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Abstract

In these lectures the untwisted affine Lie algebras will be constructed. The reader
is assumed to be familiar with the theory of semisimple Lie algebras, e.g. that he or
she knows a big part of James E. Humphreys’ Introduction to Lie algebras and repre-
sentation theory [1]. The notations used in these notes will be taken from [1]. These
lecture notes are based on the course Affine Lie Algebras given by Prof. Dr. Johan van
de Leur at the Mathematical Research Insitute in Utrecht (The Netherlands) during
the fall of 2007.

1 Semisimple Lie Algebras

1.1 Root Spaces

Recall some basic notions from [1]. Let L be a semisimple Lie algebra, H a Cartan

subalgebra (CSA), and κ(x, y) = Tr(ad (x) ad (y)) the Killing form on L. Then the Killing

form is symmetric, non-degenerate (since L is semisimple and using theorem 5.1 page 22

[1]), and associative;‡ i.e. κ : L× L→ F is bilinear on L and satisfies

κ ([x, y], z) = κ (x, [y, z]) .

The restriction of the Killing form to the CSA, denoted by κ|H (·, ·), is non-degenerate

(Corollary 8.2 page 37 [1]). This allows for the identification of H with H∗ (see [1] §8.2:

to φ ∈ H∗ there corresponds a unique element tφ ∈ H satisfying φ(h) = κ(tφ, h) for

all h ∈ H). This makes it possible to define a symmetric, non-degenerate bilinear form,

(·, ·) : H∗ ×H∗ → F, given on H∗ as

(α, β) = κ(tα, tβ) (∀ α, β ∈ H∗ ) .

Let Φ ⊂ H∗ be the root system corresponding to L and ∆ = {α1, . . . , α`} a fixed basis

of Φ (∆ is also called a simple root system). Then the set of roots Φ can be written as the

‡Instead of associative one sometimes uses the term invariant.
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disjoint union Φ = Φ+∪Φ− of positive roots Φ+, where β ∈ Φ+ implies that the expansion

coefficients of β in the ∆ basis are all non-negative integers (i.e. β =
∑
kiαi with ki ≥ 0

and αi ∈ ∆) and the set of negative roots Φ− = −Φ+. The root space decomposition of L

is given by

L = H ⊕
⊕
α∈Φ

Lα = H ⊕
⊕
α∈Φ+

(Lα ⊕ L−α)

where every root space Lα is 1-dimensional. The root space decomposition can be rear-

ranged, see appendix A, to give the triangular decomposition of the Lie algebra L

L = N− ⊕H ⊕N+,

where

N+ = N(∆) =
⊕
α∈Φ+

Lα and N− =
⊕
α∈Φ+

L−α.

It should be noted that the name triangle decomposition arises from the fact that N− is

represented by lower triangular matrices, N+ is represented by upper triangular matrices,

and H is represented by diagonal matrices.

Also one has that

[x, y] = κ(x, y)tα (1.1)

for x ∈ Lα and y ∈ L−α .

1.2 The Weyl Group

The Weyl groupW of L is the subgroup of GL(H∗) generated by all reflections of the form

σα(λ) = λ− 〈λ, α〉α (∀ α ∈ Φ, λ ∈ H∗) , (1.2)

where

〈α, β〉 = 2
(α, β)
(β, β)

.

One can show (see [1], §10.3) thatW is in fact generated by all the fundamental reflections,

ri = σαi (∀ αi ∈ ∆) .

Also, one can form a matrix, known as the Cartan matrix of Φ, whose entries are given

by (〈αi, αj〉)1≤i,j≤`.‡

‡This definition of the Cartan matrix differs from the definition given in [2]. In particular, here Kac
defines what is known as the generalized Cartan matrix. This will be defined later in the notes.
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1.3 Serre’s Theorem

Fix, for all i = 1, . . . , `, a standard set of generators xi ∈ Lαi and yi ∈ L−αi , so that

[xi, yi] = hi. Then L is generated by the elements xi, yi and hi, with 1 ≤ i ≤ `, and they

satsify the following relations:

[hi, hj ] = 0 ,

[xi, yj ] = δijhi ,

[hi, xj ] = 〈αj , αi〉xj ,

[hi, yj ] = −〈αj , αi〉yj ,

(1.3)

and the so-called Serre relations

(ad (xi))1−〈αj ,αi〉(xj) = 0 (for i 6= j) ,

(ad (yi))1−〈αj ,αi〉(yj) = 0 (for i 6= j) .
(1.4)

The converse of this statement also holds (see [1] §18.3), known as Serre’s theorem.

Theorem 1.1 (Serre). Let Φ, and ∆ be as above and let L be the Lie algebra generated

by the elements xi, yi and hi, for 1 ≤ i ≤ `, subject to the relations (1.3) and (1.4).

