Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 5

Deadline: March 16th, 2006
Exercise 13 (total of eight points).

$$
\begin{aligned}
\text { (Found) } & \forall x \exists y(x \cap y=\varnothing) \\
(\mathrm{vN}) & \forall x \exists \alpha\left(x \in \mathbf{V}_{\alpha}\right)
\end{aligned}
$$

Prove in ZF^{-}that (Found) and (vN) are equivalent.
Exercise 14 (total of nine points).
Work in ZF. Use the Recursion Theorem to give precise definitions of the following informally defined class \mathbf{W} :

- $\mathbf{W}_{0}:=\varnothing$,
- $\mathbf{W}_{\alpha+1}:=\wp\left(\wp\left(\mathbf{W}_{\alpha}\right)\right)$,
- $\mathbf{W}_{\lambda}:=\bigcup_{\alpha<\lambda} \mathbf{W}_{\alpha}$, and
- $\mathbf{W}:=\bigcup_{\alpha \in \operatorname{Ord}} \mathbf{W}_{\alpha}$.

This means: Find the LAST-formula Φ that you need in order to apply the Recursion Theorem to get arbitrarily large germs, and then give the LAST-formula that defines the class based on the conclusion of the Recursion Theorem (2 points). Be precise!
In addition, define a class \mathbf{X} by

- $\mathbf{X}_{0}:=\omega$,
- $\mathbf{X}_{\alpha+1}:=\wp\left(\mathbf{X}_{\alpha}\right)$,
- $\mathbf{X}_{\lambda}:=\bigcup_{\alpha<\lambda} \mathbf{X}_{\alpha}$, and
- $\mathbf{X}:=\bigcup_{\alpha \in \operatorname{Ord}} \mathbf{X}_{\alpha}$.

Prove that $\mathbf{W}=\mathbf{V}$ (3 points) and that $\mathbf{X}=\mathbf{V}$ (4 points).
Exercise 15 (total of eight points).
Work in ZF. The Mirimanoff rank $\varrho(x):=\min \left\{\alpha ; x \in \mathbf{V}_{\alpha+1}\right\}$ is defined for all sets. Let x and y be sets with $\varrho(x)=\alpha \leq \varrho(y)=\beta$. Compute the Mirimanoff rank of $\{x\}$ (1 point), $\{x, y\}$ (1 point), $\langle x, y\rangle$ (ordered pair, 2 points), $x \times y$ (2 points), $\bigcup x$ (2 points).

