

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Axiomatische Verzamelingentheorie 2005/2006; 2nd Semester

dr Benedikt Löwe

Homework Set # 8

Deadline: April 13th, 2006

Exercise 23 (total of twelve points).

Reread the definition of + on ordinals from Exercise 9 (HW Set #3). We defined an addition operation (for reasons of notational clarity, let's call it \boxplus) by recursion as

$$n \boxplus 0 := n$$
,

 $n \boxplus (m+1) := (n \boxplus m) + 1.$

Prove that \boxplus defines an associative (1½ points) and commutative (2½ points) operation. Prove that + and \boxplus are the same operation on ω (3 points).

Define a relation \boxtimes on ordinals by letting $\alpha \boxtimes \beta$ be the least ordinal γ such that there is a bijection between γ and the set $\alpha \times \beta$. Compute $\omega \boxtimes n$ (1½ points) and $\omega \boxtimes \omega$ (1½ points). Prove that \boxtimes is commutative (2 points).

Exercise 24 (total of twelve points).

If $\mathbf{X} := \langle X, \leq \rangle$ is a poset, we call $I \subseteq X$ an **initial segment** or **Dedekind cut** if for all $x \in I$ we have

if
$$y \leq x$$
, then $y \in I$.

We call a Dedekind cut I realized if there is some $x \in X$ such that $I = X_x := \{y \in X ; y < x\}$. We call X Dedekind closed if every Dedekind cut is realized.

Let $D(\mathbf{X})$ be the poset of Dedekind cuts in \mathbf{X} ordered by inclusion \subseteq . Prove:

- For every toset **X**, D(**X**) is Dedekind closed (3 points).
- Give an example of a poset X and a Dedekind cut I that is realized by two different elements, i.e., there are $x \neq x^*$ such that $I = X_x = X_{x^*}$ (3 points).
- Consider

 $Y:=\left(\{0\}\times[0,1)\right)\cup\left(\{1\}\times[0,1)\right)\cup\left(\{2\}\times(0,1]\right)$

ordered by $\langle i, x \rangle \leq \langle j, y \rangle \iff (i = j \land x \leq y) \lor (i = 0 \land j = 2) \lor (i = 1 \land j = 2)$. Draw a picture of Y (1 point). Show that Y is not Dedekind closed (1 point). If $X \supseteq Y$ and $\leq^* \cap Y \times Y = \leq$, we call $\mathbf{X} = \langle X, \leq^*$ an extension of Y. Present two different extensions of Y that are both Dedekind complete but not isomorphic (2 points each).