Then L is a finite dimensional semisimple Lie algebra with CSA spanned by {hi}`i=1 and

corresponding root system Φ.

1.4 Cartan Involution

Using this presentation, it is straightforward to define an involution† ω, called the Cartan

involution, on L that interchanges the root spaces Lα and L−α. This mapping, ω : L→ L,

is defined by

ω(xi) = −yi, ω(yi) = −xi, and ω(hi) = −hi (1.5)

A quick check shows that ω is indeed an involution. For example let x ∈ Lα, then

(ω ◦ ω)(xi) = ω (ω(xi))

= ω(−yi)

= −ω(yi)

= −(−xi)

= xi .

†An involution is a mapping such that composition with itself is the identity mapping, i.e. if f : X → X
is an involution, then (f ◦ f)(x) = x for all x ∈ X.
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1.5 Concrete Example of the Above Notions

The previously developed theory will now be applied to the simple Lie algebra of type A`.

Example 1.1 sln(C):

sln(C) is the Lie algebra of all complex n×n-matrices that have trace zero. Denote by

eij the matrix which has a 1 on the i-th row and j-th column and 0 elsewhere. As CSA take

the set of diagonal traceless matrices and define the killing form as κ(x, y) = 2nTr(xy).

The set of roots Φ consists of all εi − εj with 1 ≤ i, j ≤ n and i 6= j, where εi(ejj) = δij.

Now choose

∆ = {αi = εi − εi+1 | 1 ≤ i ≤ n− 1}.

The element tαi ∈ H is equal to 1
2n(eii − ei+1,i+1), thus

(αi, αj) =


1
n if i = j,

− 1
2n if |i− j| = 1,

0 otherwise

and

〈αi, αj〉 =


2 if i = j,

−1 if |i− j| = 1,

0 otherwise.

Hence the (n− 1)× (n− 1) Cartan matrix is given by

C =



2 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 2


The elements hi are given by eii − ei+1,i+1 and the Weyl group is the permutation group

of the elements εi, with ri the reflection that interchanges εi and εi+1.

Choose xi = ei,i+1 and yi = ei+1,i, then it is straightforward to check that the rela-

tions (1.3) and (1.4) hold. As an example, for j = i + 1, the first relation of 1.4, since

〈αi+1, αi〉 = −1, gives

(ad(xi))
2 (xj) =[xi, [xi, xi+1]]

=[ei,i+1, [ei,i+1, ei,i+2]]

=[ei,i+1, ei,i+2]

=0 .
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The root spaces are Lεi−εj = Ceij while N+ consists of all strictly upper diagonal matrices

and N− the strictly lower diagonal matrices. The Cartan involution is given by ω(X) =

−XT , where XT stands for the transpose of the matrix X.

2 Central Extensions of a Lie Algebra

Let L be a Lie algebra over the complex field. The so called 1-dimensional central exten-

sions, denoted by L̃, of the Lie algebra L over C are constructed as follows. First extend

L, while viewing it as a vector space, by one dimension

L̃ = L⊕ CK .

Then define a new bracket on L̃, which will be denoted by [·, ·]◦, in such a way that K is

a central element, i.e.

[K,x]◦ = 0, for all x ∈ L .

So, for x, y ∈ L and λ, µ ∈ C define [·, ·]◦, the Lie bracket turning L̃ into a Lie algebra, as

[x+ λK, y + µK]◦ := [x, y] + ψ(x, y)K, (2.1)

where the brackets [·, ·] appearing on the right hand side are defined on L not L̃ and

ψ : L × L → C. Since L̃ has to be a Lie algebra, one has that the new bracket [·, ·]◦ is

bilinear, anti-symmetric and must satisfy the Jacobi identity. This leads to the condition

that ψ must be a C-valued bilinear function that satisfies

ψ(y, x) = −ψ(x, y)

and

ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y) = 0 , for all x, y, and z ∈ L .

Such a C-valued bilinear function ψ is called a 2-cocycle on L. A 2-cocycle is called trivial,

or is called a 2-coboundary, if there exists a linear function f : L→ C such that

ψ(x, y) = f([x, y]) for all x, y ∈ L .

Exercise 2.1 Consider the case that L = sl2(C). Show that any cocycle ψ on sl2(C) is

trivial. This can actually be extended, in this way, to any simple finite dimensional Lie

algebra, i.e. any 2-cocycle is trivial on simple finite dimensional Lie algebras.

Exercise 2.2 Let L be a Lie algebra which possesses a symmetric invariant C-valued
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bilinear form (·, ·). Let d be a derivation of L that satisfies (d(a), b) = −(a, d(b)). Show

that ψ(a, b) = (d(a), b) defines a cocycle on L.

