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Abstract
This paper verifies a conjecture posed in a pair of papers on the fixed point sets
for a class of quantum operations. Specifically, it is proved that if a quantum
operation has mutually commuting operation elements that are effects forming
a resolution of the identity, then the fixed point set of the quantum operation is
exactly the commutant of the operation elements.
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Mathematics Subject Classification: 46L07, 47L90, 81R10

1. Introduction

Let H be a complex Hilbert space, B(H) be the bounded linear operator set on H. If A ∈ B(H)

and 0 � A � I , then A is called a quantum effect on H. Each quantum effect can be used to
represent a yes–no measurement that may be unsharp [1–6]. The set of all quantum effects
on H is denoted by E(H); the set of all orthogonal projection operators on H is denoted by
P(H). Each element P of P(H) can be used to represent a yes–no measurement that is sharp
[1–6]. Let T (H) be the set of all trace class operators on H and D(H) be the set of all density
operators on H, i.e. D(H) = {ρ : ρ ∈ T (H), ρ � 0, tr(S) = 1}. Each element ρ of D(H)

represents a state of the quantum system H.
Let A = {Ei}ni=1 ⊆ E(H) be the quantum measurement, that is

∑n
i=1 E2

i = I in the
strong operator topology, where 1 � n � ∞, then the probability of outcome Ei measured
in the state ρ is given by tr(ρEi), and the new quantum state after the measurement A is
performed is defined by

�(ρ) =
n∑

i=1

EiρEi.

Note that � : ρ → ∑n
i=1 EiρEi defined a transformation on the state set D(H); we call it

the Lüders transformation [6, 7]. In physics, the question whether a state ρ is not disturbed
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by the measurement A = {Ei}ni=1 becomes equivalent to the fact that ρ is a solution of the
equation

�(ρ) =
n∑

i=1

EiρEi = ρ.

It was showed in [8] that the measurement A = {Ei}2
i=1 does not disturb ρ if and only if ρ

commutes with each Ei, i = 1, 2.
Moreover, if we define the Lüders quantum operation �A on B(H) as

�A : B(H) → B(H), B → �A(B) =
n∑

i=1

EiBEi,

then an interesting problem is that if B ∈ B(H) is a fixed point of �A, that is, �A(B) =∑n
i=1 EiBEi = B, then B commutes with each Ei ? i = 1, 2, . . . , n.

In [9, 10], we knew the conclusion is true if H is a finite-dimensional complex Hilbert
space. In [9–11], it was showed that the conclusion is not true when n = 5 or n = 3
for infinite-dimensional complex Hilbert space. Thus, the general conclusion for infinite-
dimensional cases is false. On the other hand, Busch and Singh in [8] showed that for n = 2
the conclusion is true for all complex Hilbert spaces. Note that in this case, E2

1 + E2
2 = I , so

E1E2 = E2E1, that is, A = {E1, E2} is commutative. This motivated Arias, Gheonda, Gudder
and Nagy to conjecture when A = {Ei}ni=1 ⊆ E(H) is commutative, then the conclusion is
true, that is, the fixed point set of �A is exactly the commutant A′ of the operation elements
A = {Ei}ni=1. Moreover, Nagy in [12] showed that if the conjecture is true, then

�A(E) =
n∑

i=1

EiEEi = I − E

has the unique solution 1
2I in E(H); in physics, it showed that if the measurement A disturbs

the quantum effect E completely into its supplement I−E, then E has to be 1
2I .

As showed in [13–16], the structures of fixed point sets of quantum operations have
important applications in quantum information theory; in particular, in [15, theorem 3], the
fixed point set is a matrix algebra which shares an elegant structure, played a central role in
identifying the protected structures.

