Universiteit van Amsterdam
 Institute for Logic, Language and Computation
 Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 6

Deadline: March 23rd, 2006
Exercise 16 (total of five points).
Let X be a set. Define by transfinite recursion

$$
\begin{aligned}
S_{0}(X) & :=X \\
S_{n+1}(X) & :=\bigcup S_{n}(X) \\
S_{\omega}(X) & :=\bigcup\left\{S_{n}(X) ; n \in \omega\right\}
\end{aligned}
$$

We call $\operatorname{tcl}(X):=S_{\omega}(X)$ the transitive closure of X. Prove that $\operatorname{tcl}(X)$ is a transitive set (i.e., every element of it is a subset of it; 2 points) and that every transitive superset of X contains $\operatorname{tcl}(X)$ (3 points).

Exercise 17 (total of ten points).
A set X is called finite if there is some $n \in \omega$ and some bijection $f: X \rightarrow n$. A set X is called hereditarily finite if $\operatorname{tcl}(X)$ is finite. Let $\mathbf{H F}$ be the class of all hereditarily finite sets. A set X is called countable if there is an injection from X into ω. A set X is called hereditarily countable if $\operatorname{tcl}(X)$ is countable. Let $\mathbf{H C}$ be the class of all hereditarily countable sets.

- Prove that $\mathbf{V}_{\omega}=\mathbf{H F}$ (3 points).
- Prove that $\mathbf{V}_{\omega+1} \subseteq \mathbf{H C}$ (3 points).
- Prove that $\mathbf{V}_{\omega+2} \nsubseteq \mathbf{H C}$ (2 points).
- Prove that $\mathbf{H C} \nsubseteq \mathbf{V}_{\omega+2}$ (2 points).

Exercise 18 (total of thirteen points).
Let Z_{-}^{F} be the set of axioms consisting of the empty set axiom, the pairing axiom, the union axiom, the axiom of foundation, and the axiom scheme of separation. Let Pow be the power set axiom, Inf be the axiom of infinity and Refl the set of instances of the axiom scheme of replacement.
We write

$$
\begin{aligned}
Z_{-} & :=Z_{-}^{\mathrm{F}}+\operatorname{lnf} \\
{Z F^{F}}^{\mathrm{F}} & :=Z_{-}^{\mathrm{F}}+\text { Repl }+ \text { Pow }
\end{aligned}
$$

- Prove that if λ is a limit ordinal, then V_{λ} is a model of $Z_{-}^{\mathrm{F}}+$ Pow ($1 / 2$ point for empty set, pairing, union and foundation, 1 point for separation: 3 points).
- Prove that HF is not a model of Inf (2 points).
- Prove that HF is a model of ZF^{F} (2 points).
- Prove that $\mathbf{H C}$ is a model of the pairing axiom (1 point).
- Prove that HC is not a model of Pow (3 points).

Hint. It is not enough to observe that $\omega \in \mathbf{H C}$ and $\wp(\omega) \notin \mathbf{H C}$. You have to argue that nothing else can play the role of the power set of ω in HC.

- Is $\mathbf{V}_{\omega+\omega+\omega}$ a model of Refl? (2 points)

