

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Advanced Topics in Set Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 2.

Deadline: September 30th, 2003

Exercise 4 (Normal ultrafilters)

Let κ be a measurable cardinal and U a κ -complete ultrafilter on κ . Show that U is normal if and only if κ is represented by the identity function in the ultrapower $\text{Ult}(\mathbf{V}, U)$.

Exercise 5 (Reflection at measurables)

Let κ be a measurable cardinal and Φ a first-order sentence in the language of set theory. Show the following **Reflection Theorem**: If $\kappa \models \Phi$, then there is a set $A \subseteq \kappa$ of cardinality κ such that for all $\alpha \in A$, we have $\alpha \models \Phi$.

Extend the **Reflection Theorem** to second-order sentences: formulate and prove it. **Hint.** Keep in mind that $\mathbf{V}_{\kappa+1} \subseteq \text{Ult}(\mathbf{V}, U)$ for the normal ultrafilter U witnessing measurability.

Exercise 6 (Strong cardinals)

Let $j : \mathbf{V} \to M$ be a nontrivial elementary embedding with $\operatorname{crit}(j) = \kappa$ and $\mathbf{V}_{\kappa+2} \subseteq M$. Show that κ cannot be the least measurable cardinal. **Remark.** Such a κ is called a $\kappa + 2$ -strong cardinal.

Exercise 7 (Inaccessible cardinals and L)

Assume $\mathbf{V}=\mathbf{L} + (\mathsf{IC})$ and let κ be inaccessible. Show that $\mathbf{L}_{\kappa} = \mathbf{V}_{\kappa}$. Use this to get a countable ordinal α such that $\mathbf{L}_{\alpha} \models \mathsf{ZFC}$.

Hint. Familiarize yourself with the *Skolem Hull Argument* and Theorem 0.5. Use Gödel's Condensation Lemma.

Exercise 8 (Relative constructibility)

Let x be a real number (pick your favourite set-theoretic concept of "real number": Dedekind cuts, Cauchy sequences, subsets of ω , *etc.*). Show that $\mathbf{L}(x) = \mathbf{L}[x]$. Furthermore, argue why this result doesn't depend on the choice of the concept of "real number" you chose.

 $\tt http://staff.science.uva.nl/{\sim}bloewe/2003-I-AST.html$