Φ ⊢ ϕ,
then ϕ ∈ Φ (“Φ is deductively closed”).

Example. Let L = {≤} be the language of partial orders.

Let Φp.o. be the axioms of partial orders, and let Φ be the

deductive closure of Φp.o.. Φ is not a complete theory, as the

sentence ∀x∀y(x ≤ y ∨ y ≤ x) is not an element of Φ, but
neither is its negation.
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Completeness.

Kurt Gödel (1906-1978)

Semantic entailment. We write Φ |= ϕ for “whenever X |= Φ,
then X |= ϕ”.

Gödel Completeness Theorem (1929).

Φ ⊢ ϕ if and only if Φ |= ϕ.

“there is a Φ-proof of ϕ” “for all X |= Φ, we have X |= ϕ”

Φ 6⊢ ϕ if and only if Φ 6|= ϕ.

“no Φ-proof contains ϕ” “there is some X |= Φ ∧ ¬ϕ”
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Applications (1).

The Model Existence Theorem.

If Φ is consistent (i.e., Φ 6⊢ ⊥), then there is a model X |= Φ.

The Compactness Theorem.

Let Φ be a set of sentences. If every finite subset of Φ has a
model, then Φ has a model.

Proof. If Φ doesn’t have a model, then it is inconsistent by the Model Existence Theorem.

So, Φ ⊢ ⊥, i.e., there is a Φ-proof P of ⊥.

But P is a finite object, so it contains only finitely many elements of Φ. Let Φ0 be the set of

elements occurring in P . Clearly, P is a Φ0-proof of ⊥, so Φ0 is inconsistent. Therefore Φ0

cannot have a model. q.e.d.
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Applications (2).

The Compactness Theorem. Let Φ be a set of sentences. If every finite subset of Φ has a

model, then Φ has a model.

Corollary 1. Let Φ be a set of sentences that has arbitrary
large finite models. Then Φ has an infinite model.

Proof. Let ψ≥n be the formula stating “there are at least n different objects”. Let

Ψ := {ψ≥n ; n ∈ N}. The premiss of the theorem says that every finite subset of Φ ∪Ψ has

a model. By compactness, Φ ∪Ψ has a model. But this must be infinite. q.e.d.

Let L := {≤} be the first order language with one binary

relation symbol. Let Φp.o. be the axioms of partial orders.

Corollary 2. There is no sentence σ such that for all partial
orders P, we have

P is finite if and only if P |= σ.

[If σ is like this, then Corollary 1 can be applied to Φp.o. ∪ {σ}.]
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