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In this paper, we present a new, necessary, and sufficient condition for which the
supremum A Vv B exists with respect to the logic order <. Moreover, we give out a
new and much simpler representation of Av B with respect to <. Our results have
nice physical meanings. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3204082]

I. INTRODUCTION

First some basic notations: H is a complex Hilbert space, S(H) is the set of all bounded linear
self-adjoint operators on H, S*(H) is the set of all positive operators in S(H), P(H) is the set of all
orthogonal projection operators on H, and B(R) is the set of all Borel subsets of real number set
R. Each element in P(H) is said to be a quantum event on H. Each element in S(H) is said to be
a bounded quantum observable on H. For A € S(H), let R(A) be the range of A, R(A) be the closure
of R(A), P, be the orthogonal projection on R(A), P be the spectral measure of A, null(A) be the
null space of A, and N, be the orthogonal projection on null(A).

Let A,B e S(H). If for each x € H, [Ax,x]=<[Bx,x], then we say that A= B. Equivalently,
there exists a C e S*(H) such that A+ C=B. =< is a partial order on S(H). The physical meaning of
A =B is that the expectation of A is not greater than the expectation of B for each state of the
system. So the order = is said to be a numerical order of S(H). But (S(H),=) is not a lattice.
Nevertheless, as a well known theorem attributed to Kadison, (S(H),=) is an antilattice, that is,
for any two elements A and B in S(H), the infimum AAB of A and B exists with respect to =< if
and only if A and B are comparable with respect to <!

In 2006, Gudder introduced a new order < on S(H): if there exists a C € S(H) such that AC=0
and A+ C=B, then we say that A <B’? Equivalently, A <B if and only if for each A € B(R) with
0¢ A, PA(A)=PB(A).? The physical meaning of A=<B is that for each A e B(R) with 0 & A, the
quantum event PA(A) implies the quantum event PZ(A). Thus, the order < is said to be a logic
order of S(H).> In Ref. 2, it is proven that (S(H),=<) is not a lattice since the supremum of
arbitrary A and B may not exist in general. In Ref. 3, it is proven that the infimum AAB of A and
B with respect to < always exists. In Ref. 4, the representation theorems of the infimum AAB of
A and B with respect to < were obtained. More recently, Xu er al. in Ref. 5 discussed the
existence of the supremum AvB of A and B with respect to < by the technique of the operator
block. Moreover, they gave sufficient and necessary conditions for the existence of AvB with
respect to <. Nevertheless, their conditions are difficult to check since the conditions depend on
an operator W, but W is not easy to get. Moreover, their proof is so algebraic that we cannot
understand its physical meaning.

In this paper, we present a new, necessary, and sufficient condition for which A v B exists with
respect to < in a totally different form. Furthermore, we give a new and much simpler represen-
tation of Av B with respect to <. Our results have nice physical meanings.

Lemma 1.1: (Ref. 2) Let A,B e S(H). If A<B, then A=BP,.

Lemma 1.2: (Ref. 2) If P,Q € P(H), then P=Q if and only if P<Q, and P and Q have the
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same infimum P A Q and the supremum P v Q with respect to the orders = and <. We denote them
by PAQ and PvQ, respectively.

Lemma 1.3: (Ref. 6) Let A,B € S(H). Then PA({0})=N(A4), P,=P*(R\{0}), P4+ N(A)=1I, and
P,vPp=I-N(A)AN(B).

Il. SOME ELEMENTARY LEMMAS
Let A,B € S(H) and they have the following forms:

M
A= f NdA,
-M
and
M
B= f \dB,,
-M

where {A,},.x and {B,},.r are the identity resolutions of A and B, respectively, and M
=max(||A]|,||B|)). If A has an upper bound F in S(H) with respect to <, then it follows from Lemma
1.1 that A=FP,. Note that A € S(H), so FP,=P,F and thus AF=FA. Let F have the following
form:

G
F= J \dF,,
-G

where {F\}, < is the identity resolution of F and G=max(||F||,M). Then we have

G G
A:FPAz(j )\dF)\>PA=f )\d(F)\PA).
-G -G

Lemma 2.1: Let A € S(H) and F € S(H) be an upper bound of A with respect to <. Then for
each A € B(R), we have

PE(A)P,, 0¢A,
py| P,
P(AN{0})P,+N(A), 0e€A.

Proof: We just need to check PA(A)=PF(A)P, when 0 ¢ A; the rest is trivial. Note that if we
restrict on the subspace P,(H)=R(A), since AF=FA, then {F, P4}, .y is the identity resolution of
F| pA(H).6 Let f be the characteristic function of A. Then the following equality proves the conclu-
sion:

G
PA(A)=f(A)=f(FPA)=f fNA(F\P,) = Ad(F)\PA):PF(A)PA'
-G Ne

It follows from Lemma 2.1 immediately:
Lemma 2.2: Let A,B € S(H) and F € S(H) be an upper bound of A and B with respect to <.
Then for any two Borel subsets A; and A, of R, if A;NA,=0, 0¢& A, and 0 ¢ A,, we have
PA(Al)PB(Az) = PF(AI)PAPF(AZ)PB = PAPF(AI)PF(A2)PB =0.

