

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

## Axiomatische Verzamelingentheorie

2005/2006; 2nd Semester dr Benedikt Löwe

## Homework Set #14 (the last)

Deadline: May 25th, 2006

Exercise 37 (total of eight points). For cardinals  $\kappa$  and  $\lambda$ , write  $[\kappa; \lambda]$  for  $\bigcup \{\alpha^{\lambda}; \alpha < \kappa\}$ . Let  $\kappa$  be a limit cardinal and  $\lambda > cf(\kappa)$ . Prove that

 $\kappa^{\lambda} = [\kappa; \lambda]^{\mathrm{cf}(\kappa)}.$ 

## Exercise 38 (total of eight points).

Define the **gimel function**  $\mathfrak{I}(\kappa) := \kappa^{\mathrm{cf}(\kappa)}$ . Assume CH (*i.e.*,  $2^{\aleph_0} = \aleph_1$ ) and "for all singular cardinals  $\lambda$ , we have  $\beth(\lambda) = \lambda^{+}$ .

Compute  $\aleph_{\omega}^{\aleph_0}$  (1 point),  $\aleph_{\omega+n}^{\aleph_0}$  (2 points),  $\aleph_{\omega+\omega}^{\aleph_0}$  (1 point),  $\aleph_{\omega_1+1}^{\aleph_1}$  (2 points). What are the best upper and lower bounds for  $\aleph_{\omega+\omega}^{\aleph_1}$  that you can give under these assumptions (don't prove that they are optimal, just argue why they are upper and lower bounds; 2 points).

Exercise 39 (total of eight points).

A cardinal  $\kappa$  is called **inaccessible** if it is regular and for all  $\lambda < \kappa$ , we have that  $2^{\lambda} < \kappa$ . Prove that if  $\kappa$  is an inaccessible cardinal, then  $\mathbf{V}_{\kappa} \models \mathsf{Repl}$  where  $\mathsf{Repl}$  stands for the axiom scheme of replacement. Point out exactly where the two properties of  $\kappa$  (regularity and strong limit) are needed.

**Important:** Please make sure that you are very precise about what it means that  $V_{\kappa} \models \mathsf{Repl}$ (you have to relativize all formulas to  $V_{\kappa}$ ). Only a properly written solution that does not fall into the metamathematical pitfalls here will get full credit.