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In 2006, Gudder introduced a logic order on the bounded quantum observable set
S(H). In 2007, Pulmannova and Vincekova proved that for each subset D of S(H),
the infimum of D exists with respect to this logic order. In this paper, we present a
representation theorem for the infimum of D. © 2008 American Institute of
Physics. [DOIL: 10.1063/1.2963968]

Let H be a complex Hilbert space, S(H) be the set of all bounded linear self-adjoint operators
on H, S*(H) be the set of all positive operators in S(H), and P(H) be the set of all orthogonal
projection operators on H. Each element in P(H) is said to be a quantum event, and each element
in S(H) is said to be a bounded quantum observable on H. If A € S(H), R(A) is the range of A,
m is the closure of R(A), P, is the orthogonal projection on R(A), P4 is the spectral measure of
A, and null (A) is the null space of A.

Let A,B e S(H). If for each x € H, [Ax,x]<[Bx,x], then we say that A=< B. Equivalently,
there exists a C € S*(H) such that A+ C=B. =< is a partial order on S(H). The physical meaning of
A =B is that the expectation of A is not greater than the expectation of B for each state of the
system. So the order = is said to be a numerical order of S(H).

In 2006, Gudder' introduced the order < on S(H): If there exists a C € S(H) such that AC
=0 and A+C=B, then we say that A<B.

Equivalently, A<B if and only if for each Borel subset A with 0 ¢ A, we have P4(A)
=P5B(A). The physical meaning of A<B is that the quantum event P*(A) implies the quantum
event PB(A). Thus, the order < is said to be a logic order of S(H).!

Lemma 1:' If A,B e S(H), the following statements are equivalent:

(i) AB=0.

(i)  R(A)Cnull(B).
(iii)) R(B)Cnull(A).
(iv) P,Py=0.

(V) R(A) LR(B).

Lemma 2:' If A,B e S(H), the following statements are equivalent:

(i) A<B. L
(i)  Ax=Bx for each x € R(A).
(i) A=BP,.
(iv) AB=AZ.

Lemma 3:' If P,Q e P(H), then P=Q if and only if P<0Q, and P and Q have the same
infimum with respect to the orders = and <. We denote it by PAQ.
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For a given order, the infimum problem of bounded quantum observables is to find under what
condition the infimum A A B exists for the given order for A, B € S(H). Moreover, can we give the
structure of AAB?

For the numerical order = on S(H), the problem has been studied in a different content in
Refs. 2-6.

In 2007, Pulmannova and Vincekova’ proved that for each subset D of S(H), the infimum
exists with respect to the logic order <. However, their proof is abstract and there is no informa-
tion about the structure of the infimum.

In this note, moreover, we find the representation of the infimum.

By Theorem 4.5 in Ref. 7 we can prove the dual result.

Lemma 4: Let {A,},.r be a monotone decreasing net in S(H) with respect to <. Then A
=AgerA, exists in (S(H),=<) and lim A=A in the strong operator topology.

Now, we give out the representation theorem of infimum by the following construction:

(I) Consider the two positive operator case. Let A,B € S*(H). The resolutions of the identity
of A and B are {E\} .z and {F\},.x.' respectively. Let AE, ;=Ejpm—E;_1yon,AF, ;=Fyn
=F(i_1)n. Then AE, ; and AF,; are both orthogonal projection operators on H. Take positive
integer p such that ||A||<p,|B||=p. Let

2"p ; 2"p i
Anzz_AEnn Bn:E_AF"’
i1 2" =1 2
Then [|4,-Al|—0.B,~B|— 0.
Denote
271p

i
D,=> ?AE,” AAF, ;.
i=1

We claim that the strong operator topology limit of {D,} must exist and be the infimum of A
and B with respect to the order <.

In order to prove the above conclusion, at first, we show that D, is the infimum of A, and B,
with respect to <.

It follows from the definition that D, <A, and D, <B,, are clear.

If D, <A,,B,, it follows from Lemma 2 that D;,:AnPD:l:BnPD;l’ that is,

2"p 2"

. p .

l 1

D=2 i AELPD = 20 DL AF, Py
i=1 1

i=
This shows that for each positive integer i we have

AEn,iPD’ = AFVZ,Z'PD’ .
Note that

AEn,iPD’ = AEn,i’

AFn,iPD’ = AFVM"
Hence
AEn,iPD/ = AEn,i N AFn,i'

Thus we have D} <D, and so D, is the infimum of A, and B, with respect to <.
For each positive integer n, it follows from the definition of D,, that
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2"p
R(D,)=R(D,)= 2 R(AE,; A AF,)).

i=1

Moreover, we have

R(Dn+1) g R(Dn) .
Indeed,

2n+1p 2n+1p
R(D,)= >, R(AE, .\ ;NAF,,,,) = > R[(E;jpne1 = E(i_1yjne1) A (Fyanst = Fi_p)ns1) ]

i=1 i=1
2"p

= 2 {R[(Eyipm1 — Ei_yyam1) A (Fayanet = Foi_qyom1) ]
i=1

+ RU(Ei—1y2m+1 = Eizayant) A (Fiaimryont = Faizayome) 1}
2"p

C D [R(Egyynet — Ei_1yom+1) + R(Egi—1yntt = Eaizayon+1) ] A [R(Fayane1 = Fgi_1ypn+1)
i=1

+ R(Fgi_1yjm+1 = Fpi—2)n+1) ]

2”p

= 2 R(Eqjpei — Ei_p)m+1) A R(Fajanst = Fipi_0)pm+1)
i=1

2"p 2"p
= E R[(Ei/Z" - E(i—l)/Z") A R(Fi/Z" - F(i—l)/Z”)] = E R(AEn,i) A AFn,i = R(Dn)~
i=1 i=1

Now, we prove that there exists a D € S(H) such that {D,} is strong operator topology con-
vergent to D.