Lemma 2.3: Let A,B e S(H) and have the following property: For each pair A;,A, € B(R),
whenever A;NA,=0 and 0 ¢ A, and 0 ¢ A,, we have PA(A,)PB(A,)=0; then the following map-
ping E:B(R) — P(H) defines a spectral measure:

E(A) PAA) v PP(D), 0¢A,
| PAAN{0}) v PE(AN{0}) + N(A) AN(B), 0 e A.
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Proof: First, we show that for each A € B(R), E(A) e P(H). It is sufficient to check the case
of 0 € A. Since PA(A\{0}) v PE(A\{0}) = PA(R\{0}) v PB(R\{0})=P,V P, it follows from Lemma
1.3 that PA(A\{0})v PB(A\{0})+N(A) AN(B) € P(H) and the conclusion holds.

Second, we have

E0) = PA®) v PP(0)=0v0=0,

E(R) = PA(R\{0}) v PB(R\{0}) + N(A) AN(B) =P, v P+ N(A) AN(B) =1.
Third, if A;NA,=0, there are two cases:

(1) 0 does not belong to any one of A; and A,. It follows from the definition of E that
E(A)E(A)=(PYA,)v PE(A))(PA(A,) v PE(A,)). Note that PB(A;)PA(A,)=0 by the con-
ditions of the lemma and PB(A,)P?(A,)=0; we have PP(A,)(PA(A,)v PB(A,))=0; simi-
larly, we also have PA(A,)(P*(A,)v PB(A,))=0; thus,

E(AI)E(Az) = O

Furthermore, we have
E(A] U Az) :PA(AI U Az) Y PB(AI U Az) :PA(AI) \Y4 PA(Az) \Y PB(AI) \Y PB(Az)
=(PY(A) v PE(A) v (PA(Ay) v PP(A,) = (PA(A)) v PE(A))
+(PA(Ay) v PE(Ay)) =E(A) + E(A,).

That is, in this case, we proved that

E(A)E(A,) =0,

E(A;UA) =E(A) +EA,).

(ii)) O belongs to one of A; and A,. Without losing generality, we suppose that 0 € A;, since
A, NA,=0, s0 0& A,; thus we have

E(A)E(A,) = (PA(AI \{0}) v PB(AI \{0}) + N(B) A N(A))(PA(Az) Vv PB(Az))
= (PYA 0} v PP(A{OD)(PA(A) v PP(Ay)) =0,

E(A, U A,) =P A N\{0}U A,) v PE(A\ {0} U A,) + (N(B) A N(A))
= (PA(A {0} v PP(A\{0}) + (N(B) AN(A))) + (PA(A,) v PP(A,))
= (PYA N0} v PP(A {0 + (N(A) AN(B))) + (PA(Ay) v PP(A,) = E(A)
+ E(A,).

Thus, it follows from (i) and (ii) that whenever A; N A,=0, we have

E(ADE(A,) =0,

E(A,UA,) =E(A) +E(A,).
Finally, if {A,}_, is a sequence of pairwise disjoint Borel sets in B(R), then it is easy to prove that

©

E(G A) =2 E(A,).
n=1

n=1

Thus, the lemma is proved.
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lll. MAIN RESULTS AND PROOFS

Theorem 3.1: Let A,B e S(H) and have the following property: For each pair A, A,
e B(R), whenever A;NA,=0 and 0 ¢ A, and 0 ¢ A,, we have PA(A,)P5(A,)=0. Then the supre-
mum AV B of A and B exists with respect to the logic order <.

Proof: By Lemma 2.3, E(-) is a spectral measure and so it can generate a bounded quantum
observable K and K can be represented by K=/ flM)\dE)\, where {E,}=E(-,\], A e R, and M
=max(||A||||B]|). Moreover, for each A e B(R), PX(A)=E(A).° We confirm that K is the supremum
AV B of A and B with respect to <. In fact, for each A € B(R) with 0 & A, by the definition of E,
we knew that PX(A)=E(A)=P*(A)v PB(A)=PA(A) and PK(A)=E(A)=P*(A)v PE(A)= PE(A).
So it follows from the equivalent properties of < that A<K and B=<KZIf K’ is another upper
bound of A and B with respect to <, then for each A e B(R) with 0¢ A, we have PA(A)
=PK'(A) and PB(A)=PK'(A).? so PA(A)v PB(A)=E(A)=PK(A) = PK'(A); thus we have K<K’
and that K is the supremum of A and B with respect to < is proved.

It follows from Lemma 2.2 and Theorem 3.1 and their proofs that we have the following
theorem immediately.

Theorem 3.2: Let A, B € S(H). Then the supremum A v B of A and B exists with respect to the
logic order < if and only if for each pair A,,A, € B(R), whenever A;NA,=0 and 0 ¢ A; and
0 ¢ A,, we have PA(A,)PB(A2)=O. Moreover, in this case, we have the following nice represen-
tation:

M
AvB:f \dE,,

-M

where Ey=E(->,\], A € R. and M=max(||A|],||B])).

Remark 3.3: Let A,B € S(H). Note that for each A € B(R), PA(A) is interpreted as the quan-
tum event that the quantum observable A has a value in A,? and the conditions A; N A,=0, 0 & A,
and 0 ¢ A,, must have PA(A,)PB(A,)=0 told us that the quantum events PA(A,) and PP(A,)
cannot happen at the same time, so the physical meanings of the supremum AV B exists with
respect to < if and only if for each pair A;,A, € B(R), whenever A;NA,=0 and 0 ¢ A, and
0 & A,, that the quantum observable A takes value in A and the quantum observable B takes value
in A, cannot happen at the same time.
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