In this paper, by using the spectral theory of self-adjoint operators, we prove the conjecture
affirmatively. Moreover, when A = {Ei}ni=1 ⊆ E(H) is commutative and F = ∑n

i=1 E2
i < I ,

we also obtain a nice conclusion. Note that the von Neumann algebra N generated by
{Ei}i=1,...,n is Abelian which can be embed into a maximal Abelian von Neumann algebra.
Since a maximal Abelian von Neumann algebra M on a separable Hilbert space is always
a direct sum of M1 and M2. Here M1 is isometric to

⊕∞
i=1 Ci and M2 is isometric to

L∞(B), where B is a compact subset of the real number set R. Thus, A′ has the form⊕∞
i=1 Mk ⊗ 1nk

⊕
L∞(C), where C is a subset of B and Mk is a matrix algebra whose

dimension is k and nk ranges from 0 to ∞ [17]. So our conclusions are analogous with the
finite-dimensional cases’ concise shape in theorem 3 in [15].

2. Element lemmas and proofs

Let 1 � n < ∞ and A = {Ei}ni=1 ⊆ E(H) be commutative. Firstly, for each Ei, 1 � i � n,
we have the spectral representation theorem

Ei =
∫ 1

0
λ dF

(i)
λ ,

2
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where
{
F

(i)
λ

}
λ∈R

is the identity resolution of Ei satisfying that
{
F

(i)
λ

}
λ∈R

is right continuous in

the strong operator topology and F
(i)
λ = 0 if λ < 0 and F

(i)
λ = I if λ � ‖Ei‖, moreover, for

each λ ∈ R, F
(i)
λ = P Ei (−∞, λ], where P Ei is the spectral measure of Ei [17]. Now, for the

fixed integers m, k1, k2, . . . , kn, we denote

Fm
k1,...,kn

= P E1

(
k1

m
,
k1 + 1

m

]
. . . P En

(
kn

m
,
kn + 1

m

]
.

Since Ei and Ej are commutative for any i, j = 1, 2, . . . , n, so Fm
k1,...,kn

is a well-defined
orthogonal projection operator.

Lemma 2.1. Let 1 � n < ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and B ∈ B(H). If for
any integers m and k1, k2, . . . , kn, B commutes with Fm

k1,...,kn
, then B is commutative with each

Ei in A = {Ei}ni=1.

Proof. For each rational number q = p

l
, where p, l are integers. If p

l
< 0, then

F
(i)
p

l

= 0, and if p

l
� 1, then F

(i)
p

l

= I . Let l > p � 0, so 0 � p

l
< 1. Then F

(i)
p

l

=
P Ei

(−1
l

, 0
]

+ P Ei
(
0, 1

l

]
+ · · · + P Ei

(
p−1

l
,

p

l

]
; thus, we can prove easily that

F
(i)
p

l

=
∑
ki<p

( ∑
k1,...,ki−1,ki ,ki+1,...,kn

F l
k1,...,kn

)
.

So, for each rational number q = p

l
, F

(i)
p

l

commutes with B; note that {F (i)}λ∈R is right

continuous in the strong operator topology, so B commutes with each Ei, i = 1, 2, . . . , n. �

Lemma 2.2. Let 1 � n < ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and B ∈ B(H). If B does
not commute with some Ei0 in A, then there are integers m, k1, k2, . . . , kn and k′

1, k
′
2, . . . , k

′
n,

such that ki 	= k′
i for at least one i and Fm

k1,k2,...,kn
BFm

k′
1,k

′
2,...,k

′
n
	= 0.

Proof. Without loss of generality, we suppose that B does not commute with E1. By lemma
2.1, there are integers m and k1, k2, . . . , kn such that Fm

k1,k2,...,kn
B 	= Fm

k1,k2,...,kn
BFm

k1,k2,...,kn
or

BFm
k1,k2,...,kn

	= Fm
k1,k2,...,kn

BFm
k1,k2,...,kn

. If Fm
k1,k2,...,kn

B 	= Fm
k1,k2,...,kn

BFm
k1,k2,...,kn

, then there exist
integers k′

1, k
′
2, . . . , k

′
n, ki 	= k′

i for at least one i such that Fm
k1,k2,...,kn

BFm
k′

1,k
′
2,...,k

′
n

	= 0. In fact,
if not, we will get that

Fm
k1,k2,...,kn

B =
∑

k′
1,k

′
2,...,k

′
n

Fm
k1,k2,...,kn

BFm
k′

1,k
′
2,...,k

′
n
= Fm

k1,k2,...,kn
BFm

k1,k2,...,kn
.

