Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 8

Deadline: April 13th, 2006

Exercise 23 (total of twelve points).
Reread the definition of + on ordinals from Exercise 9 (HW Set \#3). We defined an addition operation (for reasons of notational clarity, let's call it \boxplus) by recursion as

$$
\begin{gathered}
n \boxplus 0:=n, \\
n \boxplus(m+1):=(n \boxplus m)+1 .
\end{gathered}
$$

Prove that \boxplus defines an associative ($11 / 2$ points) and commutative ($2^{1} / 2$ points) operation. Prove that + and \boxplus are the same operation on ω (3 points).
Define a relation \boxtimes on ordinals by letting $\alpha \boxtimes \beta$ be the least ordinal γ such that there is a bijection between γ and the set $\alpha \times \beta$. Compute $\omega \boxtimes n$ ($11 / 2$ points) and $\omega \boxtimes \omega$ ($11 / 2$ points). Prove that \boxtimes is commutative (2 points).

Exercise 24 (total of twelve points).
If $\mathbf{X}:=\langle X, \leq\rangle$ is a poset, we call $I \subseteq X$ an initial segment or Dedekind cut if for all $x \in I$ we have

$$
\text { if } y \leq x \text {, then } y \in I
$$

We call a Dedekind cut I realized if there is some $x \in X$ such that $I=X_{x}:=\{y \in X ; y<$ $x\}$. We call X Dedekind closed if every Dedekind cut is realized.
Let $\mathrm{D}(\mathbf{X})$ be the poset of Dedekind cuts in \mathbf{X} ordered by inclusion \subseteq.
Prove:

- For every toset $\mathbf{X}, \mathrm{D}(\mathbf{X})$ is Dedekind closed (3 points).
- Give an example of a poset \mathbf{X} and a Dedekind cut I that is realized by two different elements, i.e., there are $x \neq x^{*}$ such that $I=X_{x}=X_{x^{*}}$ (3 points).
- Consider

$$
Y:=(\{0\} \times[0,1)) \cup(\{1\} \times[0,1)) \cup(\{2\} \times(0,1])
$$

ordered by $\langle i, x\rangle \leq\langle j, y\rangle \Longleftrightarrow(i=j \wedge x \leq y) \vee(i=0 \wedge j=2) \vee(i=1 \wedge j=2)$. Draw a picture of Y (1 point). Show that \mathbf{Y} is not Dedekind closed (1 point). If $X \supseteq Y$ and $\leq^{*} \cap Y \times Y=\leq$, we call $\mathbf{X}=\left\langle X, \leq^{*}\right.$ an extension of \mathbf{Y}. Present two different extensions of \mathbf{Y} that are both Dedekind complete but not isomorphic (2 points each).

