

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Axiomatic Set Theory (Axiomatische Verzamelingentheorie)

2003/2004; 2nd Trimester dr Benedikt Löwe

Homework Set # 12

Exercise 12.1 (Normal Measures)

Recall that we call an ultrafilter U on κ a **normal measure** if for every $X \in U$ and every regressive function $f: X \to \kappa$ there is a $Y \in U$ such that f is constant on Y. Show that an ultrafilter is a normal measure if and only if it is closed under diagonal intersections.

Exercise 12.2 (Consistency strength of some large cardinal axioms)

Let (M) be the statement "there is a measurable cardinal", let (M + I) be the statement "there is a measurable cardinal κ and an inaccessible cardinal $\lambda > \kappa$ ", and let (2M) be the statement "there are two different measurable cardinals".

Prove that

- (1) ZFC + (M + I) proves the consistency of ZFC + (M), *i.e.*, "there is a set X such that $X \models ZFC + (M)$ ".
- (2) ZFC + (2M) proves the consistency of ZFC + (M + I).

Hint. The proofs are very similar to the proof of Theorem 12.12 in Jech's book: cut off the universe at the right point (*i.e.*, take V_{α} for the proper choice of α) and prove that the remaining rest is the object you want. For the second claim, think of Lemma 10.21 in Jech.

http://staff.science.uva.nl/~bloewe/2003-II-ST.html