Universiteit van Amsterdam
 Institute for Logic, Language and Computation
 Axiomatische Verzamelingentheorie
 2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set \# 12

Deadline: May 11th, 2006
Exercise 31 (total of seven points).
In this exercise, you are not supposed to use the result $\kappa+\lambda=\kappa \cdot \lambda=\max (\kappa, \lambda)$ that we proved in class. Instead, you are supposed to prove the equalities between cardinals directly by giving a bijection. For example, in order to show $\kappa \cdot \lambda=\lambda \cdot \kappa$, you should give a bijection between $\kappa \times \lambda$ and $\lambda \times \kappa$. As in Exercise 30, let $\operatorname{Fun}(X, Y)$ be the set of functions from X to Y.
For cardinals κ, λ and μ, prove:
(1) $\kappa \cdot \lambda=\lambda \cdot \kappa(1$ point $)$,
(2) $(\kappa \cdot \lambda) \cdot \mu=\kappa \cdot(\lambda \cdot \mu)$ (2 points),
(3) $(\kappa+\lambda) \cdot \mu=\kappa \cdot \mu+\lambda \cdot \mu$ (2 points),
(4) $\operatorname{Card}(\operatorname{Fun}(\mu, \operatorname{Fun}(\lambda, \kappa)))=\operatorname{Card}(\operatorname{Fun}(\mu \times \kappa, \kappa))(2$ points $)$.

Exercise 32 (total of nine points).
Let κ be a cardinal. We call a set $X \kappa$-splittable if there is a family $\left\{X_{\alpha} ; \alpha<\kappa\right\rangle$ such that for all $\alpha<\kappa, \operatorname{Card}\left(X_{\alpha}\right) \leq \kappa$, and $X=\bigcup_{\alpha<\kappa} X_{\alpha}$.
(1) Prove that every nonempty set X is $\operatorname{Card}(X)$-splittable (1 point).
(2) Use the axiom of choice to prove that no cardinal $\kappa>\aleph_{0}$ is \aleph_{0}-splittable (2 points).
(3) Without using the axiom of choice (!), prove that no cardinal $\kappa>\aleph_{1}$ is \aleph_{0}-splittable (6 points).
Hint. If $X \subseteq \kappa$ is countable, then o.t. $(X)<\omega_{1}$. Use a family witnessing that κ is \aleph_{0}-splittable to define an injection from κ into $\aleph_{1} \times \aleph_{0}$. Derive a contradiction.

Exercise 33 (total of seven points).
Recall the definition of the Gödel β-function: If $\gamma, \delta, \gamma^{\prime}, \delta^{\prime}$ are ordinals with $\mu:=\max (\gamma, \delta)$ and $\mu^{\prime}:=\max \left(\gamma^{\prime}, \delta^{\prime}\right)$, we let

$$
\langle\gamma, \delta\rangle \prec\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle \Longleftrightarrow\left(\mu<\mu^{\prime}\right) \vee\left(\mu=\mu^{\prime} \& \gamma<\gamma^{\prime}\right) \vee\left(\mu=\mu^{\prime} \& \gamma=\gamma^{\prime} \& \delta<\delta^{\prime}\right)
$$

As proved in the lecture, \prec is a wellordering on any set of pairs of ordinals. For fixed $\langle\gamma, \delta\rangle$, we let

$$
O_{\gamma, \delta}:=\{\langle\xi, \eta\rangle ;\langle\xi, \eta\rangle \prec\langle\gamma, \delta\rangle\},
$$

and then $\beta(\gamma, \delta):=$ o.t. $\left(\left\langle O_{\gamma, \delta}, \prec\right\rangle\right)$.
Prove that the ordinal operation $\alpha \mapsto \beta(\alpha, 0)$ is normal (i.e., for all $\gamma<\delta$, we have $\beta(\gamma, 0)<$ $\beta(\delta, 0)$ and for limit λ, we have $\beta(\lambda, 0)=\bigcup_{\alpha<\lambda} \beta(\alpha, 0)$) (2 points). Therefore, this operation has arbitrarily large fixed points. Note that in class, we proved (without using that the operation is normal that all infinite cardinals are fixed points of the operation $\alpha \mapsto \beta(\alpha, 0)$.
Is $\omega \cdot 2$ a fixed point of $\alpha \mapsto \beta(\alpha, 0)$ (prove your claim, 2 points)? Are there fixed points of the operation that are not infinite cardinals (prove your claim, 2 points)? Compute $\beta(\omega+2, \omega+1)$ (1 point).