Exercise 2.3 Let L be the Witt algebra, see appendix B, with basis Ln (for n ∈ Z) and

commutation relations given by

[Lm, Ln] = (m− n)Ln+m .

Show that there is, up to trivial cocycles, only one non-trivial central extension of the Witt

algebra and that it is given by

[Lm, Ln] = (m− n)Ln+m +
K

12
(m(m2 − 1)δm,−n , (2.2)

where K is the central element. Hint: If ψ(·, ·) is the cocycle, then denote by cm,n the

element ψ(Lm, Ln). Choose a new basis L′n = Ln + 1
ncn,0K, for n 6= 0 and L′0 =

L0 + 1
2c1,−1K.

NOTE: The central extension of the Witt algebra is called the Virasoro algebra and it

plays an important role in Conformal Field Theory.

3 The Loop Algebra

Let L be a semisimple Lie algebra. A loop is a map from the circle S1 (paramterized by

eiθ) to the Lie algebra L. It will be assumed that the loop is a polynomial. Thus making

it possible to expand it in terms of a finite Fourier series,

g(θ) =
N∑

n=−N
gne

inθ, with gn ∈ L .

Denote by L̄ the vector space of all such maps. Then L̄ becomes a Lie algebra, called the

loop algebra of L, with Lie bracket [·, ·]L̄ defined by

[eimθg, einθh]L̄ := ei(m+n)θ[g, h]

where the bracket on the right is the Lie bracket defined on L. For simplicity write, from

now on, t instead of eiθ and g(t) instead of g(θ). With this definition L̄, as a vector space,

is given by

L̄ = C[t, t−1]⊗C L ,
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where C[t, t−1] is the algebra of Laurent polynomials in t, and [·, ·]L̄ by

[tn ⊗ g, tm ⊗ h]L̄ = tm+n ⊗ [g, h].

4 Central Extension of the Loop Algebra

The 1-dimensional central extension of the loop algebra L̄ will now be comstructed, where

as before L̄ = C[t, t−1]⊗C L.

Let κ(·, ·) be the Killing form on L‡. It can then be extended to a non-degenerate

symmetric, invariant bilinear form κL̄(·, ·) on L̄ by

κL̄(P (t)⊗ x,Q(t)⊗ y) = (P (t)Q(t)|t=0)κ(x, y) . (4.1)

Note that

κL̄(P (t)⊗ x,Q(t)⊗ y) =
(

1
2π

∫ 2π

0
P (eiθ)Q(eiθ) dθ

)
κ(x, y).

Let d = t ddt be the derivation of C[t, t−1], then one has the following result.

Lemma 4.1 On L̄ one has a C-valued 2-cocycle that is defined by

ψL̄(P (t)⊗ x,Q(t)⊗ y) = κL̄(d(P (t))⊗ x,Q(t)⊗ y)0 .

Proof. See Exercise 2.2. For an example of calculating the 2-cocycle see appendix C. �

The 2-cocycle defined in Lemma 4.1 is non-trivial (Exercise 4.2), thus giving a non-trivial

central extension L̃ of L̄. As a vector space L̃ is given by

L̃ = L̄⊕ CK = C[t, t−1]⊗C L⊕ CK

and this becomes a Lie algebra via

[P (t)⊗ x+ λK,Q(t)⊗ y + µK]L̃ = [P (t)⊗ x,Q(t)⊗ y]L̄ + ψL̄(P (t)⊗ x,Q(t)⊗ y)K .

It will be convenient to extend this algebra with one extra dimension. For this first extend

the derivation d on C[t, t−1] to a derivation on L̃ by

dL̃(P (t)⊗ x+ λK) = d(P (t))⊗ x ,

and introduce

L̂ = L̃⊕ Cd = L̄⊕ CK ⊕ Cd , (4.2)

‡It is known (see [1] page 22) that κ(·, ·) is non-degenerate since the Lie algebra L is semisimple.
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L̂ becomes a Lie algebra when multiplication, [·, ·]L̂, is defined as

[P (t)⊗x+λK+µd,Q(t)⊗y+νK+σd]L̂ := P (t)Q(t)⊗[x, y]+µd(Q(t))⊗y−σd(P (t))⊗x+ψL̄(P (t)⊗x,Q(t)⊗y)K .

The bilinear form κL̄(·, ·), given by (4.1), on L̄ can be extended to a non-degenerate

symmetric bilinear form κL̂(·, ·) on L̂ by defining

κL̄(P (t)⊗ x,Q(t)⊗ y) = κL̄(P (t)⊗ x,Q(t)⊗ y)0 ,

κL̄(P (t)⊗ x,K) = κL̄(P (t)⊗ x, d) = 0 ,

κL̄(K,K) = κL̄(d, d) = 0 ,

κL̄(K, d) = κL̄(d,K) = 1 .

