

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

# Advanced Topics in Set Theory 2004/2005; 1st Semester

dr Benedikt Löwe

Deadline: December 2nd, 2004

## Homework Set # 9

Exercise A (Ulam).

Work in ZFC. A cardinal is **measurable** if it carries a  $\kappa$ -complete nonprincipal ultrafilter. Show that every measurable cardinal is strongly inaccessible, *i.e.*, it is regular and a strong limit cardinal. **Hint.** Assume for some  $\lambda < \kappa$  that  $2^{\lambda} \ge \kappa$ . By AC, find a subset  $S \subseteq \{f : f : \lambda \to 2\}$  of cardinality  $\kappa$ . Take an arbitrary  $\kappa$ -complete ultrafilter on S and show that it is principal.

### Exercise B.

If  $\{X_{\alpha}; \alpha < \kappa\}$  is a family of subsets of  $\kappa$ , we defined the **diagonal intersection** as follows:

$$\Delta X_{\alpha} := \{ \xi \in \kappa \, ; \, \xi \in \bigcap_{\alpha < \xi} X_{\alpha} \}.$$

Prove that the diagonal intersection of closed unbounded sets is closed unbounded in  $\kappa$ .

### Exercise C.

Work in ZFC. Find a subset of  $\aleph_1$  such that neither A nor  $\aleph_1 \setminus A$  is closed unbounded in  $\aleph_1$ . Deduce that  $\mathcal{C}_{\aleph_1}$  is not an ultrafilter.

#### Exercise D (Kleinberg).

For  $\lambda < \kappa$  regular, let  $C_{\kappa}^{\lambda}$  be the filter generated by

 $\{C \cap \operatorname{Cof}(\lambda); C \text{ is club in } \kappa\}.$ 

Work in ZF without the Axiom of Choice. Suppose that

- for all regular  $\lambda < \kappa$ ,  $C_{\kappa}^{\lambda}$  is an ultrafilter, and
- the set of regular cardinals below  $\kappa$  is not stationary in  $\kappa$ .

Let  $\mathcal{U}$  be an ultrafilter containing  $\mathcal{C}_{\kappa}$  which is closed under taking diagonal intersections. Prove that there is some regular  $\lambda < \kappa$  such that  $\mathcal{U} = \mathcal{C}_{\kappa}^{\lambda}$ .

http://staff.science.uva.nl/~bloewe/2004-I-AST.html