This is a contradiction. Similarly, if BFm
k1,k2,...,kn

	= Fm
k1,k2,...,kn

BFm
k1,k2,...,kn

, we will also get the
same conclusion. The lemma is proven. �

Moreover, we have a stronger conclusion in the following.

Lemma 2.3. Let A ∈ E(H) and B ∈ B(H). If B does not commute with A, then there exist
integers m, k and j with |k − j | � 2 such that

P A

(
k

m
,
k + 1

m

]
BP A

(
j

m
,
j + 1

m

]
	= 0.

Proof. By lemma 2.2, we can find k1 	= j1 such that C = P A
(

k1
m

, k1+1
m

]
BP A

(
j1

m
,

j1+1
m

] 	= 0.
If |k1 − j1| � 2, then we get the m, k, j satisfy the lemma. If j1 = k1 + 1, we replace m by

3
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2m and let k2 = 2k1, j2 = 2j1. Then

P A

(
k1

m
,
k1 + 1

m

]
= P A

(
k2

2m
,
k2 + 1

2m

]
+ P A

(
k2 + 1

2m
,
k2 + 2

2m

]
,

P A

(
j1

m
,
j1 + 1

m

]
= P A

(
j2

2m
,
j2 + 1

2m

]
+ P A

(
j2 + 1

2m
,
j2 + 2

2m

]
.

Now we consider k2, k2 + 1 and j2, j2 + 1, if we still cannot take |k − j | � 2 satisfy the
conclusion, then

P A

(
k2

2m
,
k2 + 1

2m

]
BP A

(
j2

2m
,
j2 + 1

2m

]
= 0,

P A

(
k2

2m
,
k2 + 1

2m

]
BP A

(
j2 + 1

2m
,
j2 + 2

2m

]
= 0,

P A
(k2 + 1

2m
,
k2 + 2

2m

]
BP A

(
j2 + 1

2m
,
j2 + 2

2m

]
= 0.

So we have C = P A
(

k2+1
2m

, k2+2
2m

]
BP A

(
j2

2m
,

j2+1
2m

]
.

Following this, we find the integers k, j which satisfy the conclusion or we get a sequence
{pi, pi + 1, 2i−1m}∞i=1 such that pi + 1 = 2i−1j1 and C = P A

(
pi

2i−1m
,

pi+1
2i−1m

]
BP A

(
pi+1

2i−1m
,

pi+2
2i−1m

]
.

If the first case occurs, then we proved the lemma. If the second case occurs, note that
∞⋂
i=1

(
pi + 1

2i−1m
,
pi + 2

2i−1m

]
= ∅,

and
∞⋂
i=1

(
pi

2i−1m
,
pi + 1

2i−1m

]
=

{
j1

m

}
,

so limi→∞ P A
(

pi

2i−1m
,

pi+1
2i−1m

] = P A
{

j1

m

}
and limi→∞ P A

(
pi+1

2i−1m
,

pi+2
2i−1m

] = 0 in strong operator
topology; thus,

lim
i→∞

P A

(
pi

2i−1m
,
pi + 1

2i−1m

]
BP A

(
pi + 1

2i−1m
,
pi + 2

2i−1m

]
= 0

in strong operator topology [17]. But for each positive integer i,

C = P A

(
pi

2i−1m
,
pi + 1

2i−1m

]
BP A

(
pi + 1

2i−1m
,
pi + 2

2i−1m

]
,

so we get C = 0; this is a contradiction, and the lemma is proved in this case.
If k1 + 1 = j1, we just need to take all the above calculations in adjoint and interchange

the indices j and k. The proof is similar; thus, we proved the lemma. �

Lemma 2.4. Let 1 � n < ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and
∑n

i=1 E2
i � I . If

X ∈ B(H) is not commutative with E1, then there exists a positive integer m such that for each
positive integer p, there exist projection operators P,Q ∈ A′, PQ = 0, Y = PXQ 	= 0, and