Let H be the CSA of L. The restriction of κL̂(·, ·) to H ⊕CK ⊕Cd is non-degenerate. In

appendix D the Lie algebra L̂ is constructed for the case when L is given by sl2(C).

Exercise 4.1 Show that the 2-cocycle defined in Lemma 4.1 satisfies the conditions of

exercise 2.2.

Exercise 4.2 Show that the 2-cocycle defined in Lemma 4.1 is non-trivial. .

5 Untwisted Affine Lie Algebras

Now it will be shown for the Lie algebra L̂ that one can find a set of generators xi, yi and

hi such that the relations (1.3) and (1.4) hold. This will be shown for the case that L is

simple. The construction for L semisimple will then be immediately obvious.

Assume from now on in this section that L is a simple Lie algebra. Choose as in section

1 a simple root system ∆ and let xi,yi and hi, 1 ≤ i ≤ `, be the standard set of generators

for L that satisfy (1.3) and (1.4). Let θ be the highest root of L. Then since Lθ is one

dimensional one can choose an element y′ ∈ Lθ such that κ(y′, ω(y′)) = − 2
(θ,θ) and define

x′ = −ω(y′). Now (see (1.1)), choose

h′ = [x′, y′] = −κ(x′, y′)tθ = − 2tθ
(θ, θ)

,
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then

[h′, xi] =− 2
(θ, θ)

[tθ, xi]

=− 2
(θ, θ)

αi(tθ)xi

=− 2
(θ, θ)

κ(tαi , tθ)xi

=− 2(αi, θ)
(θ, θ)

xi

=− 〈αi, θ〉xi .

(5.1)

and

[hi, x′] =− θ(hi)x′

=− 〈θ, αi〉x′
(5.2)

Let L̂ be as in (4.2). Define the affine CSA

Ĥ = H ⊕ CK ⊕ Cd

and let δ ∈ Ĥ∗ be such that

δ(hi) = 0, δ(K) = 0 and δ(d) = 1 .

Choose

xi = t0 ⊗ xi, yi = t0 ⊗ yi hi = t0 ⊗ hi, for 1 ≤ i ≤ ` , (5.3)

and

x0 = t⊗ x′, y0 = t−1 ⊗ y′, h0 = t0 ⊗ h′ + 2
(θ, θ)

K . (5.4)

Now, define α0 ∈ Ĥ∗ by

α0 = δ − θ . (5.5)

then one can show that these xi, yi and hi for i = 0, 1, . . . , ` satisfy the equations (1.3)

and (1.4) and that they generate L̃.

The (extended) root system of L̂ is equal to

Φ̂ = {jδ + α | j ∈ Z, α ∈ Φ} ∪ {jδ | j ∈ Z, j 6= 0} . (5.6)

Note that we no longer have that any root has nonzero length. In this case there are so
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called imaginary roots, i.e., roots β ∈ Φ̂ for which (β, β) ≤ 0. The roots jδ have

(jδ, jδ) = 0 .

All other roots β are so called real roots, they have (β, β) > 0. In particular

(jδ + α, jδ + α) = (α, α) > 0 .

So we have the following decomposition in real and imaginary roots:

Φ̂ = Φ̂re ∪ Φ̂im (disjoint union),

where

Φ̂re = {jδ + α | j ∈ Z, α ∈ Φ} and Φ̂im = {jδ | j ∈ Z, j 6= 0} .

The simple root system of L̂ is

∆̂ = {α0, α1, . . . , α`} ,

hence

Φ̂+ = {α |α ∈ Φ+} ∪ {jδ + α | j > 0, α ∈ Φ} ∪ {jδ | j > 0}, Φ̂− = −Φ̂+

and Φ̂ = Φ̂+ ∪ Φ̂− (disjoint union). As for finite dimensional simple Lie algebras we have

a root space decomposition

L̂ = Ĥ ⊕
⊕
α∈Φ̂

L̂α = Ĥ ⊕
⊕
α∈Φ̂+

(
L̂α ⊕ L̂−α

)

and a triangular decomposition

L̂ = N̂− ⊕ Ĥ ⊕ N̂+, where

N̂+ = N̂(∆̂) =
⊕
α∈Φ̂+

L̂α and N−
⊕
α∈Φ̂+

L̂−α .

The matrix (〈αi, αj〉)0≤i,j≤` is called the the extended Cartan matrix of L or the Cartan

matrix of L̂. In figure we give the extended Dynkin diagrams corresponding to the extended

Cartan matrix of L. The x encodes the root α0 and the black nodes correspond to the

short roots and the white nodes to the long roots.

