Universiteit van Amsterdam
 Institute for Logic, Language and Computation
 Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 9

Deadline: April 20th, 2006
Since several students are a bit behind schedule with the exercises, we would like to allow them to catch up by extending the deadlines: Homework Set \# 8 is now due April 20, 2006 together with Exercise 25 (see below).

Exercise 23 (see HW Set \# 8).
Exercise 24 (see HW Set \# 8).
Exercise 25 (total of ten points).
(1) Let $\alpha:=\omega \cdot \omega$ and $\beta<\alpha$. Prove that $\beta+\alpha=\alpha$ (4 points).
(2) For $\alpha<\beta$ there are unique $\lambda \leq \beta$ and $\varrho<\alpha$ such that $\beta=\alpha \cdot \lambda+\varrho$. We call this division with remainder. Let $\beta_{0}:=(\omega+2) \cdot(\omega \cdot \omega), \beta_{1}:=\omega \cdot \omega \cdot(\omega+3)$, $\alpha_{0}:=\omega \cdot \omega+\omega \cdot 7+12$, and $\alpha_{1}:=\omega+5$. Divide β_{0} by α_{0} (3 points) and β_{1} by α_{1} (3 points).