‖Y‖ − ‖�A(Y )‖
‖Y‖ � p2 − 4

√
nmp − 2n

2(pm)2
.

Proof. Since X does not commute with E1, it follows from lemma 2.3 that there exist integers
m, k, andj such that |k − j | � 2 and P E1

(
k
m

, k+1
m

]
XP E1

(
j

m
,

j+1
m

] 	= 0. Note that

P E1

(
k

m
,
k + 1

m

]
XP E1

(
j

m
,
j + 1

m

]
=

∑
k2,...,kn

∑
k′

2,...,k
′
n

Fm
k,k2,...,kn

XFm
j,k′

2...,k
′
n
,

4
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so there exist k, k2, . . . , kn and j, k′
2, . . . , k

′
n such that |k − j | � 2 and

Fm
k,k2,...,kn

XFm
j,k′

2,...,k
′
n
	= 0.

Let P0 = Fm
k,k2,...,kn

, Q0 = Fm
j,k′

2,...,k
′
n
, Y0 = P0XQ0. Then P0 and Q0 are projection operators

and P0,Q0 ∈ A′, P0Q0 = 0, Y0 = P0XQ0 	= 0. Moreover, for each i = 1, 2, . . . , n, if we
denote k1 = k, k′

1 = j , then

‖EiY0Ei‖ =
∥∥∥∥EiP

Ei

(
ki

m
,
ki + 1

m

]
Y0P

Ei

(
k′
i

m
,
k′
i + 1

m

]
Ei

∥∥∥∥
�

∥∥∥∥EiP
Ei

(
ki

m
,
ki + 1

m

]∥∥∥∥‖Y0‖
∥∥∥∥P Ei

(
k′
i

m
,
k′
i + 1

m

]
Ei

∥∥∥∥
� ki + 1

m
‖Y0‖k′

i + 1

m

= ki + 1

m

k′
i + 1

m
‖Y0‖. (1)

Thus, we have ∥∥∥∥∥
n∑

i=1

EiY0Ei

∥∥∥∥∥ �
n∑

i=1

‖EiY0Ei‖ �
(

n∑
i=1

kik
′
i

m2
+

n∑
i=1

ki + k′
i

m2
+

n

m2

)
‖Y0‖. (2)

Since
∑n

i=1 E2
i � I and

Fm
k,k2,...,kn

(
I −

n∑
i=1

E2
i

)
= Fm

k,k2,...,kn
− Fm

k,k2,...,kn

n∑
i=1

E2
i

� Fm
k,k2,...,kn

−
n∑

i=1

k2
i

m2
Fm

k,k2,...,kn

=
(

1 −
n∑

i=1

k2
i

m2

)
Fm

k,k2,...,kn
, (3)

so, we have
∑n

i=1 k2
i � m2. Similarly, we have also

∑n
i=1 k′2

i � m2. Moreover, note that

2m2

(
1 −

n∑
i=1

kik
′
i

m2
−

n∑
i=1

ki + k′
i

m2
− n

m2

)
= m2 + m2 − 2

n∑
i=1

kik
′
i − 2

n∑
i=1

(ki + k′
i ) − 2n

�
n∑

i=1

k2
i +

n∑
i=1

k′2
i − 2

n∑
i=1

kik
′
i − 2

n∑
i=1

(ki + k′
i ) − 2n

=
n∑

i=1

(ki − k′
i )