In analogy with the semisimple case one has (see e.g. [2]):

Theorem 5.1 (Kac-Gabber). Let Φ̂, and ∆̂ be as above. Let L̂ be the Lie algebra

generated by the elements xi, yi, hi, for 0 ≤ i ≤ ` and d, subject to the relations (1.3) and
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(1.4) and

[d, hi] = [d, xi] = [d, yi] = 0 for i 6= 0,

[d, h0] = 0, [d, x0] = x0, and [d, y0] = −y0 ,

then L̂ is an untwisted affine Lie algebra, with CSA spanned by the hi and d and with

corresponding root system Φ̂.

We can extend the Cartan involution ω on L to a Cartan involution ω̂ on L̂, by putting

for i = 1, 2, . . . , `

ω̂(xi) = ω(xi) = −yi, ω̂(yi) = ω(yi) = −xi, ω̂(hi) = ω(hi) = −hi

and

ω̂(x0) = ω̂(tx′) = −t−1y′ = −y0, ω̂(y0) = ω̂(t−1y′) = −tx′ = −x0, ω̂(d) = −d.

Clearly, since ω̂(h′) = −h′ we find that also ω̂(K) = −K.

The affine Weyl group Ŵ of L̂ is the subgroup of GL(Ĥ∗) generated by all reflections

(λ ∈ Ĥ∗)
σβ(λ) = λ− 〈λ, β〉β, for all β ∈ Φ̂re . (5.7)

One can show that this group is generated by all simple reflections ri = σαi , for i =

0, 1, . . . .`. Note that w(δ) = δ for any w ∈ Ŵ .

Let for α ∈ Φ

α∨ = 2
α

(α, α)

and introduce for α a long root the linear map tα∨ by

tα∨(λ) = λ+ (λ, δ)α∨ −
(

(λ, α∨) +
1
2

(α∨, α∨)(λ, δ)
)
δ ,
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for λ ∈ H∗. Then

σα0σθ(λ) =σδ−θ (λ− 〈λ, θ〉θ)

=σδ−θ (λ)− 〈λ, θ〉σδ−θ (θ)

=λ− 〈λ, δ − θ〉(δ − θ)− 〈λ, θ〉θ − 2〈λ, θ〉(δ − θ)

=λ− 2(λ, δ)
(θ, θ)

(δ − θ)− 〈λ, θ〉(δ − θ)− 〈λ, θ〉θ

=λ− 2(λ, δ)
(θ, θ)

(δ − θ)− 〈λ, θ〉δ

=λ+ (λ, δ)θ∨ −
(

(λ, θ∨) +
1
2

(θ∨, θ∨)(λ, δ)
)
δ

=tθ∨(λ) .

Let w ∈W , then

wtα∨w
−1(λ) =w

(
w−1(λ) + (w−1(λ), δ)α∨ −

(
(w−1(λ), α∨) +

1
2

(α∨, α∨)(w−1(λ), δ)
)
δ

)
=λ+ (λ, δ)w(α∨)−

(
(λ,w(α∨)) +

1
2

(w(α∨), w(α∨))(λ, δ)
)
δ

=tw(α∨)(λ) ,

(5.8)

since w(δ) = δ and 〈w(α), w(β)〉 = 〈α, β〉. Since the highest root θ of a simple Lie algebra

L is always a long root and the Weyl group acts transitively on all the long roots, we

obtain all tα∨ with α a long root from tθ∨ by conjugation with all w ∈W . Note also that

tα∨tβ∨(λ) =tα∨(
(
λ+ (λ, δ)β∨ −

(
(λ, β∨) +

1
2

(β∨, β∨)(λ, δ)
)
δ

)
=tα∨(λ) + (λ, δ)tα∨(β∨)−

(
(λ, β∨) +

1
2

(β∨, β∨)(λ, δ)
)
δ

=λ+ (λ, δ)α∨ −
(

(λ, α∨) +
1
2

(α∨, α∨)(λ, δ)
)
δ

+ (λ, δ)
(
β∨ + (β∨, δ)α∨ −

(
(β∨, α∨)

1
2

(α∨, α∨)(β∨, δ)
)
δ

)
−
(

(λ, β∨) +
1
2

(β∨, β∨)(λ, δ)
)
δ

=λ+ (λ, δ)(α∨ + β∨)−
(

(λ, α∨ + β∨) +
1
2

(α∨ + β∨, α∨ + β∨)(λ, δ)
)
δ

=tα∨+β∨(λ) .

Let T be the subgroup of GL(Ĥ∗) generated by all tα∨ for α a long root of L, then an

element of T can be written as tβ∨ with β in the lattice generated by all long roots. T is
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called the group of translations and

Proposition 5.1

Ŵ = W n T .

