

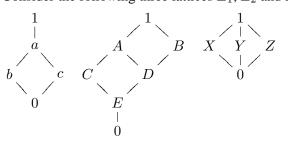
UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

> Core Logic 2004/2005; 1st Semester dr Benedikt Löwe

Homework Set # 11

Deadline: December 1st, 2004

Exercise 34 (11 points total). Consider the following three lattices L_1 , L_2 and L_3 :



For each of them define a (partial) unary function -by "-x is the greatest element y such that $x \wedge y = 0$ if this exists and is undefined otherwise". Determine -x for all 17 elements in the three lattices (¹/₄ point each). Determine whether - is a total function on the three lattices (¹/₄ point each). Does one the lattices satisfy -x = x (give an argument; 3 points)? Does one of the lattices satisfy --x = -x (give an argument; 3 points)?

Exercise 35 (8 points total).

Let $\mathbf{P} := \langle P, \leq \rangle$ be a **partial preorder** (*i.e.*, \leq is a reflexive and transitive relation). For $x, y \in P$, define $x \equiv y$ by $x \leq y \& y \leq x$. Show that \equiv is an equivalence relation (3 points). Let $D := P/\equiv$ be the set of \equiv -equivalence classes. For $\mathbf{d}, \mathbf{e} \in D$, define $\mathbf{d} \leq \mathbf{e}$ if and only if there are $x \in \mathbf{d}$ and $y \in \mathbf{e}$ such that $x \leq y$. Show that this is well-defined (2 points) and that $\langle D, \leq \rangle$ is a partial order (3 points).

Exercise 36 (6 points total).

Find out (and give an argument) whether the following clauses are satisfiable (2 points each):

(1)
$$(a \lor x \lor \neg p) \land (p \lor a \lor \neg x) \land (x \lor \neg x \lor a)$$

(2)
$$(y \lor X) \land (\neg X \lor \neg y) \land (y \lor \neg X)$$

 $(3) (\alpha \lor \beta \lor \gamma) \land (\neg \gamma \lor \neg \beta \lor \neg \alpha) \land (\neg \gamma \lor \alpha \lor \beta)$