2 − 2
n∑

i=1

(ki + k′
i ) − 2n

� (k1 − k′
1)

2 − 2
n∑

i=1

(ki + k′
i ) − 2n, (4)

and
(∑n

i=1 ki

)2 � n
( ∑n

i=1 k2
i

)
� nm2,

( ∑n
i=1 k′

i

)2 � n
( ∑n

i=1 k′2
i

)
� nm2, we have

2m2

(
1 −

n∑
i=1

kik
′
i

m2
−

n∑
i=1

ki + k′
i

m2
− n

m2

)
� (j − k)2 − 4

√
nm − 2n. (5)

5
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On the other hand, it follows from

‖Y0‖ −
∥∥∥∥∥

n∑
i=1

EiY0Ei

∥∥∥∥∥ � ‖Y0‖ −
n∑

i=1

‖EiY0Ei‖

�
[

1 −
(

n∑
i=1

kik
′
i

m2
+

n∑
i=1

ki + k′
i

m2
+

n

m2

)]
‖Y0‖

and (5) that

‖Y0‖ − ‖�A(Y0)‖
‖Y0‖ � (j − k)2 − 4

√
nm − 2n

2m2
.

For each positive integer p, we replace m with pm. Note that

Y0 =
∑

s1,s2,...,sn

∑
s ′

1,s
′
2,...,s

′
n

F pm
s1,s2,...,sn

Y0F
mp

s ′
1,s

′
2...,s

′
n
	= 0,

so there exist s1, s2, . . . , sn and s ′
1, s

′
2, . . . , s

′
n such that

Y = Fpm
s1,...,sn

Y0F
pm

s ′
1,...,s

′
n
	= 0.

Thus, it is easily to prove that ki

m
� si

pm
� ki+1

m
and k′

i

m
� s ′

i

pm
� k′

i+1
m

. Note that k1 = k, k′
1 = j

and
∣∣ j−k

m

∣∣ � 2
m

, we have∥∥∥∥ s1 − s ′
1

pm

∥∥∥∥ �
∥∥∥∥k1 + 1 − k′

1

m

∥∥∥∥ � 1/m;
thus

‖s1 − s ′
1‖ � p.

By the similar analysis methods as (5), we get

2(pm)2

(
1 −

n∑
i=1

sis
′
i

(pm)2
−

n∑
i=1

si + s ′
i

(pm)2
− n

(pm)2

)
� p2 − 4

√
nmp − 2n. (6)

On the other hand, we also have

‖Y‖ −
∥∥∥∥∥

n∑
i=1

EiYEi

∥∥∥∥∥ � ‖Y‖ −
n∑

i=1

‖EiYEi‖

�
[

1 −
(

n∑
i=1

kik
′
i

m2
+

n∑
i=1

ki + k′
i

(pm)2 +
n

(pm)2

)]
‖Y‖.

Let P = F
pm
s1,s2,...,sn

P0 and Q = Q0F
pm

s ′
1,s

′
2,...,s

′
n
. Then it is clear that P,Q ∈ A′, PQ = 0,

Y = PXQ 	= 0, and

‖Y‖ − ‖�A(Y )‖
‖Y‖ � p2 − 4

√
nm − 2n

2(pm)2 .

The lemma is proved. �

It follows from the proof of lemma 2.4 that we have the following important conclusion:

Corollary 2.1. Let 1 � n < ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and
∑n

i=1 E2
i � I . If

X ∈ B(H) and there exist integers m, k, and j with |k − j | � 2 such that

P E1

(
k

m
,
k + 1

m

]
XP E1

(
j

m
,
j + 1

m

]
	= 0,

6
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then for each positive integer p, there exist projection operators P,Q ∈ A′, PQ = 0,
Y = PXQ 	= 0, and

‖Y‖ − ‖�A(Y )‖
‖Y‖ � p2 − 4

√
nmp − 2n

2(pm)2
.

