

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Axiomatische Verzamelingentheorie 2005/2006; 2nd Semester

dr Benedikt Löwe

Homework Set # 11

Deadline: May 4th, 2006

Exercise 29 (total of nine points).

Define a multiplication \otimes on tosets as follows: Let $\mathbf{X} = \langle X, \leq_X \rangle$ and $\mathbf{Y} = \langle Y, \leq_Y \rangle$ be tosets. Then $\mathbf{X} \otimes \mathbf{Y}$ is defined as $\langle X \times Y, \leq_{\text{Hlex}} \rangle$ where

 $\langle x, y \rangle \leq_{\text{Hlex}} \langle x', y' \rangle \iff y \leq_Y y' \lor (y = y' \land x \leq_X x').$

Why is this called the "Hebrew lexicographic ordering" (1 point)? Let \times be the product of tosets with the ordinary lexicographic ordering. Give an example of tosets **X** and **Y** such that **X** \otimes **Y** is not orderisomorphic to **X** \times **Y** (3 points). Prove that for ordinals α and β , we have that $\alpha \cdot \beta = \text{o.t.}(\alpha \otimes \beta)$ (5 points).

Exercise 30 (total of ten points).

Let $\operatorname{Fun}(X, Y)$ be the set of functions from X to Y. Show that if there is an injection from Y to Y^{*}, then there is an injection from $\operatorname{Fun}(X, Y)$ to $\operatorname{Fun}(X, Y^*)$ (2 points). Show that if there is an injection from X to X^{*}, then there is an injection from $\operatorname{Fun}(X, Y)$ to $\operatorname{Fun}(X, Y)$ (2 points).

Use the Axiom of Choice to prove that there is an injection from ω_1 into Fun $(\omega, 2)$ (2 points). Use this to prove that there is a bijection between Fun (ω, ω_1) and Fun $(\omega, 2)$ (4 points).