Proof. From the above considerations it is clear that tα∨ ∈ T is also an element of

Ŵ . Since it has infinite order it cannot be an element of W , except when α = 0. Thus

W ∪ T = {1}, and since wtα∨w−1 = tw(α∨), we find that T is a normal subgroup of Ŵ .

Since Ŵ is generated by all simple reflections ri for i = 0, 1, . . . `, and ri ∈ W for i 6= 0

and r0 = tθ∨σθ, we find also that Ŵ ⊂W n T . �

Exercise 5.1 Use the definition (5.5) of α0 to calculate the extended Cartan matrix for

the cases that L is a simple Lie algebra of type A, B, C and D.

Exercise 5.2 Show that the root system of L̂ is equal to (5.6) and give the dimension of

the corresponding root spaces.

Exercise 5.3 Express the elements jδ + εk − ε` and jδ in Φ̂ of the affine Lie algebra

ŝl(n,C) in terms of α0, α1, . . . , αn−1.

Exercise 5.4 Show that the elements xi, yi and hi for i = 0, 1, . . . , `, defined in (5.3) and

(5.4) generate the Lie algebra L̃.

Exercise 5.5 Show that the elements xi, yi and hi for i = 0, 1, . . . , `, defined in (5.3) and

(5.4) satisfy the equations (1.3) and (1.4).

6 Kac-Moody algebra’s

We will now use the abstract formulation of the semisimple and untwisted affine Lie

algebras as given in Theorem 1.1 and Theorem 5.1 and generalize this, thus obtaining

certain infinite dimensional Lie algebras. As a reference we refer to the book of Victor Kac

[2]. Note however that our notations are somewhat different and our definition of a Kac-

Moody Lie algebra is also different. When the generalized Cartan matrix is symmetrizable

both definitions lead to the same Lie algebra.

We start with the definition of a generalized Cartan matrix. We call a complex n×n-

matrix C = (cij)1≤i,j≤n of rank ` a generalized Cartan matrix if the following conditions

hold:

cii = 2 for all 1 ≤ i ≤ n,

0 ≥ cij ∈ Z for i 6= j,

cij = 0 implies cji = 0.

(6.1)
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Such a generalized Cartan matrix is called symmetrizable if there exists an invertible

diagonal matrix D = diag(d1, d2, . . . , dn) and a symmetric matrix B = (bij)1≤i,j≤n such

that

C = BD . (6.2)

Of course such a matrix D and B are not unique, however we will always assume that

all 0 < di ∈ Q. From now on we will always assume that a generalized Cartan matrix is

symmetrizable.

In both semisimple and affine case one can show (see exercise 6.1) that the (extended)

Cartan matrix is symmetrizable. In that case B more or less defines a bilinear form on

the linear span of the simple roots, which is a subspace of H∗.

Now let H be a complex 2n− `-dimensional vector space and let

∆∨ = {h1, h2, . . . , hn} ⊂ H ,

be a linearly independent subset. Define

H ′ =
n∑
i=1

Chi .

Since we can identify H with H∗, we define the subset

∆ = {α1, α2, . . . , αn} ⊂ H∗

and a non-degenerate pairing 〈·, ·〉 : H∗ ×H → C such that

〈αi, hj〉 = cij . (6.3)

Note that since the rank of C is ` and the dimension of H ′ is n, we need the extra

n− `-dimensions in H to make the αi linearly independent. We decompose H as follows

H = H ′ ⊕H ′′

where H ′′ is an n − `-dimensional complementary subspace to H ′. Define a symmetric

non-degenerate bilinear form (·, ·) on H by

(hi, h) = di〈αi, h〉 and (H ′, H ′′) = 0 ,

then

(hi, hj) = dicij = didjbij (6.4)
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Using this nondegenerate bilinear form on H we define an isomorphism ν : H → H∗ by

〈ν(h), k〉 = (h, k) for all k ∈ H .

This makes it possible to define a symmetric, non-degenerate, bilinear form on H∗, by

(ν(h), ν(k)) = (h, k) .

Then from (6.3) and (6.4) we deduce that

ν(hi) = diαi

and thus that

(αi, αj) = bij .

Note that if we follow the definition of Humphreys [1] and define 〈αi, αj〉 = 2 (αi,αj)
(αj ,αj)

then

〈αi, αj〉 = 2
(αi, αj)
(αj , αj)

= 2
bij
bjj

= 2
cij
cjj

= cij (6.5)

We can now introduce the Kac-Moody lie algebra g(C) associated to the matrix C.