3. Main results and proofs

Let A = {Ei}ni=1 ⊆ E(H) and �A be the Lüders quantum operation which is decided by A. It
is easy to prove that ‖�A‖ = ∥∥∑n

i=1 E2
i

∥∥ [9]. Now, we denote B(H)�A to be the fixed point
set of �A and A′ to be the commutant of A, that is, B(H)�A = {B ∈ B(H) | �A(B) = B},
A′ = {B ∈ B(H) | BEi = EiB, 1 � i � n}. It is clear that if

∑n
i=1 E2

i = I in strong operator
topology, then A′ ⊆ B(H)�A .

Theorem 3.1. Let 1 � n � ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and
∑n

i=1 E2
i = I in

strong operator topology. Then

B(H)�A =
{

B ∈ B(H)|�A(B) =
n∑

i=1

EiBEi = B

}
= A′.

Proof. Since A′ ⊆ B(H)�A , in order to prove the converse containing relation, we suppose
that B ∈ B(H)�A\A′. Without loss of generality, we can suppose that B is not commutative
with E1. By lemma 2.3, there is a triple integer set {m, j, k} such that |k − j | � 2 and
P E1

(
k
m

, k+1
m

]
BP E1

(
j

m
,

j+1
m

] 	= 0.
For each positive integer q � n, let Fq = ∑q

i=1 E2
i and �q : B(H) → B(H) be defined

by �q(A) = ∑q

i=1 EiAEi . Then Fq → I in strong operator topology and �q is a completely
positive map. If Pq = P Fq

((
1 − 1

4m2 , 1
])

, then Pq → I in strong operator topology (see [[18],

P248]). Now we show that PqP
E1

(
k
m

, k+1
m

]
BP E1

(
j

m
,

j+1
m

]
Pq = 0. In fact, if not, note that

P E1

(
k

m
,
k + 1

m

]
PqP

E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
PqP

E1

(
j

m
,
j + 1

m

]

= PqP
E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
Pq 	= 0,

so, by corollary 2.1, for each positive integer p, there exist projection operators P and Q,
P,Q ∈ A′, PQ = 0, such that

Y = PPqP
E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
PqQ

= PqPP E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
QPq 	= 0

and
‖Y‖ − ‖�q(Y )‖

‖Y‖ � p2 − 4
√

qmp − 2q

2(pm)2
.

Since
p2 − 4

√
qmp − 2q

2(pm)2
→ 1

2m2

as p → ∞. So we can choose Y such that
‖Y‖ − ‖�q(Y )‖

‖Y‖ � 3

8m2
.

7
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Note that PqEi = EiPq and PqY = YPq for each 1 � i � n, A1 = {PqEi}ni=q+1 decides a
Lüders operation �A1 , and

‖�A1‖ =
∥∥∥∥∥

n∑
i=q+1

PqE
2
i Pq

∥∥∥∥∥ =
∥∥∥∥∥Pq

(
n∑

i=q+1

E2
i

)
Pq

∥∥∥∥∥ =
∥∥∥∥∥Pq

(
I −

q∑
i=1

E2
i

)
Pq

∥∥∥∥∥ � 1

4m2
,

so we have

‖�A(Y )‖ =
∥∥∥∥∥�q(Y ) +

n∑
i=q+1

EiYEi

∥∥∥∥∥
=

∥∥∥∥∥�q(Y ) +
n∑

i=q+1

EiPqYPqEi

∥∥∥∥∥
� ‖�q(Y )‖ +

∥∥∥∥∥
n∑

i=q+1

PqEiYEiPq

∥∥∥∥∥
= ‖�q(Y )‖ + ‖�A1(Y )‖
�

(
1 − 3

8m2

)
‖Y‖ +

1

4m2
‖Y‖

=
(

1 − 1

8m2

)
‖Y‖. (7)

