

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Advanced Topics in Set Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 5.

Deadline: November 18th, 2003

Exercise 18 (Perfect sets and perfect trees).

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$. Show that the following are equivalent:

- (1) A is perfect, and
- (2) there is a perfect, pruned tree T such that A = [T].

Exercise 19 (The cardinality of the set of perfect trees).

Let $x \in \mathbb{N}^{\mathbb{N}}$ be fixed and $S \subseteq \mathbb{N}$. Let

$$P_S := \{t \, ; \, t \upharpoonright \mathbb{N} \backslash S = x \upharpoonright \mathbb{N} \backslash S \}.$$

Show:

- (1) If S is infinite, then P_S is a perfect tree.
- (2) If $S \neq S^*$, then $[P_S] \neq [P_{S^*}]$.

Exercise 20 ("All sets are Borel").

Assume that $\mathbb{N}^{\mathbb{N}}$ is the countable union of countable sets.

Show that every set of reals is Δ_4^0 . Why is this not in conflict with the construction of a Π_4^0 -universal set?

Remark. Note that "For every countable family $\langle X_i; i \in \mathbb{N} \rangle$ of countable sets there is a family $\langle x_{ij}; i, j \in \mathbb{N} \rangle$ listing all elements of $\bigcup_{i \in I} X_i$ " is a particular instance of the Axiom of Choice. If the reals are a countable union of countable sets, this statement must be false. (Thus, our assumption is a very blatant violation of the Axiom of Choice – be extremely careful to avoid any use of the Axiom of Choice in this exercise.)

It is a result of Feferman and Lévy that " $\mathbb{N}^{\mathbb{N}}$ is the countable union of countable sets" is consistent with ZF.