Definition 6.1 Let C be a symmetrizable generalized Cartan matrix and H, ∆ and ∆∨

be as above. The Lie algebra g(C) is the Lie algebra with generators xi, yi, i = 1, 2, . . . n

and H and relations

[h, k] = 0 for all h, k ∈ H,

[xi, yj ] = δijhi ,

[h, xj ] = 〈αj , h〉ej ,

[hi, yj ] = −〈αj , h〉fj .

(6.6)

and the Serre relations

(adxi)1−cji(xj) = 0 ,

(ad yi)1−cji(yj) = 0 .
(6.7)

Note that this definition is not the definition that is given by Kac in [2]. First of all Kac

has a matrix A which is the transposed of C. Also the Serre relations (6.7) are replaced

by some other condition. Kac and Gabber have shown (see e.g. [2]) that when C is

symmetrizable then Definition 6.6 gives the Kac-Moody Lie algebra as it is defined in [2].

If C is nonsymmetrizable, then until now it is not known if both definitions define the

same Lie algebra.
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We call H the Cartan subalgebra (CSA) of g(C). Note that

[hi, xj ] = cjixj and [hi, yj ] = −cjiyj ,

If C is the Cartan matrix of a semisimple Lie algebra, than the rank of C is n and thus

the corresponding Lie algebra g(C) gives exactly the construction of L as in Theorem 1.1.

Let Q =
∑n

i=1 Zαi be the root lattice of g(C). One can show, in a similar way

as is done in Serre’s Theorem in the finite dimensional case, that g(C) is the direct

sum of H together with the linear span of the elements [xi1 , [xi2 , [· · · , [xip−1 , xip ] . . .]

and [yi1 , [yi2 , [· · · , [yip−1 , yip ] . . .]. Thus, if we define Q+ =
∑n

i=1 Z+αi, where Z+ =

{0, 1, 2, . . .}, then we have the following triangular decomposition

g(C) = N− ⊕H ⊕N+, where N± =
⊕

α∈Q+, α 6=0

gα .

Note that the space gα is finite dimensional. This is easy to see, let α =
∑

i kiαi,

then the height ht(α) of α is ht(α) =
∑

i ki. Since all α are either in Q+ or −Q+,

all ki ≥ 0 or all ki ≤ 0. If all ki ≥ 0, then gα is the linear span of all elements

[xi1 , [xi2 , [· · · , [xiht(α−1)
, xiht(α)

] . . .], with αi1 + αi2 + · · · + αiht(α)
= α. A similar condi-

tion holds when all ki ≤ 0. Thus

dim(gα) ≤ n|ht(α)| .

An element α ∈ Q is called a root if α 6= 0 and gα 6= {0}. The set of all roots is denoted

by Φ and one can decompose this set in the disjoint union

Φ = Φ+ ∪ Φ− ,

of the positive roots Φ+ = Φ ∩ Q+ and the negative roots Φ− = Φ ∩ −Q+. As in the

semisimple case we have a Cartan involution ω, which is defined by:

ω(xi) = −yi, ω(yi) = −xi and ω(h) = −h for all h ∈ H .

using this Cartan involution it is clear that Φ− = −Φ+ and that dim g−α = dim gα.

It is possible to extend the bilinear form (·, ·) on H to a non-degenerate symmetric

invariant bilinear form on g(C), by defining it on ⊕i (Cxi ⊕ Cyi) by

(xi, yj) = δijdi, (xi, xj) = (yi, yj) = 0, (xi, h) = (yi, h) = 0 for all h ∈ H . (6.8)
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We now check part of the invariance:

([xi, yj ], hk) = δij(hj , hk) = δijdjdkbjk = δijdicjk = (xi, [yj , hk]) .

Using induction on the height of the roots (see also exercise 6.2), symmetry and invariance,

one can extend this bilinear form to a non-degenerate form on the whole g(C), such that

(gα, gβ) = 0 for α+ β 6= 0 . (6.9)

We define the Weyl group of g(C) as the subgroup of GL(H∗) generated by all funda-

mental reflections ri for i = 1, 2, . . . , n:

ri(λ) = λ− 〈λ, hi〉αi, for all λ ∈ H∗ .

Using exercise 6.3, one can show that all xi and yi act locally nilpotent on g(C), i.e.,

(adxi)k(z) = 0 for k >> 0 and any z ∈ g(C) (the same holds for yi). We can lift the

fundamental reflections to the whole Kac-Moody algebra. Define

r̂i = exp(adyi) exp(−adxi) exp(adyi) ,

then

r̂i(gα) = gri(α) .

Exercise 6.1 Show that Cartan matrix of both a semisimple and an untwisted affine Lie

algebra is symmetrizable and show that one can choose di = 2
(αi,αi)

.

Exercise 6.2 Show that for the non-degenerate symmetric invariant bilinear form defined

by (6.4) and (6.8) on g(C) condition (6.9) holds whenever ht(α) + ht(β) 6= 0.

