

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Axiomatic Set Theory

(Axiomatische Verzamelingentheorie)

2003/2004; 2nd Trimester dr Benedikt Löwe

Homework Set #9

Deadline: Thursday, March 18th, 2004

Exercise 9.1 (Trees).

As defined in the lecture course, we say that $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is a **tree** if it is closed under initial segments, *i.e.*, if $s \in T$ and $n \in \omega$, then $s \upharpoonright n \in T$. Let T be an arbitrary subset of $\mathbb{N}^{<\mathbb{N}}$; then we can define a binary relation E on T by

$$s E_T t \iff \exists m (t = s^{\wedge} \langle m \rangle).$$

With this relation, $\langle T, E_T \rangle$ forms a directed graph.

- (1) Show that T is a tree if and only if $\langle T, E_T \rangle$ is connected, acyclic, and contains \emptyset .
- (2) Call a graph $\langle G, E \rangle$ countably branching if for each $v \in G$, the set $\{w; v E w\}$ is countable. Show (using AC) that for each connected, acyclic, countably branching graph G there is a tree T such that $\langle G, E \rangle$ is isomorphic to $\langle T, E_T \rangle$.

Note. Before starting, fix the notion of "isomorphic" that you want to use in this exercise.

- (3) Let $s \in \mathbb{N}^{<\mathbb{N}}$ and $T_s := \{t; s \subseteq t \lor t \subseteq s\}$. Show that $[T_s] = [s]$.
- (4) Let $x \in \mathbb{N}^{\mathbb{N}}$ and $T_x := \{x \upharpoonright n ; n \in \mathbb{N}\}$. Show that $[T_x] = \{x\}$.

Exercise 9.2 (Countable ordinals and the reals)

If $x, y \in \mathbb{N}^{\mathbb{N}}$ and $x \neq y$, let $n_{x,y}$ be the least n such that $x(n) \neq y(n)$. Define the following relation < on $\mathbb{N}^{\mathbb{N}}$ (this is the lexicographic ordering):

$$x < y : \iff x \neq y \& x(n_{x,y}) < y(n_{x,y}).$$

Show that < is a strict linear ordering.

Prove that for an ordinal α the following are equivalent:

- (i) The ordinal α is countable, *i.e.*, $\alpha < \aleph_1$, and
- (ii) there is an order-preserving injection $f : \langle \alpha, \in \rangle \to \langle \mathbb{N}^{\mathbb{N}}, < \rangle$.

(In other words: The countable ordinals are exactly those that are homeomorphic to a set of reals. Why is this statement a reformulation of the above equivalence?)

http://staff.science.uva.nl/~bloewe/2003-II-ST.html