

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Axiomatische Verzamelingentheorie

2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set # 5

Deadline: March 16th, 2006

Exercise 13 (total of eight points).

(Found) $\forall x \exists y (x \cap y = \emptyset)$ (vN) $\forall x \exists \alpha (x \in \mathbf{V}_{\alpha})$

Prove in ZF^- that (Found) and (vN) are equivalent.

Exercise 14 (total of nine points).

Work in ZF. Use the *Recursion Theorem* to give precise definitions of the following informally defined class W:

•
$$\mathbf{W}_0 := \varnothing$$
,

•
$$\mathbf{W}_{\alpha+1} := \wp(\wp(\mathbf{W}_{\alpha})),$$

• $\mathbf{W}_{\lambda} := \bigcup_{\alpha < \lambda} \mathbf{W}_{\alpha}$, and

•
$$\mathbf{W} := \bigcup_{\alpha \in \operatorname{Ord}}^{\alpha \in \operatorname{Ord}} \mathbf{W}_{\alpha}.$$

This means: Find the LAST-formula Φ that you need in order to apply the Recursion Theorem to get arbitrarily large germs, and then give the LAST-formula that defines the class based on the conclusion of the Recursion Theorem (2 points). Be precise!

In addition, define a class \mathbf{X} by

•
$$\mathbf{X}_0 := \omega$$
,

•
$$\mathbf{X}_{\alpha+1} := \wp(\mathbf{X}_{\alpha}),$$

• $\mathbf{X}_{\lambda} := \bigcup_{\alpha < \lambda} \mathbf{X}_{\alpha}$, and

•
$$\mathbf{X} := \bigcup_{\alpha \in \operatorname{Ord}} \mathbf{X}_{\alpha}.$$

Prove that $\mathbf{W} = \mathbf{V}$ (3 points) and that $\mathbf{X} = \mathbf{V}$ (4 points).

Exercise 15 (total of eight points).

Work in ZF. The Mirimanoff rank $\varrho(x) := \min\{\alpha; x \in \mathbf{V}_{\alpha+1}\}$ is defined for all sets. Let x and y be sets with $\varrho(x) = \alpha \leq \varrho(y) = \beta$. Compute the Mirimanoff rank of $\{x\}$ (1 point), $\{x, y\}$ (1 point), $\langle x, y \rangle$ (ordered pair, 2 points), $x \times y$ (2 points), $\bigcup x$ (2 points).