

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

## Axiomatische Verzamelingentheorie 2005/2006; 2nd Semester

dr Benedikt Löwe

Homework Set # 12

Deadline: May 11th, 2006

Exercise 31 (total of seven points).

In this exercise, you are **not** supposed to use the result  $\kappa + \lambda = \kappa \cdot \lambda = \max(\kappa, \lambda)$  that we proved in class. Instead, you are supposed to prove the equalities between cardinals directly by giving a bijection. For example, in order to show  $\kappa \cdot \lambda = \lambda \cdot \kappa$ , you should give a bijection between  $\kappa \times \lambda$  and  $\lambda \times \kappa$ . As in Exercise 30, let Fun(X, Y) be the set of functions from X to Y.

For cardinals  $\kappa$ ,  $\lambda$  and  $\mu$ , prove:

(1)  $\kappa \cdot \lambda = \lambda \cdot \kappa$  (1 point),

- (2)  $(\kappa \cdot \lambda) \cdot \mu = \kappa \cdot (\lambda \cdot \mu)$  (2 points),
- (3)  $(\kappa + \lambda) \cdot \mu = \kappa \cdot \mu + \lambda \cdot \mu$  (2 points),
- (4)  $\operatorname{Card}(\operatorname{Fun}(\mu, \operatorname{Fun}(\lambda, \kappa))) = \operatorname{Card}(\operatorname{Fun}(\mu \times \kappa, \kappa))$  (2 points).

## Exercise 32 (total of nine points).

Let  $\kappa$  be a cardinal. We call a set  $X \kappa$ -splittable if there is a family  $\{X_{\alpha}; \alpha < \kappa\}$  such that for all  $\alpha < \kappa$ ,  $\operatorname{Card}(X_{\alpha}) \leq \kappa$ , and  $X = \bigcup_{\alpha < \kappa} X_{\alpha}$ .

- (1) Prove that every nonempty set X is Card(X)-splittable (1 point).
- (2) Use the axiom of choice to prove that no cardinal  $\kappa > \aleph_0$  is  $\aleph_0$ -splittable (2 points).
- (3) Without using the axiom of choice (!), prove that no cardinal  $\kappa > \aleph_1$  is  $\aleph_0$ -splittable (6 points).

**Hint.** If  $X \subseteq \kappa$  is countable, then o.t. $(X) < \omega_1$ . Use a family witnessing that  $\kappa$  is  $\aleph_0$ -splittable to define an injection from  $\kappa$  into  $\aleph_1 \times \aleph_0$ . Derive a contradiction.

## Exercise 33 (total of seven points).

Recall the definition of the Gödel  $\beta$ -function: If  $\gamma, \delta, \gamma', \delta'$  are ordinals with  $\mu := \max(\gamma, \delta)$ and  $\mu' := \max(\gamma', \delta')$ , we let

$$\langle \gamma, \delta \rangle \prec \langle \gamma', \delta' \rangle \iff (\mu < \mu') \lor (\mu = \mu' \& \gamma < \gamma') \lor (\mu = \mu' \& \gamma = \gamma' \& \delta < \delta').$$

As proved in the lecture,  $\prec$  is a wellordering on any set of pairs of ordinals. For fixed  $\langle \gamma, \delta \rangle$ , we let

$$O_{\gamma,\delta} := \{ \langle \xi, \eta \rangle ; \langle \xi, \eta \rangle \prec \langle \gamma, \delta \rangle \},\$$

and then  $\beta(\gamma, \delta) := \text{o.t.}(\langle O_{\gamma, \delta}, \prec \rangle).$ 

Prove that the ordinal operation  $\alpha \mapsto \beta(\alpha, 0)$  is normal (*i.e.*, for all  $\gamma < \delta$ , we have  $\beta(\gamma, 0) < \beta(\delta, 0)$  and for limit  $\lambda$ , we have  $\beta(\lambda, 0) = \bigcup_{\alpha < \lambda} \beta(\alpha, 0)$ ) (2 points). Therefore, this operation has arbitrarily large fixed points. Note that in class, we proved (without using that the operation is normal that all infinite cardinals are fixed points of the operation  $\alpha \mapsto \beta(\alpha, 0)$ .

Is  $\omega \cdot 2$  a fixed point of  $\alpha \mapsto \beta(\alpha, 0)$  (prove your claim, 2 points)? Are there fixed points of the operation that are not infinite cardinals (prove your claim, 2 points)? Compute  $\beta(\omega+2, \omega+1)$  (1 point).