Universiteit van Amsterdam
 Institute for Logic, Language and Computation
 Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 13
Deadline: May 18th, 2006
Exercise 34 (total of seven points).
Recursively define

$$
\begin{aligned}
\beth_{0} & :=\omega \\
\beth_{\alpha+1} & :=2^{\beth_{\alpha}} \\
\beth_{\lambda} & :=\bigcup_{\xi<\lambda} \beth_{\xi} .
\end{aligned}
$$

As in the lecture, let GCH be the statement " $\forall \alpha \in \operatorname{Ord}\left(2^{\aleph_{\alpha}}=\aleph_{\alpha+1}\right)$ ". Show that GCH is equivalent to the statement "for all $\alpha, \aleph_{\alpha}=\beth_{\alpha}$ " (2 points).
We call a cardinal κ a beth fixed point if $\kappa=\beth_{\kappa}$. Prove that there is a beth fixed point κ such that $\operatorname{cf}(\kappa)=\aleph_{1}$ (5 points).

Exercise 35 (total of eight points).
Use the axiom of choice to prove that every successor cardinal is regular (4 points). Prove that there is a proper class of singular cardinals (4 points).

Exercise 36 (total of seven points).
Let $\mathbf{M} \subseteq \mathbf{N}$ be transitive models of set theory with the same \in-relation, $\mathbf{M} \models \mathrm{ZF}$ and $\mathbf{N} \models$ ZFC. Let $\alpha \in \mathbf{M}$ be an ordinal in both \mathbf{M} and \mathbf{N} such that

- $\mathbf{M} \models$ " α is the least uncountable cardinal" and
- $\mathbf{M}=\operatorname{cf}(\alpha)=\aleph_{0}$.

Show that $\mathbf{N} \models$ " α is countable" (7 points).

