

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Axiomatische Verzamelingentheorie

2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set # 3

Deadline: March 2nd, 2006

Exercise 8 (total of six points).

If $\mathbf{X}_0 = \langle X_0, \leq_0 \rangle$ and $\mathbf{X}_1 = \langle X_1, \leq_1 \rangle$ are tosets, then we define $\mathbf{X}_0 \oplus \mathbf{X}_1$ as follows:

$$X := (\{0\} \times X_0) \cup (\{1\} \times X_1),$$

$$\langle i, x \rangle \leq \langle j, y \rangle : \iff (i = j \land x \leq_i y) \lor (i = 0 \land j = 1), \text{ and}$$

$$\mathbf{X}_0 \oplus \mathbf{X}_1 := \langle X, \leq \rangle.$$

Why do we bother with the cartesian products? In other words: what would be wrong with the definition $X := X_0 \cup X_1$? (1 point)

Prove that if X_0 and X_1 are wosets, then so is $X_0 \oplus X_1$ (5 points).

Exercise 9 (total of ten points).

By the representation theorem for wellorders, every woset W is isomorphic to a unique ordinal. We write o.t.(W) for it (pronounced: "the order type of W").

If α and β are ordinals, then $\alpha\oplus\beta$ is a woset by Exercise 8. We define an operation + on ordinals by

$$\alpha + \beta := \text{o.t.}(\alpha \oplus \beta)$$

By ω , we denote the set of natural numbers as an ordinal, *i.e.*, the set $\{0, 1, 2, ...\}$ where $n = \{0, 1, ..., n - 1\}$.

Describe the ordinal $\omega + n$ as a set (1 point). List all of the elements of $\omega + \omega$ (1 point). For ordinals α , β and γ , prove that

$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
 (5 points).

List all of the elements of $\omega + \omega + \omega$ (3 points).

Exercise 10 (total of nine points).

We give an example of a computation of the order type of a well-order: Consider $\langle \mathbb{N}, \leq \rangle$ with the usual order and $E := \{n \in \mathbb{N}; n \text{ is even}\}$. Then $\mathbf{E} := \langle E, \leq \rangle$ is a woset (why?). The ordinal o.t.(\mathbf{E}) is ω as the following argument shows:

The function $d : E \to \mathbb{N}$ defined by $d(n) := \frac{n}{2}$ is an order isomorphism between **E** and $\langle \mathbb{N}, \leq \rangle = \omega$ (check that!). By the representation theorem, there is a unique ordinal isomorphic to any wellorder, so o.t.(**E**) = ω .

Compute the order types of the following wosets O (1 point), W_0 (2 points), W_1 (2 points), $W_0 \oplus W_1$ (4 points).

- (1) Let $\langle \mathbb{N}, \leq \rangle$ be the usual ordering of \mathbb{N} , $O := \{n \in \mathbb{N}; n \text{ is odd and } n \geq 17\}$, and $\mathbf{O} := \langle O, \leq \rangle$.
- (2) Let \leq_0 be defined on the natural numbers as follows: Let $X := \{0, 70, 72\}$.

$$n \leq_0 m : \iff (n \notin X \land m \notin X \land n \leq m) \lor \\ (n \notin X \land m \in X) \lor \\ (m = 0) \lor (n \in X \land m \in X \land n \neq 0 \land n \leq m).$$

Let $\mathbf{W}_0 := \langle \mathbb{N}, \leq_0 \rangle$.

(3) Let \leq_1 be defined on the natural numbers as follows: Let $Y := \{0, 1, 2\}$.

$$\begin{split} n \leq_1 m &: \Longleftrightarrow \quad (n \notin Y \land m \notin Y \land n \in E \land m \in E \land n \leq m) \lor \\ (n \notin Y \land m \notin Y \land n \notin E \land m \notin E \land n \leq m) \lor \\ (n \notin Y \land m \notin Y \land n \notin E \land m \in E \land \frac{n-1}{2} \leq \frac{m}{2}) \lor \\ (n \notin Y \land m \notin Y \land n \in E \land m \notin E \land \frac{n-1}{2} \leq \frac{m-1}{2}) \lor \\ (n \notin Y \land m \notin Y \land n \in E \land m \notin E \land \frac{n}{2} < \frac{m-1}{2}) \lor \\ (n \notin Y \land m \in Y) \lor \\ (n \in Y \land m \in Y \land m \leq n). \end{split}$$

Let $\mathbf{W}_1 := \langle \mathbb{N}, \leq_1 \rangle$.