Let E =/\:=1PDH' Note that R(D,..;) CR(D,). So {PDn} is a monotone decreasing sequence in
P(H). So {PDH} is strong operator topology convergent to E. On the other hand, it is easy to prove
that Dn:D,,PDn. Note that D,,<A,,. It follows from Lemma 2 that DnzA,,PDn. Thus we have D,
=A,Pp =D,Pp . Let xe H. It follows from

D, AEx] = |IDx— A, Ex] + (4, — A)Ex|
= D, Pyt~ ALEx] + (A, - A)Ex]|
= [(D,Pp, — AP, x| + |4y, — B+ (4, ~ A)Ex]
= A, (Pp, ~ By + (4, — A)Ex

s

and {PDH} is strong operator topology convergent to E and {A,} is norm topology convergent to A
that

lim D, x=AEx.

That is, {D,} is strong operator topology convergent to AE. It follows from the fact that {D,} is a
bounded linear self-adjoint operator sequence that AE is also a bounded linear self-adjoint opera-
tor. So AE=FA. Similarly, we have lim D, x=BEx. We denote D=AE=BE.

Note that A=AE+A(I-E) and as A and AE are bounded linear self-adjoint operators, we have
that A(I-E) is also a bounded linear self-adjoint operator.

Moreover, note that A(I-E)AE=A(I-E)EA=0. So we have AE<A. Similarly, we have AE
<B. This shows that AE<A and AE<B.
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Now we prove that AE is the infimum of A and B with respect to <.
If C e S(H) and C<A,B, then C=AP_. So |Cll=|APd| = |Al[Pd= Al = p. Let

2y
i
C,= 2 ?AKn,iv AKn,i =Rijpon— K(i—l)/2ﬂ~
i=1
Here {K)}\ g is the resolution of the identity of C, and we have ||C,—C]||— 0.
Note that C<<A if and only if for each Borel subset A of R with 0 ¢ A, P€(A) = PB(A).' So

AKn,,:PC((i;nl f]) = PA<<Z.;"1,2%D — AE, .

Therefore, we have C,<XA,,. This shows that if C<XA, then C,<A,,. Thus we have C,<D,,. By the
definition of =<, there exists Q, € S(H) such that C,0,=0 and C,+Q,=D,. It is clear that the
strong operator topology limit of {Q,} exists. Let Q be the strong operator topology limit of {Q,}.
Then Q € S(H), CQ=0, and C+Q=D ([1,P,;5]). So C<D. Thus, we proved that D is the infi-
mum of A and B with respect to <.

The above process showed that the infimum of A and B with respect to < is

[

AE=ANPp .

n=1

Here

2"p .

D,=>, ?AE,” AAF, ;.
i=1

(I) Consider the two bounded linear self-adjoint operator case. Let A,B € S(H). Then A and
B can be decomposed uniquely into A=A,-A_,B=B,—-B_. Here A,A_=0,B,B_=0. Now, we
show that the infimum of A and B with respect to < is A,AB,—A_AB_. Here A,AB, is the
infimum of A, and B, with respect to <, and A_AB_ is the infimum of A_ and B_ with respect to

<.

In fact, let D=A,AB,—A_AB_. It follows from A,A_=0,B,B_=0 and Lemma | and the
definition of < that D<A and D<B. If C<A and C<B, C has been decomposed uniquely into
C=C,—-C_. Here C,C_=0. It follows from C <A that C=AP-=BP. On the other hand, it is easy
to prove A,P-=PA,. Note the uniqueness of decomposition of C. We have C,=P-A,. Since
A=A Pc+A,(I-Pc), AL(I-P) is also a bounded linear self-adjoint operator. It follows from
A,(I-P-)A.P:=0 that C,<A,. Similarly, we have C,<B,. Thus, C,<A,AB,. Similarly, C_
<A_AB_. By using Lemma 1 we have C<D. This showed that A, AB,—A_AB_ is the infimum
of A and B with respect to <.

Thus, we can obtain the representation of the infimum of A and B with respect to < by the
above conclusion and case (I).

(IIl) Consider any subset D of S(H) case. Let F be the all finitely nonempty subsets of D. If
F\,F, e F, we define an order < in F by F/|<F, if and only if F, C F;. Then F is a directed set
with respect to the order <. It follows from Lemma 4 that the infimum of D with respect to < is
the strong operator topology limit of {A, c pA}z . 7 It follows from case (II) that for each F € F, we
can obtain its infimum A4 oA with respect to <. Thus, we complete the structure process for the
infimum of D with respect to <.
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