Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 3

Deadline: March 2nd, 2006
Exercise 8 (total of six points).
If $\mathbf{X}_{0}=\left\langle X_{0}, \leq_{0}\right\rangle$ and $\mathbf{X}_{1}=\left\langle X_{1}, \leq_{1}\right\rangle$ are tosets, then we define $\mathbf{X}_{0} \oplus \mathbf{X}_{1}$ as follows:

$$
\begin{gathered}
X:=\left(\{0\} \times X_{0}\right) \cup\left(\{1\} \times X_{1}\right) \\
\langle i, x\rangle \leq\langle j, y\rangle: \Longleftrightarrow\left(i=j \wedge x \leq_{i} y\right) \vee(i=0 \wedge j=1), \text { and } \\
\mathbf{X}_{0} \oplus \mathbf{X}_{1}:=\langle X, \leq\rangle
\end{gathered}
$$

Why do we bother with the cartesian products? In other words: what would be wrong with the definition $X:=X_{0} \cup X_{1}$? (1 point)
Prove that if \mathbf{X}_{0} and \mathbf{X}_{1} are wosets, then so is $\mathbf{X}_{0} \oplus \mathbf{X}_{1}$ (5 points).
Exercise 9 (total of ten points).
By the representation theorem for wellorders, every woset \mathbf{W} is isomorphic to a unique ordinal. We write o.t.(\mathbf{W}) for it (pronounced: "the order type of \mathbf{W} ").
If α and β are ordinals, then $\alpha \oplus \beta$ is a woset by Exercise 8 . We define an operation + on ordinals by

$$
\alpha+\beta:=\text { o.t. }(\alpha \oplus \beta) .
$$

By ω, we denote the set of natural numbers as an ordinal, i.e., the set $\{0,1,2, \ldots\}$ where $n=\{0,1, \ldots, n-1\}$.
Describe the ordinal $\omega+n$ as a set (1 point). List all of the elements of $\omega+\omega$ (1 point).
For ordinals α, β and γ, prove that

$$
\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma(5 \text { points }) .
$$

List all of the elements of $\omega+\omega+\omega$ (3 points).

Exercise 10 (total of nine points).
We give an example of a computation of the order type of a well-order: Consider $\langle\mathbb{N}, \leq\rangle$ with the usual order and $E:=\{n \in \mathbb{N} ; n$ is even $\}$. Then $\mathbf{E}:=\langle E, \leq\rangle$ is a woset (why?). The ordinal o.t.(E) is ω as the following argument shows:

The function $d: E \rightarrow \mathbb{N}$ defined by $d(n):=\frac{n}{2}$ is an order isomorphism between \mathbf{E} and $\langle\mathbb{N}, \leq\rangle=\omega$ (check that!). By the representation theorem, there is a unique ordinal isomorphic to any wellorder, so o.t. $(\mathbf{E})=\omega$.
Compute the order types of the following wosets \mathbf{O} (1 point), \mathbf{W}_{0} (2 points), \mathbf{W}_{1} (2 points), $\mathbf{W}_{0} \oplus \mathbf{W}_{1}$ (4 points).
(1) Let $\langle\mathbb{N}, \leq\rangle$ be the usual ordering of $\mathbb{N}, O:=\{n \in \mathbb{N} ; n$ is odd and $n \geq 17\}$, and $\mathrm{O}:=\langle O, \leq\rangle$.
(2) Let \leq_{0} be defined on the natural numbers as follows: Let $X:=\{0,70,72\}$.

$$
\begin{aligned}
n \leq_{0} m: \Longleftrightarrow & (n \notin X \wedge m \notin X \wedge n \leq m) \vee \\
& (n \notin X \wedge m \in X) \vee \\
& (m=0) \vee(n \in X \wedge m \in X \wedge n \neq 0 \wedge n \leq m)
\end{aligned}
$$

Let $\mathbf{W}_{0}:=\left\langle\mathbb{N}, \leq_{0}\right\rangle$.
(3) Let \leq_{1} be defined on the natural numbers as follows: Let $Y:=\{0,1,2\}$.

$$
\begin{aligned}
n \leq_{1} m: \Longleftrightarrow & (n \notin Y \wedge m \notin Y \wedge n \in E \wedge m \in E \wedge n \leq m) \vee \\
& (n \notin Y \wedge m \notin Y \wedge n \notin E \wedge m \notin E \wedge n \leq m) \vee \\
& \left(n \notin Y \wedge m \notin Y \wedge n \notin E \wedge m \in E \wedge \frac{n-1}{2} \leq \frac{m}{2}\right) \vee \\
& \left(n \notin Y \wedge m \notin Y \wedge n \in E \wedge m \notin E \wedge \frac{n}{2}<\frac{m-1}{2}\right) \vee \\
& (n \notin Y \wedge m \in Y) \vee \\
& (n \in Y \wedge m \in Y \wedge m \leq n)
\end{aligned}
$$

Let $\mathbf{W}_{1}:=\left\langle\mathbb{N}, \leq_{1}\right\rangle$.