Exercise 6.3 Let L = g(C) be a Kac-Moody algebra. Show that if there exists m,n > 0

such that (adx)m(y) = 0 and (adx)n(z) = 0 for x, y, z ∈ L, that there exists k > 0 such that

also (adx)k([y, z]) = 0. Using this, show that all generators xi and yi, for i = 1, 2, . . . , n

act locally nilpotent on N− ⊕N+

Appendix A

Triangular Decomposition of L

Consider the root space decomposition of the Lie algebra L

L = H ⊕
⊕
α∈Φ

Lα.
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This can be written as (using the commutivity of the direct sum)

L = H ⊕
⊕
α∈Φ+

(Lα ⊕ L−α) ,

= H ⊕ (Lα1 ⊕ L−α1 ⊕ Lα2 ⊕ L−α2 ⊕ · · · ⊕ Lαn ⊕ L−αn) ,

= H ⊕ Lα1 ⊕ L−α1 ⊕ Lα2 ⊕ L−α2 ⊕ · · · ⊕ Lαn ⊕ L−αn ,

= H ⊕ L−α1 ⊕ Lα1 ⊕ L−α2 ⊕ Lα2 ⊕ · · · ⊕ L−αn ⊕ Lαn ,

= L−α1 ⊕H ⊕ Lα1 ⊕ L−α2 ⊕ Lα2 ⊕ · · · ⊕ L−αn ⊕ Lαn ,

= L−α1 ⊕H ⊕ L−α2 ⊕ Lα1 ⊕ Lα2 ⊕ · · · ⊕ L−αn ⊕ Lαn ,

= L−α1 ⊕ L−α2 ⊕H ⊕ Lα1 ⊕ Lα2 ⊕ · · · ⊕ L−αn ⊕ Lαn ,

= L−α2 ⊕ L−α1 ⊕H ⊕ Lα1 ⊕ Lα2 ⊕ · · · ⊕ L−αn ⊕ Lαn ,

= · · · = ,

= L−αn ⊕ · · · ⊕ L−α1 ⊕H ⊕ Lα1 ⊕ · · · ⊕ Lαn ,

=
⊕
α∈Φ+

L−α ⊕H ⊕
⊕
α∈Φ+

Lα .

But this is just the triangular decomposition

L = N− ⊕H ⊕N+,

where

N+ = N(∆) =
⊕
α∈Φ+

Lα and N− =
⊕
α∈Φ+

L−α.

Appendix B

The Witt Algebra

The Witt algebra is the Lie algebra of derivations of the ring C[t, t−1], i.e. derivations of

the Laurent polynomials, whose basis is given by the vector fields

Ln := −tn+1 ∂

∂t
for n ∈ N

and Lie bracket [w, g] := wg − gw for w and g in the Witt algebra.
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Note that [Lm, Ln] = (m− n)Lm+n. This is given by,

[Lm, Ln] = −tm+1 ∂

∂t

(
−tn+1 ∂

∂t

)
+ tn+1 ∂

∂t

(
−tm+1 ∂

∂t

)
= −tm+1(n+ 1)

(
−tn ∂

∂t

)
+ tn+1(m+ 1)

(
−tm ∂

∂t

)
= −(n+ 1)

(
−tm+1+n ∂

∂t

)
+ (m+ 1)

(
−tn+1+m ∂

∂t

)
= ntm+1+n ∂

∂t
+ (−m)tn+1+m ∂

∂t
+ (1− 1)tn+1+m ∂

∂t

= ntm+1+n ∂

∂t
+ (−m)tn+1+m ∂

∂t

= −nLm+n +mLm+n

= (m− n)Lm+n .

The Witt algebra can be extended uniquely, up to trivial cocyle, by the following

bracket (Excercise 2.3)

[Lm, Ln] := (m− n)Lm+n + δm,−n
m3 −m

12
K.

Also, one can show that Span{L−1, L0, L1} ∼= sl2(C).

Appendix C

Calculating the 2-cocycle for L̄

Let a, b ∈ L̄, then ψL̄(a, b) is given by

ψL̄(a, b) = ψL̄(tn ⊗ g, tm ⊗ h) for some g, h ∈ L

= κL̄(d(tn)⊗ g, tm ⊗ h)

= κL̄(t
∂

∂t
(tn)⊗ g, tm ⊗ h)

= κL̄(t(ntn−1)⊗ g, tm ⊗ h)

= κL̄(ntn ⊗ g, tm ⊗ h)

= nκL̄(tn ⊗ g, tm ⊗ h)

= ntm+n|t=0κ(g, h)

=

0 if m+ n 6= 0

nκ(g, h) if m+ n = 0

= δm,−nnκ(g, h) .
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