On the other hand, we show that Y = PqPP E1
(

k
m

, k+1
m

]
BP E1

(
j

m
,

j+1
m

]
QPq ∈ B(H)�A . In

fact, note that
{
Pq, P, P E1

(
k
m

, k+1
m

]
, P E1

(
j

m
,

j+1
m

]
,Q

} ⊆ A′ and �A(B) = B, so we have

�A(Y ) =
n∑

i=1

EiYEi =
n∑

i=1

EiPqPP E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
QPqEi

= PqPP E1

(
k

m
,
k + 1

m

](
n∑

i=1

EiBEi

)
P E1

(
j

m
,
j + 1

m

]
QPq

= PqPP E1

(
k

m
,
k + 1

m

]
�A(B)P E1

(
j

m
,
j + 1

m

]
QPq

= PqPP E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
QPq = Y.

This contradicts (7) and so PqP
E1

(
k
m

, k+1
m

]
BP E1

(
j

m
,

j+1
m

]
Pq = 0. Note that

P E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
= lim

q→∞ PqP
E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
Pq

in strong operator topology [17], so

P E1

(
k

m
,
k + 1

m

]
BP E1

(
j

m
,
j + 1

m

]
= 0.

This contradicts P E1
(

k
m

, k+1
m

]
BP E1

(
j

m
,

j+1
m

] 	= 0. So B ∈ A′. �

Theorem 3.2. Let 1 � n � ∞, A = {Ei}ni=1 ⊆ E(H) be commutative and F = ∑n
i=1 E2

i < I .
If P = P F {1}, where PF is the spectral measure of F, then

B(H)�A =
{

B ∈ B(H)|�A(B) =
n∑

i=1

EiBEi = B

}
= PA′.

8
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Proof. Firstly, by the spectral representation theorem [17] we have PF = FP = P .
Let B ∈ B(H)�A . Then as the analysis of theorem 3.1, we have B ∈ A′. Let
Q = I − P and Qk = P F

(
0, 1 − 1

k

]
. Then Qk → Q in strong operator topology and

Qk ∈ A′, so QkB ∈ B(H)�A . Let �k be the completely positive map which is decided
by {EiQk}ni=1. Then ‖�k‖ � 1 − 1

k
. Note that B,Qk ∈ A′ and Q2

k = Qk; thus, we
have ‖QkB‖ = ‖�A(QkB)‖ = ‖�k(QkB)‖ �

(
1 − 1

k

)‖QkB‖, so QkB = 0. Note that
QB = limk→∞ QkB in strong operator topology, so QB = 0, that is, (I − P)B = 0, i.e.,
B = PB; this showed thatB(H)�A ⊆ PA′. If B ∈ PA′, note that P ∈ A′, so PB = BP = B.
Moreover, �A(B) = BF = PBF = BPF = BP = B, that is, B ∈ B(H)�A ; thus, we have
PA′ ⊆ B(H)�A and the theorem is proved. �

Acknowledgments

The authors wish to express their thanks to the referees for their valuable comments and
suggestions. This project is supported by Zhejiang Innovation Program for Graduates
(YK2009002) and Natural Science Foundations of China (10771191 and 10471124) and
Natural Science Foundation of Zhejiang Province of China (Y6090105).

References

[1] Foulis D J and Bennett M K 1994 Effect algebras and unsharp quantum logics Found. Phys. 24 1331–52
[2] Ludwig G 1983 Foundations of Quantum Mechanics: I and II (New York: Springer)
[3] Ludwig G 1986 An Axiomatic Basis for Quantum Mechanics: II (New York: Springer)
[4] Kraus K 1983 Effects and Operations (New York: Springer)
[5] Davies E B 1976 Quantum Theory of Open Systems (London: Academic)
[6] Busch P, Grabowski M and Lahti P J 1999 Operational Quantum Physics (Beijing: Springer, Beijing World

Publishing Corporation)
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